首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An ammonia-sensing air gap microelectrode has been designed on the basis of a neutral carrier pH-sensing inner electrode. This electrode has a tip diameter of 2 to 5 microns, has a simple design, is easy to fabricate, and has a long shelf life. Its response to ammonium is linear in the range 3 x 10(-5) to 10(-2) M and its response time (95%) is 10 to 15 s. The electrode was converted to a microsensor for urea by immobilization of urease within its tip. The linear response to urea ranged from 3 x 10(-4) to 10(-2) M and the response time was 15 to 20 s.  相似文献   

2.
A new adenosine-selective membrane electrode using rabbit thymus tissue as catalyst is described. A typical response slope of 51.2 mV per concentration decade is observed over a linear range which extends from 3.16 x 10(-5) M to 5.62 x 10(-3) M. Detection limits of 2.99 x 10(-5) M have been established. Measured response times are 7 min. The coefficient of variation ranged from 1 to 5.62% (n = 7, m = 5). Fourteen compounds were specifically tested as possible interferents, but no significant response was observed. The standard recoveries of adenosine were from 95.3 to 104.0% (m = 5, n = 5), and the recoveries of adenosine in rabbit blood ranged from 94.0 to 108.4% (n = 3, m = 5) over the linear range. This tissue-based biosensor has excellent sensitivity and selectivity, and has additional advantages of simplicity and low cost. The biosensor can be used to measure directly the concentration of adenosine in body fluid samples without sample processing.  相似文献   

3.
A novel inexpensive and simple amperometric biosensor, based on the immobilization of HRP into redox active [Zn-Cr-ABTS] layered double hydroxide, is applied to the determination of cyanide. The electrochemical transduction step corresponds to the reduction at 0.0 V of ABTS+* enzymatically formed in the presence of H2O2. The biosensor has a fast response to H2O2 (8s) with a linear range of 1.7 x 10(-9) to 2.1 x 10(-6) M and a sensitivity of 875 mA M(-1) cm(-2). The apparent Michaelis-Menten constant (KMapp) is 12 microM. The detection of cyanide is performed via its non competitive inhibiting action on the HRP/[Zn-Cr-ABTS] electrode. The concentration range of the linear response and the apparent inhibition constant (ki) are 5 x 10(-9) to 4 x 10(-8) and 1.4 x 10 (-7) M, respectively.  相似文献   

4.
A new salicylate-selective electrode based on the complex of (2-[(E)-2-(4-nitrophenyl)hydrazono]-1-phenyl-2-(2-quinolyl)-1-ethanone) Cu(II) as the membrane carrier was developed. The electrode exhibited a good Nernstian slope of -59.6+/-1.0 mV/decade and a linear range of 1.0 x 10(-6) to 1.0M for salicylate. The limit of detection was 5.0 x 10(-7) M. The electrode had a fast response time of 10 s and can be used for more than 3 months. The selective coefficients were determined by the fixed interference method and could be used in the pH range of 4.0 to 10.5. The electrode was employed as an indicator electrode for direct determination of salicylate in pharmaceutical and biological samples.  相似文献   

5.
A new oxalate-selective electrode based on the complex 2,2'-[1,4-butandiyle bis(nitrilo propylidine)]bis-1-naphtholato copper(II) (CuL) as the membrane carrier was developed. The electrode exhibited a good Nernstian slope of -29.2+/-0.6 mV/decade (mean value+/-standard deviation, n=5) and a linear range of 5.0 x 10(-8) to 1.0 x 10(-1)M for oxalate. The limit of detection was 5.0 x 10(-8)M. This electrode represents a fast response time (i.e. 10-15s) and could be used for more than 3 months. The selectivity coefficients were determined by the fixed interference method (FIM) and could be used in the pH range of 2.0-7.0. It was employed as an indicator electrode for the determination of oxalate in water samples.  相似文献   

