首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Zeng W  Ghosh S  Li B 《Genetical research》2004,83(2):143-154
Diallel mating is a frequently used design for estimating the additive and dominance genetic (polygenic) effects involved in quantitative traits observed in the half- and full-sib progenies generated in plant breeding programmes. Gibbs sampling has been used for making statistical inferences for a mixed-inheritance model (MIM) that includes both major genes and polygenes. However, using this approach it has not been possible to incorporate the genetic properties of major genes with the additive and dominance polygenic effects in a diallel mating population. A parent block Gibbs sampling method was developed in this study to make statistical inferences about the major gene and polygenic effects on quantitative traits for progenies derived from a half-diallel mating design. Using simulated data sets with different major and polygenic effects, the proposed method accurately estimated the major and polygenic effects of quantitative traits, and possible genotypes of parents and progenies. The impact of specifying different prior distributions was examined and was found to have little effect on inference on the posterior distribution. This approach was applied to an experimental data set of Loblolly pine (Pinus taeda L.) derived from a 6-parent half-diallel mating. The result indicated that there might be a recessive major gene affecting height growth in this diallel population.  相似文献   

2.
Unexpectedly high levels of field susceptibility to the fusiform rust fungus observed for slashXloblolly hybrid families in the Cooperative Forest Genetics Research Program Pine Hybrid Trials led to several hypotheses concerning causation of the observed susceptibility. One of these hypotheses involved the failure of major resistance genes to appropriately function in this particular hybrid combination. This current work, involving the loblolly pine resistance gene Fr1 and a fusiform rust inoculum avirulent against Fr1 resistance in a greenhouse trial, delineates the investigation of major gene resistance for a particular slashXloblolly hybrid family. In this trial, the Fr1 resistance allele, derived from the heterozygous (Fr1/fr1) loblolly male parent and transferred to hybrid offspring that should have been segregating 1:1 for resistance, was fully penetrant. Likewise, in the pure-species loblolly control, the Fr1 resistance allele was again fully penetrant, and the performances of our hybrid family and the loblolly control family (both of which segregated for Fr1 resistance) were comparable. These results by inductive reasoning refute the hypothesis that major resistance genes are not appropriately functional in a slashXloblolly hybrid background.  相似文献   

3.
Major advances have been achieved in somatic embryogenesis (SE) of loblolly pine, making it a promising method for the implementation of clonal forestry. However, the frequency of initiation of SE cultures, which is highly variable among loblolly pine families, needs improvement to further advance the implementation of this technology in conjunction with tree breeding. Genetic control of SE initiation was investigated using a diallel mating design with six parent trees. The results showed that SE initiation is under the control of strong genetic additive effects, as 42% of the total variance was explained by the variation due to general combining ability effects. The variation due to maternal effects explained a moderate proportion of the total variance, whereas other components of variance had small but significant effects. The conclusions regarding the strong genetic control of SE initiation were drawn from two independent experiments in which consistent results were obtained with seed from the same controlled pollinations but using entirely different procedures. Practical implications for breeding and clonal propagation were tested in independent experiments with targeted matings. Our results indicated that large improvement in SE culture initiation could be achieved in a predictable manner by selecting the most favorable female parent, or in some cases, a favorable male parent.  相似文献   

4.
Future biomass yields are functionally related to the number of trees surviving at a given age. A stand level survival model was developed that incorporates competition of non-planted trees, site quality, and the incidence of fusiform rust (Cronartium quercuum [Berk.] Miyabe ex Shirai f. sp. fusiforme). The model consists of a system of two equations, one of which represents the number of surviving trees infected by fusiform rust while the other represents the number of trees not infected by fusiform rust. Data from unthinned loblolly pine (Pinus taeda L.) plantations in East Texas were used to fit and evaluate the survival model and illustrate its use. The model successfully predicted that the number of surviving loblolly pine trees decreased as the number of non-planted trees increased. The model also successfully predicted the transition of loblolly pine trees from an uninfected to an infected status by fusiform rust.  相似文献   

