首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eukaryotic cells contain an unusually large cytoplasmic pool of P1/P2 phosphoproteins, which form the highly flexible 60S subunit stalk that is required to interact with and activate soluble translation factors. In cells, cytoplasmic P1/P2 proteins are exchanged for ribosome-bound proteins in a process that can modulate ribosome function and translation. Here, we analysed different S. cerevisiae stalk mutants grown under stress conditions that result in eIF2α phosphorylation. These mutants either lack a cytoplasmic pool of stalk proteins or contain free but not ribosome-bound proteins. Only cells that contain free P1/P2 proteins induce eIF2 phosphorylation in vivo in response to glucose starvation or osmotic stress. Moreover, we show that free S. cerevisiae P1/P2 proteins can induce in vitro phosphorylation of the initiation factor eIF2 by stimulating the autophosphorylation and activation of GCN2 kinase. Indeed, these ribosomal proteins do not stimulate other eIF2α kinases, such as PKR and HRI. P1/P2 and the known GCN2 activator deacylated tRNA compete for stimulating the eIF2α kinase activity of GCN2, although the P1/P2 proteins are considerably more active. These findings reveal a capacity of free cytoplasmic ribosomal stalk components to stimulate eIF2α phosphorylation, which in turn would modulate translation in response to specific forms of stress that may be linked with the previously described regulatory function of the ribosomal stalk.  相似文献   

2.
In eukaryotic cells subjected to environmental stress, untranslated mRNA accumulates in discrete cytoplasmic foci that have been termed stress granules. Recent studies have shown that in addition to mRNA, stress granules also contain 40S ribosomal subunits and various translation initiation factors, including the mRNA binding proteins eIF4E and eIF4G. However, eIF2, the protein that transfers initiator methionyl-tRNA(i) (Met-tRNA(i)) to the 40S ribosomal subunit, has not been detected in stress granules. This result is surprising because the eIF2. GTP. Met-tRNA(i) complex is thought to bind to the 40S ribosomal subunit before the eIF4G. eIF4E. mRNA complex. In the present study, we show in both NIH-3T3 cells and mouse embryo fibroblasts that stress granules contain not only eIF2 but also the guanine nucleotide exchange factor for eIF2, eIF2B. Moreover, we show that phosphorylation of the alpha-subunit of eIF2 is necessary and sufficient for stress granule formation during the unfolded protein response. Finally, we also show that stress granules contain many, if not all, of the components of the 48S preinitiation complex, but not 60S ribosomal subunits, suggesting that they represent stalled translation initiation complexes.  相似文献   

3.
4.
Treatment of Swiss 3T3 cells with staurosporine resulted in dephosphorylation of two proteins which play key roles in regulating mRNA translation. This occurred before the execution of apoptosis, assessed by caspase-3 activity. These translation regulators are p70 S6 kinase, which phosphorylates ribosomal protein S6, and eukaryotic initiation factor (eIF) 4E binding protein 1 (4E-BP1), which both lie downstream of the mammalian target of rapamycin (mTOR). This resulted in decreased p70 S6 kinase activity, dephosphorylation of ribosomal protein S6, increased binding of 4E-BP1 to eIF4E and a concomitant decrease in eIF4F complexes. Our data show that staurosporine impairs mTOR signalling in vivo but that this not due to direct inhibition of mTOR or to inhibition of protein kinase C. It is becoming clear that agents which cause apoptosis inactivate mTOR signalling as a common early response prior to the execution of apoptosis, i.e., before caspase activation.  相似文献   