6.
This paper aimed at showing the interest of the composite material based on layered double hydroxides (LDHs) and chitosan (CHT) as suitable host matrix likely to immobilize enzyme onto electrode surface for amperometric biosensing application. This hybrid material combined the advantages of inorganic LDHs and organic biopolymer, CHT. Glucose oxidase (GOD) immobilized in the composite material maintained its activity well as the usage of glutaraldehyde was avoided. The process parameters for the fabrication of the enzyme electrode and various experimental variables such as pH, applied potential and temperature, were explored for optimum analytical performance of the enzyme electrode. The enzyme electrode provided a linear response to glucose over a concentration range of 1 x 10(-6) to 3 x 10(-3) M with a high sensitivity of 62.6 mA M(-1) cm(-2) and a detection limit of 0.1 muM based on the signal-to-noise ratio of 3.  相似文献   

7.
The determination of xanthine has considerable importance in clinical and food quality control. Therefore, in this present work, we developed a novel xanthine biosensor based on immobilization of xanthine oxidase (XnOx) by attractive materials layered double hydroxides (LDHs). Amperometric detection of xanthine was evaluated by holding the modified electrode at 0.55V (versus saturated calomel electrode (SCE)). Due to the special properties of LDHs, such as chemical inertia, mechanical and thermal stability, anionic exchange ability, high porosity and swelling properties, XnOx/LDHs-modified electrode exhibited a developed analytical performance. The biosensor provided a linear response to xanthine over a concentration range of 1 x 10(-6)M to 2 x 10(-4)M with a sensitivity of 220 mAM(-1)cm(-2) and a detection limit of 1x10(-7)M based on S/N=3. In addition, the immobilized XnOx layers have been characterized using atomic force microscopy under both air atmosphere and liquid environment, which exhibited the interesting swelling phenomenon of LDHs. The investigation of inhibition of XnOx by allopurinol was carried out using this XnOx/LDHs-modified electrode. The experimental results indicated that inhibitory effect could be achieved by allopurinol with a quasi-reversible competitive type.  相似文献   

8.
Sol-gel technique has been used for the covalent immobilization of the water-soluble mediator, thionin to construct a bulk modified, leak free composite electrode. This renewable composite electrode provides stable immobilization matrix for thionin via glutaraldehyde crosslinking. In the electrode composition the sol-gel precursor 3-aminopropyltrimethoxy silane serves as the host for immobilization of thionin, thereby preventing its leakage. An additional precursor methyl trimethoxy silane endows hydrophobicity and limits the wetting section of the modified electrode. Cyclic voltammetric characterization of the modified electrode in the potential range of 0.2 to -0.6 V exhibited stable redox peaks with a formal potential of -0.273 V, corresponding to immobilized thionin. This chemically modified electrode exhibits good electrocatalytic activity for the reduction of H(2)O(2) at a lower potential of -0.35 V. The reduction current of the modified electrode increases linearly in the range of 3.44 x 10(-6)M to 3.07 x 10(-3)M H(2)O(2) with a detection limit of 1.38 x 10(-6)M. The stable and quick response (5s) during chronoamperometry shows the potential application of the modified electrode for flow system analysis. The low potential operation (-0.35 V) favoured selective determination of H(2)O(2). The composite electrode exhibits distinct advantages of polishing in the event of surface fouling as well as simple preparation, good chemical and mechanical stability, economical and remarkable long-term stability (more than 1 year). The applicability of the present sensor for H(2)O(2) determination proposes a method for the detection of other biologically significant analytes.  相似文献   

9.
A sensitive and selective amperometric glucose biosensor based on platinum microparticles dispersed in nano-fibrous polyaniline (PANI) was investigated. Poly (m-phenylenediamine) (PMPD), which was employed as an anti-interferent barrier and a protective layer to platinum microparticles, was deposited onto platinum-modified PANI in the presence of glucose oxidase. The morphology of PANI, Pt/PANI and PMPD-GOD/Pt/PANI were investigated by scanning electron microscopy. The results show that PANI has a nano-fibrous morphology. The enzyme electrode exhibits excellent response performance to glucose with linear range from 2 x 10(-6) to 12 x 10(-3) M and fast response time within 7s. Due to the selective permeability of PMPD, the enzyme electrode also shows good anti-interference to uric acid and ascorbic acid. The Michaelis-Menten constant km and the maximum current density imax of the enzyme electrode were 9.34 x 10(-3) M and 917.43 microA cm(-2), respectively. Furthermore, this glucose biosensor also has good stability and reproducibility.  相似文献   