5.
The inheritance patterns of the chloroplast genomes of shortleaf pine (Pinus echinata Mill.), loblolly pine (Pinus taeda L.) and slash pine (Pinus elliottii Engelm.) were investigated through the trnL-trnF intergenic spacer polymorphism analysis. The DNA sequences of this spacer differ among these three closely related Pinus species. A modified 'cold' PCR-SSCP (single-strand conformation polymorphism) analysis of this spacer shows that the artificial hybrids (F1) from the shortleaf pine (seed parent) 2 loblolly pine (pollen parent) cross, exhibit the loblolly pine profile. Additionally, nine putative hybrids between shortleaf pine and loblolly pine, previously identified by the IDH (Isocitrate dehydrogenase) allozyme marker, presented the shortleaf pine profile indicating that shortleaf pine, not loblolly pine, sired all of the putative hybrids. Nondenatured polyacrylamide-gel electrophoresis of the trnL-trnF intergenic spacer demonstrated that the artificial hybrids (F1) from the cross, slash pine (seed parent) 2 shortleaf pine (pollen parent), present the shortleaf pine profile. Those results confirmed that the chloroplast genome is paternally inherited in these three species of the genus Pinus. The significance of the trnL-trnF intergenic region polymorphism and our modified 'cold' SSCP protocol for population genetic studies is discussed.  相似文献   

6.
Common smooth bromegrass (Bromus inermis Leyss.) is octoploid, 2n = 8x = 56, with a genome structure of AAAAB1B1B2B2. Tetrasomic inheritance patterns have been observed in smooth bromegrass, but disomic inheritance is also expected from cytologic observations. Smooth bromegrass is susceptible to the crown rust fungus (Puccinia coronata Corda.). The objective of this study was to determine the inheritance of smooth bromegrass resistance to P. coronata. Seven smooth bromegrass clones, three susceptible and four resistant, were selfed and crossed in a diallel with bulked reciprocals. Inoculations were made with a population of P. coronata from PL-BDR1 smooth bromegrass. Resistance of smooth bromegrass to this population of P. coronata is complex. At least three genes appear to be involved in this host-pathogen interaction, one tetrasomic dominant gene which determines susceptibility (S) and two dominant genes (R1 and R2) that may be complementary and could be inherited either tetrasomically or disomically. Other genes may be involved in the smooth bromegrass-P. coronata interaction, possibly accounting for the lack of fit to expected ratios of some progeny. Heterogeneity for avirulence phenotype in the pathogen population may also have contributed to lack of fit of some progeny. Multiple resistance genes were detected because a pathogen population, likely consisting of genotypes with different genes for virulence, was used to challenge the host.  相似文献   

7.
A half diallel was made amongst five wheat (Triticum aestivum L.) genotypes of which one was susceptible, while the others had adult-plant resistance, to stripe rust (Puccinia striiformis West.). The five parent and ten F1 progeny were grown in the glasshouse and were inoculated with three rust pathotypes at the seedling stage. The latent period was measured on the first leaf. Two procedures were used to analyze the half diallel. Both methods showed that the average effects of alleles were of much greater importance than was dominance in conditioning resistance in response to two of the pathotypes, while for the third pathotype dominance was important. Resistance was conditioned by partial dominance for two pathotypes whereas for the third it was determined by full dominance. Broad-sense heritabilities range from 60–73% and the number of genes involved was different (from 1 to 4), depending on the pathotype.  相似文献   