5.
The protein encoded by the fission yeast gene, moe1(+) is the homologue of the p66/eIF3d subunit of mammalian translation initiation factor eIF3. In this study, we show that in fission yeast, Moe1 physically associates with eIF3 core subunits as well as with 40 S ribosomal particles as a constituent of the eIF3 protein complex that is similar in size to multisubunit mammalian eIF3. However, strains lacking moe1(+) (Deltamoe1) are viable and show no gross defects in translation initiation, although the rate of translation in the Deltamoe1 cells is about 30-40% slower than wild-type cells. Mutant Deltamoe1 cells are hypersensitive to caffeine and defective in spore formation. These phenotypes of Deltamoe1 cells are similar to those reported previously for deletion of the fission yeast int6(+) gene that encodes the fission yeast homologue of the p48/Int6/eIF3e subunit of mammalian eIF3. Further analysis of eIF3 subunits in Deltamoe1 or Deltaint6 cells shows that in these deletion strains, while all the eIF3 subunits are bound to 40 S particles, dissociation of ribosome-bound eIF3 results in the loss of stable association between the eIF3 subunits. In contrast, eIF3 isolated from ribosomes of wild-type cells are associated with one another in a protein complex. These observations suggest that Moe1 and spInt6 are each required for stable association of eIF3 subunits in fission yeast.  相似文献   

6.
The eukaryotic translation initiation factor 4B (eIF4B) plays a critical role in recruiting the 40S ribosomal subunit to the mRNA. In response to insulin, eIF4B is phosphorylated on Ser422 by S6K in a rapamycin-sensitive manner. Here we demonstrate that the p90 ribosomal protein S6 kinase (RSK) phosphorylates eIF4B on the same residue. The relative contribution of the RSK and S6K modules to the phosphorylation of eIF4B is growth factor-dependent, and the two phosphorylation events exhibit very different kinetics. The S6K and RSK proteins are members of the AGC protein kinase family, and require PDK1 phosphorylation for activation. Consistent with this requirement, phosphorylation of eIF4B Ser422 is abrogated in PDK1 null embryonic stem cells. Phosphorylation of eIF4B on Ser422 by RSK and S6K is physiologically significant, as it increases the interaction of eIF4B with the eukaryotic translation initiation factor 3.  相似文献   

7.
8.
Eukaryotic initiation factor 2A (eIF2A) has been shown to direct binding of the initiator methionyl-tRNA (Met-tRNA(i)) to 40 S ribosomal subunits in a codon-dependent manner, in contrast to eIF2, which requires GTP but not the AUG codon to bind initiator tRNA to 40 S subunits. We show here that yeast eIF2A genetically interacts with initiation factor eIF4E, suggesting that both proteins function in the same pathway. The double eIF2A/eIF4E-ts mutant strain displays a severe slow growth phenotype, which correlated with the accumulation of 85% of the double mutant cells arrested at the G(2)/M border. These cells also exhibited a disorganized actin cytoskeleton and elevated actin levels, suggesting that eIF2A might be involved in controlling the expression of genes involved in morphogenic processes. Further insights into eIF2A function were gained from the studies of eIF2A distribution in ribosomal fractions obtained from either an eIF5BDelta (fun12Delta) strain or a eIF3b-ts (prt1-1) strain. It was found that the binding of eIF2A to 40 and 80 S ribosomes was not impaired in either strain. We also found that eIF2A functions as a suppressor of Ure2p internal ribosome entry site-mediated translation in yeast cells. The regulation of expression from the URE2 internal ribosome entry site appears to be through the levels of eIF2A protein, which has been found to be inherently unstable with a half-life of approximately 17 min. It was hypothesized that this instability allows for translational control through the level of eIF2A protein in yeast cells.  相似文献   

9.
Insulin acutely activates protein synthesis in ventricular cardiomyocytes from adult rats. In this study, we have established the methodology for studying the regulation of the signaling pathways and translation factors that may be involved in this response and have examined the effects of acute insulin treatment on them. Insulin rapidly activated the 70-kDa ribosomal S6 kinase (p70 S6k), and this effect was inhibited both by rapamycin and by inhibitors of phosphatidylinositol 3-kinase. The activation of p70 S6k is mediated by a signaling pathway involving the mammalian target of rapamycin (mTOR), which also modulates other translation factors. These include the eukaryotic initiation factor (eIF) 4E binding proteins (4E-BPs) and eukaryotic elongation factor 2 (eEF2). Insulin caused phosphorylation of 4E-BP1 and induced its dissociation from eIF4E, and these effects were also blocked by rapamycin. Concomitant with this, insulin increased the binding of eIF4E to eIF4G. Insulin also activated protein kinase B (PKB), which may lie upstream of p70 S6k and 4E-BP1, with the activation of the different isoforms being in the order alpha>beta>gamma. Insulin also caused inhibition of glycogen synthase kinase 3, which lies downstream of PKB, and of eEF2 kinase. The phosphorylation of eEF2 itself was also decreased by insulin, and this effect and the inactivation of eEF2 kinase were attenuated by rapamycin. The activation of overall protein synthesis by insulin in cardiomyocytes was substantially inhibited by rapamycin (but not by inhibitors of other specific signaling pathways, e.g., mitogen-activated protein kinase), showing that signaling events linked to mTOR play a major role in the control of translation by insulin in this cell type.  相似文献   