10.
Platinum nanowires (PtNWs) prepared by electrodeposition method with the help of porous anodic aluminum oxide (AAO) templates have been solubilized in chitosan (CHIT) together with carbon nantubes (CNTs) to form a PtNW-CNT-CHIT organic-inorganic system. The resulting PtNW-CNT-CHIT material brings capabilities for utilizing synergic action of PtNWs and CNTs to facilitate electron-transfer process in electrochemical sensor design. The PtNW-CNT-CHIT film modified electrode offered a significant decrease in the overvoltage for the hydrogen peroxide and showed to be excellent amperometric sensors for hydrogen peroxide at -0.1 V over a wide range of concentrations, and the sensitivity is 260 microAmM-1cm-2. As an application example, by linking glucose oxidase (GOx), an amplified biosensor toward glucose was prepared. The glucose biosensor exhibits a selective determination of glucose at -0.1 V with a linear response range of 5 x 10(-6) to 1.5 x 10(-2)M with a correlation coefficient of 0.997, and response time <10s. The high sensitivity of the glucose biosensor is up to 30 microAmM-1cm-2 and the detection limit was 3 microM. The biosensor displays rapid response and expanded linear response range, and excellent repeatability and stability.  相似文献   

11.
A potentiometric penicillinase electrode is reported in which the base pH transducer is a thin-film anti-mony-antimony-oxide electrode deposited by vacuum evaporation. Several enzyme immobilization procedures have been examined and a crosslinked protein film found to be the most appropriate to this type of sensor. The use of an adjacent antimony-antimony-oxide track as a pseudoreference electrode was successfully demonstrated. The overall response was shown to be independent of the stirring rate above 100 rpm, but the kinetics of the response were found to depend markedly on the stirring rate. The intrinsic linear response range was 3 x 10(-4)Mto 7 x 10(-3)M penicillin G. Linearizing transforms that extend the useful range were examined.  相似文献   

12.
Based on the electrocatalytic oxidation of cysteine at pretreated platinum electrode and the flow-injection biamperometry for irreversible couple, a novel electrochemical detector is proposed for the selective determination of cysteine in amino acid mixtures and human urine samples. A thin-layer flow through cell was used to achieve large electrode surface area to volume ratio. Two identical pretreated platinum electrodes were mounted in the cell with an applied potential difference of 10 mV. By coupling two independent and irreversible electrode processes, namely, the oxidation of cysteine and the reduction of platinum oxide, the biamperometric detection scheme has been established. The resulting current is linear to cysteine over the range 4 x 10(-7)-4 x 10(-5) M with the detection limit 1 x 10(-7) M (15 pmol). The selectivity of the detector is tested by 55 foreign species including 26 ions, 11 amino acids, 6 vitamins, and 12 other compounds possibly found in urine. The detector performs well as a routine assay, showing high efficiency (180 samples/h) and good reproductivity shown by a RSD of 0.6% for eight repeated determinations of 2 x 10(-6) M cysteine. The urine samples are detected directly without the need of pretreatment or adding other reagents.  相似文献   

13.
An acetylcholine-selective electrode based on a plasticized polymeric membrane has been developed. The electrode exhibited good selectivity for acetylcholine (ACh) over choline and some common ions, low drift, and a fast response to ACh. The response was linear over an ACh concentration range of 1×10(-6) to 1×10(-3) M with a slope of 59.1±0.1 and a detection limit of 1.5×10(-7)±1.2×10(-8) M. The electrode was used to monitor enzymatic ACh hydrolysis catalyzed by acetylcholinesterase (AChE) at different substrate and enzyme concentrations. A kinetic data analysis permitted the determination of the Michaelis-Menten constant of the enzymatic hydrolysis and AChE activity in the range of 2×10(-5) to 3.8×10(-1)U ml(-1).  相似文献   