8.
The majority of genomic research in conifers has been conducted in the Pinus subgenus Pinus mostly due to the high economic importance of the species within this taxon. Genetic maps have been constructed for several of these pines and comparative mapping analyses have consistently revealed notable synteny. In contrast, little genomic research has been conducted on the Pinus subgenus Strobus, even though these pines have strong ecological relevance. We report a consensus genetic linkage map for sugar pine (Pinus lambertiana Dougl.) constructed with 399 single nucleotide polymorphisms markers derived from annotated genes. The map is 1,231 cM in length and organized into 19 linkage groups. Two of the mapping populations were derived from trees that were segregating for the major gene of resistance (Cr1) to Cronartium ribicola, the fungal pathogen responsible for white pine blister rust. The third mapping population was derived from a full-sib cross segregating for partial resistance to white pine blister rust. In addition, we report the first comparative mapping study between subgenera Strobus and Pinus. Sixty mapped markers were found in common between sugar pine and the loblolly pine reference map with 56 of them (93%) showing collinearity. All 19 linkage groups of the sugar pine consensus map coaligned to the 12 linkage groups of the loblolly pine reference map. The syntenic relationship observed between these two clades of pines provides a foundation for advancing genomic research and genetic resources in subgenus Strobus.  相似文献   

9.
Loblolly pine (Pinus taeda L.) exhibits genetic resistance to fusiform rust disease (incited by the biotrophic fungus, Cronartium quercuum f. sp. fusiforme) and pitch canker disease (incited by the necrotrophic fungus, Fusarium circinatum). In this study, a total of 14,015 loblolly pine cuttings from 1,065 clones were screened in controlled greenhouse conditions to identify phenotypes of clones, families, and parents that guide a genetic dissection of disease traits associated with pitch canker and fusiform rust. A total of 23,373 phenotypic data points were collected for lesion length (pitch canker) and gall score, gall length, and gall width (fusiform rust). We verified heritable fusiform rust and pitch canker traits and calculated parental, clonal, and full-sib family rankings for both diseases. Genetic correlations revealed that traits associated with fusiform rust are genetically distinct from one another, and that the genetic mechanisms underlying pitch canker and fusiform rust resistance are independent. The disease phenotyping described here is a critical step towards identifying specific loci and alleles associated with fusiform rust and pitch canker resistance.  相似文献   

10.
D Bai  D R Knott 《Génome》1994,37(3):405-409
Six accessions of Triticum turgidum var. dicoccoides L. (4x, AABB) of diverse origin were tested with 10 races of leaf rust (Puccinia recondita f.sp. tritici Rob. ex Desm.) and 10 races of stem rust (P. graminis f.sp. tritici Eriks. &Henn.). Their infection type patterns were all different from those of lines carrying the Lr or Sr genes on the A or B genome chromosomes with the same races. The unique reaction patterns are probably controlled by genes for leaf rust or stem rust resistance that have not been previously identified. The six dicoccoides accessions were crossed with leaf rust susceptible RL6089 durum wheat and stem rust susceptible 'Kubanka' durum wheat to determine the inheritance of resistance. They were also crossed in diallel to see whether they carried common genes. Seedlings of F1, F2, and BC1F2 generations from the crosses of the dicoccoides accessions with RL6089 were tested with leaf rust race 15 and those from the crosses with 'Kubanka' were tested with stem rust race 15B-1. The F2 populations from the diallel crosses were tested with both races. The data from the crosses with the susceptible durum wheats showed that resistance to leaf rust race 15 and stem rust race 15B-1 in each of the six dicoccoides accessions is conferred by a single dominant or partially dominant gene. In the diallel crosses, the dominance of resistance appeared to be affected by different genetic backgrounds. With one exception, the accessions carry different resistance genes: CI7181 and PI 197483 carry a common gene for resistance to leaf rust race 15. Thus, wild emmer wheat has considerable genetic diversity for rust resistance and is a promising source of new rust resistance genes for cultivated wheats.  相似文献   