10.
The synthesis of 60S ribosomal subunits in Saccharomyces cerevisiae requires Tif6p, the yeast homologue of mammalian eukaryotic translation initiation factor 6 (eIF6). In the present work, we have isolated a protein kinase from rabbit reticulocyte lysates on the basis of its ability to phosphorylate recombinant human eIF6. Mass spectrometric analysis as well as antigenic properties of the purified kinase identified it as casein kinase I. The site of in vitro phosphorylation, which is highly conserved from yeast to mammals, was identified as the serine residues at positions 174 (major site) and 175 (minor site). The homologous yeast protein Tif6p was also phosphorylated in vivo in yeast cells. Mutation of Tif6p at serine-174 to alanine reduced phosphorylation drastically and caused loss of cell growth and viability. When both Ser-174 and Ser-175 were mutated to alanine, phosphorylation of Tif6p was completely abolished. Furthermore, while wild-type Tif6p was distributed both in nuclei and the cytoplasm of yeast cells, the mutant Tif6p (with Ser174Ala and Ser175Ala) became a constitutively nuclear protein. These results suggest that phosphorylatable Ser-174 and Ser-175 play a critical role in the nuclear export of Tif6p.  相似文献   

11.
In response to severe environmental stresses eukaryotic cells shut down translation and accumulate components of the translational machinery in stress granules (SGs). Since they contain mainly mRNA, translation initiation factors and 40S ribosomal subunits, they have been referred to as dominant accumulations of stalled translation preinitiation complexes. Here we present evidence that the robust heat shock-induced SGs of S. cerevisiae also contain translation elongation factors eEF3 (Yef3p) and eEF1Bγ2 (Tef4p) as well as translation termination factors eRF1 (Sup45p) and eRF3 (Sup35p). Despite the presence of the yeast prion protein Sup35 in heat shock-induced SGs, we found out that its prion-like domain is not involved in the SGs assembly. Factors eEF3, eEF1Bγ2 and eRF1 were accumulated and co-localized with Dcp2 foci even upon a milder heat shock at 42°C independently of P-bodies scaffolding proteins. We also show that eEF3 accumulations at 42°C determine sites of the genuine SGs assembly at 46°C. We suggest that identification of translation elongation and termination factors in SGs might help to understand the mechanism of the eIF2α factor phosphorylation-independent repression of translation and SGs assembly.  相似文献   

12.
mRNA translation in crude extracts from the yeast Saccharomyces cerevisiae is stimulated by the cap structure and the poly(A) tail through the binding of the cap-binding protein eukaryotic translation initiation factor 4E (eIF4E) and the poly(A) tail-binding protein Pab1p. These proteins also bind to the translation initiation factor eIF4G and thereby link the mRNA to the general translational apparatus. In contrast, uncapped, poly(A)-deficient mRNA is translated poorly in yeast extracts, in part because of the absence of eIF4E and Pab1p binding sites on the mRNA. Here, we report that uncapped-mRNA translation is also repressed in yeast extracts due to the binding of eIF4E to eIF4G. Specifically, we find that mutations which weaken the eIF4E binding site on the yeast eIF4G proteins Tif4631p and Tif4632p lead to temperature-sensitive growth in vivo and the stimulation of uncapped-mRNA translation in vitro. A mutation in eIF4E which disturbs its ability to interact with eIF4G also leads to a stimulation of uncapped-mRNA translation in vitro. Finally, overexpression of eIF4E in vivo or the addition of excess eIF4E in vitro reverses these effects of the mutations. These data support the hypothesis that the eIF4G protein can efficiently stimulate translation of exogenous uncapped mRNA in extracts but is prevented from doing so as a result of its association with eIF4E. They also suggest that some mRNAs may be translationally regulated in vivo in response to the amount of free eIF4G in the cell.  相似文献   