14.
A carbon paste enzyme electrode has been developed for measurement of D-amino acids that employs a fatty acid modified FAD to prevent leaching of this essential cofactor to the surrounding aqueous environment and which serves as an enzyme stabilizing agent. The lower limit of detection is at least 10(-4) M and the electrode has a linear range of 10(-4) to 3 x 10(-3) M and a response time of 180 s. Twenty L-amino acids were tested and none of them elicited responses when electrodes were exposed to 0.5 mM concentration increases over a baseline level. On the other hand, some response was observed when exposed to 18 of 20 D-amino acids varying from 2 to 200% of the corresponding D-alanine response. Electrodes were shown to have longevities of over 30 days while maintaining 85% of their original sensitivity. Electrodes showed activity over a pH of 6.2-11.7 with a maximum at 9.2 and over temperatures of 10-47 degrees C with a maximum at 37 degrees C.  相似文献   

15.
The amperometric biosensors based on carbon paste electrodes (CPEs) encrusted with single microreactor (MR) have been constructed for the determination of glucose. The MRs were prepared from CPC-silica carrier (CPC) and were loaded with glucose oxidase (GO), mediator (M) and acceptor (A). As the mediator cation radical of 5,10-dimethyl-5, 10-dihydrophenazine (DMDHP), N-methylphenazonium methyl sulfate (PMS) and o-benzoquinone (BQ) and as the acceptor Fe[EDTA]- or Fe(CN)6(3-) was used. The biosensors acted at electrode potential 0.15-0.27 V versus Ag-AgCl electrode. The calibration graphs of the biosensors were linear in the range from 1.5 to 50 mM of glucose. The sensitivity of the biosensors did not change at pH 6-8. The dissolved oxygen little (7%) influenced the biosensors response and 1 mM of ascorbic acid produced the response that was of equal value to 0.5 mM of glucose. The biosensors showed high stability; no change of the response of the biosensors prepared by using the novel microreactor was observed at least for 6 months by keeping the loaded CPC at room temperature in silica container. An optimization of the biosensors response against the GO, the mediator and the polymer amount was performed. The digital modeling of the biosensors action is following.  相似文献   

16.
A choline (CHO) biosensor based on the determination of H(2)O(2) generated at the electrode surface by the enzyme choline oxidase (CHOx) was developed. The biosensor consisted of CHOx retained onto a horseradish peroxidase (HRP) immobilized solid carbon paste electrode (sCPE). The HRPsCPE contained the molecule phenothiazine as redox mediator and CHOx was physically retained on the electrode surface using a dialysis membrane. Several parameters have been studied such as, mediator amount, influence of applied potential, etc. The CHO measurements were performed in 0.1 M phosphate buffer, pH 7.4. Amperometric detection of CHO was realized at an applied potential of 0.0 mV vs Ag/AgCl. The response is linear over the concentration range 5.0x10(-7)-7.0x10(-5) M, with a detection limit of 1.0x10(-7) M. This biosensor was used to detect choline released from phosphatidylcholine (PC) by phospholipase D (PLD) in isolated rat salivary gland cells stimulated by a purinergic agonist (ATP).  相似文献   

17.
A simple selective method for determination of ascorbic acid using polymerized direct blue 71 (DB71) is described. Anodic polymerization of the azo dye DB71 on glassy carbon (GC) electrode in 0.1M H(2)SO(4) acidic medium was found to yield thin and stable polymeric films. The poly(DB71) films were electroactive in wide pH range (1-13). A pair of symmetrical redox peaks at a formal redox potential, E('0)=-0.02V vs. Ag/AgCl (pH 7.0) was observed with a Nernstian slope -0.058V, is attributed to a 1:1 proton+electron involving polymer redox reactions at the modified electrode. Scanning electron microscope (SEM), atomic force microscope (AFM) and electrochemical impedance spectroscopy (EIS) measurements were used for surface studies of polymer modified electrode. Poly(DB71) modified GC electrode showed excellent electrocatalytic activity towards ascorbic acid in neutral buffer solution. Using amperometric method, linear range (1x10(-6)-2x10(-3)M), dynamic range (1x10(-6)-0.01M) and detection limit (1x10(-6)M, S/N=3) were estimated for measurement of ascorbic acid in pH 7.0 buffer solution. Major interferences such as dopamine and uric acid are tested at this modified electrode and found that selective detection of ascorbic acid can be achieved. This new method successfully applied for determination of ascorbic acid in commercial tablets with satisfactory results.  相似文献   