11.
Open-pollinated loblolly pine seedlings derived from seven maternal parents were inoculated in a greenhouse with 10 different bulked inocula of the fusiform rust fungus and assessed for disease incidence. The maternal parents are heterozygous (Rr) for one or two of nine known pathotype-specific Fr genes (fusiform rust resistance genes). Progeny were genotyped to identify carriers of known R and r alleles inherited from the maternal parents. The R alleles condition resistance to specific genotypes of the fungal pathogen, while r alleles do not condition for resistance. Interactions were tested among different host genotypes and different bulked inocula. Significant differences in virulence against R genotypes were observed in the bulked inocula. Likewise, the inocula were significantly different with regard to their ability to incite disease at the family level and in r genotypes. Across the inocula, disease levels differed significantly among families. Within each family, r genotype seedlings typically exhibited higher disease rates than did R genotype seedlings. The magnitude of difference (odds ratio) between the R versus r genotypes for disease incidence within each family varied from 1 to 32 times. Significant interactions between host and pathogen genotypes were observed in four of the seven families. These greenhouse assessments using bulked inocula sources revealed wide ranges of pathogen virulence levels against the different R alleles. Barring virulence masking by unknown resistance genes, similar virulence assessments should be effective guides for the field deployment of seedlings carrying specific R alleles to regions where inocula samples show low or no corresponding virulence.  相似文献   

12.
Rust and late leaf spot (LLS) are the two major foliar fungal diseases in groundnut, and their co‐occurrence leads to significant yield loss in addition to the deterioration of fodder quality. To identify candidate genomic regions controlling resistance to rust and LLS, whole‐genome resequencing (WGRS)‐based approach referred as ‘QTL‐seq’ was deployed. A total of 231.67 Gb raw and 192.10 Gb of clean sequence data were generated through WGRS of resistant parent and the resistant and susceptible bulks for rust and LLS. Sequence analysis of bulks for rust and LLS with reference‐guided resistant parent assembly identified 3136 single‐nucleotide polymorphisms (SNPs) for rust and 66 SNPs for LLS with the read depth of ≥7 in the identified genomic region on pseudomolecule A03. Detailed analysis identified 30 nonsynonymous SNPs affecting 25 candidate genes for rust resistance, while 14 intronic and three synonymous SNPs affecting nine candidate genes for LLS resistance. Subsequently, allele‐specific diagnostic markers were identified for three SNPs for rust resistance and one SNP for LLS resistance. Genotyping of one RIL population (TAG 24 × GPBD 4) with these four diagnostic markers revealed higher phenotypic variation for these two diseases. These results suggest usefulness of QTL‐seq approach in precise and rapid identification of candidate genomic regions and development of diagnostic markers for breeding applications.  相似文献   

13.
Kadarmideen HN  Janss LL 《Genetics》2005,171(3):1195-1206
Bayesian segregation analyses were used to investigate the mode of inheritance of osteochondral lesions (osteochondrosis, OC) in pigs. Data consisted of 1163 animals with OC and their pedigrees included 2891 animals. Mixed-inheritance threshold models (MITM) and several variants of MITM, in conjunction with Markov chain Monte Carlo methods, were developed for the analysis of these (categorical) data. Results showed major genes with significant and substantially higher variances (range 1.384-37.81), compared to the polygenic variance (sigmau2). Consequently, heritabilities for a mixed inheritance (range 0.65-0.90) were much higher than the heritabilities from the polygenes. Disease allele frequencies range was 0.38-0.88. Additional analyses estimating the transmission probabilities of the major gene showed clear evidence for Mendelian segregation of a major gene affecting osteochondrosis. The variants, MITM with informative prior on sigmau2, showed significant improvement in marginal distributions and accuracy of parameters. MITM with a "reduced polygenic model" for parameterization of polygenic effects avoided convergence problems and poor mixing encountered in an "individual polygenic model." In all cases, "shrinkage estimators" for fixed effects avoided unidentifiability for these parameters. The mixed-inheritance linear model (MILM) was also applied to all OC lesions and compared with the MITM. This is the first study to report evidence of major genes for osteochondral lesions in pigs; these results may also form a basis for underpinning the genetic inheritance of this disease in other animals as well as in humans.  相似文献   