13.
We have examined the effects of widely used stress-inducing agents on protein synthesis and on regulatory components of the translational machinery. The three stresses chosen, arsenite, hydrogen peroxide and sorbitol, exert their effects in quite different ways. Nonetheless, all three rapidly ( approximately 30 min) caused a profound inhibition of protein synthesis. In each case this was accompanied by dephosphorylation of the eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1) and increased binding of this repressor protein to eIF4E. Binding of 4E-BP1 to eIF4E correlated with loss of eIF4F complexes. Sorbitol and hydrogen peroxide each caused inhibition of the 70-kDa ribosomal protein S6 kinase, while arsenite activated it. The effects of stresses on the phosphorylation of eukaryotic elongation factor 2 also differed: oxidative stress elicited a marked increase in eEF2 phosphorylation, which is expected to contribute to inhibition of translation, while the other stresses did not have this effect. Although all three proteins (4E-BP1, p70 S6 kinase and eEF2) can be regulated through the mammalian target of rapamycin (mTOR), our data imply that stresses do not interfere with mTOR function but act in different ways on these three proteins. All three stresses activate the p38 MAP kinase pathway but we were able to exclude a role for this in their effects on 4E-BP1. Our data reveal that these stress-inducing agents, which are widely used to study stress-signalling in mammalian cells, exert multiple and complex inhibitory effects on the translational machinery.  相似文献   

14.
A gene, TIF2, was identified as corresponding to the translation initiation factor eIF4A and when overexpressed it confers lithium tolerance in galactose medium to Saccharomyces cerevisiae. Incubation of yeast with 6 mm LiCl in galactose medium leads to inhibition of [(35)S]methionine incorporation. By polysome analysis we show that translation is inhibited by lithium at the initiation step, accumulating 80 S monosomes. We further show by immunoblot analysis that when cells are incubated with lithium eIF4A does not sediment with ribosomal subunits. Overexpression of TIF2 overcomes inhibition of protein synthesis and restores its sedimentation with the initiation complex. In vivo, eIF4A is induced by lithium stress. We have shown previously that lithium is highly toxic to yeast when grown in galactose medium mainly due to inhibition of phosphoglucomutase, an enzyme responsible for the entry of galactose into glycolysis. We show that conditions that revert inhibition of phosphoglucomutase also revert inhibition of protein synthesis. Interestingly, glucose starvation leads to loss of polysomes but not to dissociation of eIF4A from the preinitiation complexes. Overexpression of SIT4, a protein phosphatase related to the TOR kinase pathway, reverts inhibition of protein synthesis by lithium and association of eIF4A with the initiation complex.  相似文献   

15.
Modulation of mRNA binding to the 40 S ribosomal subunit during translation initiation controls not only global rates of protein synthesis but also regulates the pattern of protein expression by allowing for selective inclusion, or exclusion, of mRNAs encoding particular proteins from polysomes. The mRNA binding step is modulated by signaling through a protein kinase known as the mechanistic target of rapamycin complex 1 (mTORC1). mTORC1 directly phosphorylates the translational repressors eIF4E binding proteins (4E-BP) 1 and 2, releasing them from the mRNA cap binding protein eIF4E, thereby promoting assembly of the eIF4E·eIF4G complex. mTORC1 also phosphorylates the 70-kDa ribosomal protein S6 kinase 1 (p70S6K1), which subsequently phosphorylates eIF4B, and programmed cell death 4 (PDCD4), which sequesters eIF4A from the eIF4E·eIF4G complex, resulting in repressed translation of mRNAs with highly structured 5′-untranslated regions. In the present study, we compared the role of the 4E-BPs in the regulation of global rates of protein synthesis to that of eIF4B and PDCD4. We found that maintenance of eIF4E interaction with eIF4G was not by itself sufficient to sustain global rates of protein synthesis in the absence of mTORC1 signaling to p70S6K1; phosphorylation of both eIF4B and PDCD4 was additionally required. We also found that the interaction of eIF4E with eIF4G was maintained in the liver of fasted rats as well as in serum-deprived mouse embryo fibroblasts lacking both 4E-BP1 and 4E-BP2, suggesting that the interaction of eIF4G with eIF4E is controlled primarily through the 4E-BPs.  相似文献   