18.
The use of an amperometric graphite-Teflon composite tyrosinase biosensor for the rapid monitoring of alkaline phosphatase (ALP), with no need of an incubation step and using phenyl phosphate as the substrate, is reported. Phenol generated by the action of ALP is monitored at the tyrosinase composite electrode through the electrochemical reduction of the o-quinone produced to catechol, which produces a cycle between the tyrosinase substrate and the electroactive product, giving rise to the amplification of the biosensor response and to the sensitive detection of ALP. The current was measured at -0.10 V 5 min after the addition of ALP. As a compromise between high ALP activity and high sensitivity for the detection of phenol, a pH of 8.5 was chosen. The substrate concentration was also optimized. A linear calibration plot was obtained for ALP between 2.0 x 10(-13) and 2.5 x 10(-11), with a detection limit of 6.7 x 10(-14) M. Different types of milk were analyzed with good results, using an extremely simple and rapid procedure.  相似文献   

19.
A new electrochemical method to monitor biotin-streptavidin interaction on carbon paste electrode, based on silver electrodeposition catalyzed by colloidal gold, was investigated. Silver reduction potential changed when colloidal gold was attached to an electrode surface through the biotin-streptavidin interaction. Thus, the direct reduction of silver ions on the electrode surface could be avoided and therefore, they were only reduced to metallic silver on the colloidal gold particle surface, forming a shell around these particles. When an anodic scan was performed, this shell of silver was oxidized and an oxidation process at + 0.08 V was recorded in NH3 1.0 M. Biotinylated albumin was adsorbed on the pretreated electrode surface. This modified electrode was immersed in colloidal gold-streptavidin labeled solutions. The carbon paste electrode was then activated in adequate medium (NaOH 0.1 M and H2SO4 0.1 M) to remove proteins from the electrode surface while colloidal gold particles remained adsorbed on it. Then, a silver electrodeposition at -0.18 V for 2 min and anodic stripping voltammetry were carried out in NH3 1.0 M containing 2.0 x 10(-5) M of silver lactate. An electrode surface preparation was carried out to obtain a good reproducibility of the analytical signal (5.3%), using a new electrode for each experiment. In addition, a sequential competitive assay was carried out to determine streptavidin. A linear relationship between peak current and logarithm of streptavidin concentration from 2.25 x 10(-15) to 2.24 x 10(-12) M and a limit of detection of 2.0 x 10(15) M were obtained.  相似文献   

20.
A new film for the fabrication of an unmediated H2O2 biosensor   总被引:2,自引:0,他引:2  
A novel and stable film made from polyethylene glycol (PEG) on pyrolytic graphite (PG) electrode was presented in this paper for incorporating horseradish peroxidase (HRP) to study the direct electrochemistry of the enzyme. In PEG film, HRP showed a thin-layer electrochemistry behavior. The apparent standard potential (E degrees ') was -0.379 V versus SCE at pH 7.2. Moreover, the PEG-HRP modified electrode exhibited excellent electrocatalytical response to the reduction of H2O2 with a calibration range between 2.0 x 10(-6) and 6.0 x 10(-4) M and a good linear relation from 2.0 x 10(-6) to 1.0 x 10(-4) M, on which an unmediated H2O2 biosensor was based. The detection limit of 6.7 x 10(-7) M was estimated when the signal-to-noise ratio was 3. The relative standard deviation (R.S.D.) was 4.7% for six successive determinations at a concentration of 4.0 x 10(-5) M. The apparent Michaelis-Menten constant (Km app) of the sensor was found to be 1.38 mM. Epinephrine, dopamine, and ascorbic acid did not interfere with the sensitive determination of H2O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号