14.
Common major gene inheritance of extreme overweight   总被引:10,自引:0,他引:10  
We studied 3925 individuals in 961 families to determine the mode of inheritance of overweight. As an index of overweight, we examined body mass index. Our analyses indicate that the most likely genetic model for susceptibility to overweight included moderate polygenic inheritance (34% of variance resulting from many genes with small effects) and common (21% frequency) recessively expressed major genes (a few genes with large effects on the individuals who possess them). Standard statistical criteria for accepting both polygenic and major gene inheritance were met, including tests of Mendelian transmission. These results suggest that recessive major gene inheritance of overweight may be common and that homozygosity for overweight susceptibility alleles often results in overweight. Clinical, biologic, and empirical observations all suggest genetic heterogeneity, that is, more than one predisposing gene.  相似文献   

15.
Evolution of herbicide resistance in weeds is a growing problem across the world, and it has been suggested that low herbicide rates may be contributing to this problem. An individual-based simulation model that represents weed population dynamics and the evolution of polygenic herbicide resistance was constructed and used to investigate whether using lower herbicide rates or standard rates at reduced efficacy could reduce the sustainability of cropping systems by causing faster increases in weed population density as herbicide resistance develops. A number of different possible genetic bases for resistance were considered, including monogenic resistance and polygenic resistance conferred by several genes. The results show that cutting herbicide rates does not affect the rate at which weed densities reach critical levels when resistance is conferred exclusively by a single dominant gene. In some polygenic situations, cutting herbicide rates substantially reduces sustainability, due to a combination of faster increase in resistance gene frequency and reduced kill rates in all genotypes, while in other polygenic situations the effect is small. Differences in sustainability depend on combined strength of the resistance genes, variability in phenotypic susceptibility and rate delivered, level of control due to alternative measures, and degree of genetic dominance and epistasis. In the situation where resistance can be conferred by both a single dominant major gene or a number of co-dominant minor genes in combination, the difference made by low rates depends on the relative initial frequency of the major and minor genes. These results show that careful consideration of herbicide rate and understanding the genetic basis of resistance are important aspects of weed management.  相似文献   

16.
The development and application of genomic tools to loblolly pine (Pinus taeda L.) offer promising insights into the organization and structure of conifer genomes. The application of a high-throughput genotyping assay across diverse forest tree species, however, is currently limited taxonomically. This is despite the ongoing development of genome-scale projects aiming at the construction of expressed sequence tag (EST) libraries and the resequencing of EST-derived unigenes for a diverse array of forest tree species. In this paper, we report on the application of Illumina’s high-throughput GoldenGate™ SNP genotyping assay to a loblolly pine mapping population. Single nucleotide polymorphisms (SNPs) were identified through resequencing of previously identified wood quality, drought tolerance, and disease resistance candidate genes prior to genotyping. From that effort, a 384 multiplexed SNP assay was developed for high-throughput genotyping. Approximately 67% of the 384 SNPs queried converted into high-quality genotypes for the 48 progeny samples. Of those 257 successfully genotyped SNPs, 70 were segregating within the mapping population. A total of 27 candidate genes were subsequently mapped onto the existing loblolly pine consensus map, which consists of 12 linkage groups spanning a total map distance of 1,227.6 cM. The ability of SNPs to be mapped to the same position as fragment-based markers previously developed within the same candidate genes, as well as the pivotal role that SNPs currently play in the dissection of complex phenotypic traits, illustrate the usefulness of high-throughput SNP genotyping technologies to the continued development of pine genomics. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Summary The inheritance of organelle DNAs in loblolly pine was studied by using restriction fragment length polymorphisms. Chloroplast DNA from loblolly pine is paternally inherited in pitch pine x loblolly pine hybrids. Mitochondrial DNA is maternally inherited in loblolly pine crosses. The uniparental inheritance of organelle genomes from opposite sexes within the same plant appears to be unique among those higher plants that have been tested and indicates that loblolly pine, and possibly other conifers, must have special mechanisms for organelle exclusion or degradation or both. This genetic system creates an exceptional opportunity for the study of maternal and paternal genetic lineages within a single species.  相似文献   