16.
17.
18.
Eukaryotic translation initiation factor 6 (eIF6) binds to the 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit. The Saccharomyces cerevisiae gene that encodes the 245-amino-acid eIF6 (calculated Mr 25,550), designated TIF6, has been cloned and expressed in Escherichia coli. The purified recombinant protein prevents association between 40S and 60S ribosomal subunits to form 80S ribosomes. TIF6 is a single-copy gene that maps on chromosome XVI and is essential for cell growth. eIF6 expressed in yeast cells associates with free 60S ribosomal subunits but not with 80S monosomes or polysomal ribosomes, indicating that it is not a ribosomal protein. Depletion of eIF6 from yeast cells resulted in a decrease in the rate of protein synthesis, accumulation of half-mer polyribosomes, reduced levels of 60S ribosomal subunits resulting in the stoichiometric imbalance in the 40S/60S subunit ratio, and ultimately cessation of cell growth. Furthermore, lysates of yeast cells depleted of eIF6 remained active in translation of mRNAs in vitro. These results indicate that eIF6 does not act as a true translation initiation factor. Rather, the protein may be involved in the biogenesis and/or stability of 60S ribosomal subunits.  相似文献   

19.
Eukaryotic initiation factor 4E (eIF4E) is a key component of the translational machinery and an important modulator of cell growth and proliferation. The activity of eIF4E is thought to be regulated by interaction with inhibitory binding proteins (4E-BPs) and phosphorylation by mitogen-activated protein (MAP) kinase-interacting kinase (MNK) on Ser209 in response to mitogens and cellular stress. Here we demonstrate that phosphorylation of eIF4E via MNK1 is mediated via the activation of either the Erk or p38 pathway. We further show that expression of active mutants of MNK1 and MNK2 in 293 cells diminishes cap-dependent translation relative to cap-independent translation in a transient reporter assay. The same effect on cap-dependent translation was observed when MNK1 was activated by the Erk or p38 pathway. In line with these findings, addition of recombinant active MNK1 to rabbit reticulocyte lysate resulted in a reduced protein synthesis in vitro, and overexpression of MNK2 caused a decreased rate of protein synthesis in 293 cells. By using CGP 57380, a novel low-molecular-weight kinase inhibitor of MNK1, we demonstrate that eIF4E phosphorylation is not crucial to the formation of the initiation complex, mitogen-stimulated increase in cap-dependent translation, and cell proliferation. Our results imply that activation of MNK by MAP kinase pathways does not constitute a positive regulatory mechanism to cap-dependent translation. Instead, we propose that the kinase activity of MNKs, eventually through phosphorylation of eIF4E, may serve to limit cap-dependent translation under physiological conditions.  相似文献   

20.
L J Otero  M P Ashe    A B Sachs 《The EMBO journal》1999,18(11):3153-3163
Translation initiation in extracts from Saccharomyces cerevisiae involves the concerted action of the cap-binding protein eIF4E and the poly(A) tail-binding protein Pab1p. These two proteins bind to translation initiation factor eIF4G and are needed for the translation of capped or polyadenylated mRNA, respectively. Together, these proteins synergistically activate the translation of a capped and polyadenylated mRNA. We have discovered that excess Pab1p also stimulates the translation of capped mRNA in extracts, a phenomenon that we define as trans-activation. Each of the above activities of Pab1p requires its second RNA recognition motif (RRM2). We have found that RRM2 from human PABP cannot substitute functionally for yeast RRM2. Using the differences between human and yeast RRM2 sequences as a guide, we have mutagenized yeast RRM2 and discovered residues that are required for eIF4G binding and poly(A)-dependent translation but not for trans-activation. Similarly, other residues within RRM2 were found to be required for trans-activation but not for eIF4G binding or poly(A)-dependent translation. These data show that Pab1p has at least two biochemically distinct activities in translation extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号