18.
The genetic nature of polygenic resistance of common wheat to a causative agent of brown rust was studied. It was established, using ditelosomic lines (DT) of the cultivar Chinese Spring, that the majority of examined chromosome arms participate in differential interactions with the pathogen during formation of basic traits of polygenic resistance: the number of pustules (NP) per 1 cm2 of leaf area, the mean spore formation ability of pustule (MSFAP), the mean spore formation ability of fungus per unit of leaf area (MSFAULA). When parameters of spore formation were estimated in the pathogen, it was detected that DT lines 2BL and 5DL did not differentially interact with fungal genotypes carrying different virulence genes. Consequently, minor genes located on 2BS and 5DS arms carry a specific component of polygenic resistance. In this model experiment, we confirmed for the first time the hypothesis that polygenic (horizontal) resistance involves two components: a specific component, which is overcome by the pathogen, and a nonspecific component mediating the prolonged resistance.  相似文献   

19.
The inheritance of resistance in red raspberry (Rubus idaeus) to yellow rust (Phragmidium rubi-idaei) was studied in a diallel cross among the cultivars Boyne, Meeker, Mailing Jewel, Glen Prosen and Glen Clova. The progenies and clonally propagated parents were exposed initially in a rust-infected plantation where the incidence and severity of infection was assessed at the telial stage. The following spring leaves on new canes of the same plants were inoculated with urediniospores in a glasshouse at 18 ± 2 °C. The latent period and number of uredinia per cm2 of abaxial leaf surface were determined 13 and 18 days after inoculation. Cv. Boyne developed only chlorotic flecking on inoculated leaves in the glasshouse and no sporulation was observed. It is postulated that this reaction was determined by a major gene which is designated Yr. Some of the other parents showed incomplete resistance of the slow rusting type, and segregants of Boyne selfed that were susceptible also showed low levels of rust, which suggests that Boyne carries both major- and minor-gene resistance. Diallel analyses of both the field and glasshouse data from the susceptible segregates indicated that the degree of incomplete resistance present was determined predominantly by additive gene action, though small but significant non-additive effects also occurred: cv. Meeker was the most resistant parent and contributed the most resistance to the progenies. The Meeker progenies also segregated for gene H, which determines cane hairiness and is known to be associated with resistance to other diseases. Segregants without hairs (genotypes hh) were found to be the more resistant to rust.  相似文献   

20.
Hybrids between shortleaf pine (Pinus echinata Mill.) and loblolly pine (Pinus taeda L.) have increased since the 1950s throughout the southeastern USA. Previously, greater sprouting capacity and the formation of a basal crook that lowers the height of dormant buds may have favored pure shortleaf pine populations on fire prone sites. The objective of this study was to determine how seasonal timing of topkill by both fire and topclipping affect sprouting of shortleaf × loblolly pine F1 hybrids compared to their parent open-pollinated populations during their third growing season. A factorial combination of top-clipping (hand pruners) and girdling by fire (propane torch) was conducted on November 2010, January, March, and April 2011 and sprouting response was measured after the growing season. Survival of topkilled shortleaf pine (94 %) was greatest followed by hybrid (78 %) and loblolly pine (35 %). However, species effects varied with topkill treatment and treatment date because survival was relatively lower for loblolly and hybrid pines in the burn-only as well as the November and April treatment dates while survival of shortleaf pine was consistently high. The number of sprouts was greatest for shortleaf (32.3) intermediate for hybrid (23.8) and lowest for loblolly pine (12.0). Overall, 83 % of shortleaf pine, 35 % of hybrid pine, and 5 % of loblolly pine exhibited a basal crook. The height from ground line to the lowest sprout was shortest for shortleaf (3.5 mm), intermediate for hybrids (7.7 mm), and largest for loblolly pine (21.3 mm). While the hybrid saplings exhibited intermediate performance in survival, sprouting capacity, and crooking, pure shortleaf pine were superior and are probably better suited to recover from fire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号