首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Streptococcus pneumoniae colonizes the nasopharynx in up to 40% of healthy subjects, and is a leading cause of middle ear infections (otitis media), meningitis and pneumonia. Pneumococci adhere to glycosidic receptors on epithelial cells and to immobilized fibronectin, but the bacterial adhesins mediating these reactions are largely uncharacterized. In this report we describe a novel pneumococcal protein PavA, which binds fibronectin and is associated with pneumococcal adhesion and virulence. The pavA gene, present in 64 independent isolates of S. pneumoniae tested, encodes a 551 amino acid residue polypeptide with 67% identical amino acid sequence to Fbp54 protein in Streptococcus pyogenes. PavA localized to the pneumococcal cell outer surface, as demonstrated by immunoelectron microscopy, despite lack of conventional secretory or cell-surface anchorage signals within the primary sequence. Full-length recombinant PavA polypeptide bound to immobilized human fibronectin in preference to fluid-phase fibronectin, in a heparin-sensitive interaction, and blocked binding of wild-type pneumococcal cells to fibronectin. However, a C-terminally truncated PavA' polypeptide (362 aa residues) failed to bind fibronectin or block pneumococcal cell adhesion. Expression of pavA in Enterococcus faecalis JH2-2 conferred > sixfold increased cell adhesion levels to fibronectin over control JH2-2 cells. Isogenic mutants of S. pneumoniae, either abrogated in PavA expression or producing a 42 kDa C-terminally truncated protein, showed up to 50% reduced binding to immobilized fibronectin. Inactivation of pavA had no effects on growth rate, cell morphology, cell-surface physico-chemical properties, production of pneumolysin, autolysin, or surface proteins PspA and PsaA. Isogenic pavA mutants of encapsulated S. pneumoniae D39 were approximately 104-fold attenuated in virulence in the mouse sepsis model. These results provide evidence that PavA fibronectin-binding protein plays a direct role in the pathogenesis of pneumococcal infections.  相似文献   

2.
Like its apicomplexan kin, the obligate intracellular protozoan Toxoplasma gondii actively invades mammalian cells and uses a unique form of gliding motility. The recent identification of several transmembrane adhesive complexes, potentially capable of gripping external receptors and the sub-membrane actinomyosin motor, suggests that the parasite has multiple options for host-cell recognition and invasion. To test whether the transmembrane adhesin MIC2, together with its partner protein M2AP, participates in a major invasion pathway, we utilized a conditional expression system to introduce an anhydrotetracycline-responsive mic2 construct, allowing us to then knockout the endogenous mic2 gene. Conditional suppression of MIC2 provided the first opportunity to directly determine the role of this protein in infection. Reduced MIC2 expression resulted in mistrafficking of M2AP, markedly defective host-cell attachment and invasion, the loss of helical gliding motility, and the inability to support lethal infection in a murine model of acute toxoplasmosis. Survival of mice infected with MIC2-deficient parasites correlated with lower parasite burden in infected tissues, an attenuated inflammatory immune response, and induction of long-term protective immunity. Our findings demonstrate that the MIC2 protein complex is a major virulence determinant for Toxoplasma infection and that MIC2-deficient parasites constitute an effective live-attenuated vaccine for experimental toxoplasmosis.  相似文献   

3.
4.
5.
Binding of the group A streptococcus (GAS) to respiratory epithelium is mediated by the fibronectin (Fn)-binding adhesin, protein F1. Previous studies have suggested that certain GAS strains express Fn-binding proteins that are different from protein F1. In this study, we have cloned, sequenced, and characterized a gene ( prtF2 ) from GAS strain 100076 encoding a novel Fn-binding protein, termed protein F2. Insertional inactivation of prtF2 in strain 100076 abolishes its high-affinity Fn binding. prtF2 -related genes exist in most GAS strains that lack prtF1 (encoding protein F1) but bind Fn with high affinity. These observations suggest that protein F2 is a major Fn-binding protein in GAS. Protein F2 is highly homologous to Fn-binding proteins from Streptococcus dysgalactiae and Strep-tococcus equisimilis , particularly in its carboxy-terminal portion. Two domains are responsible for Fn binding by protein F2. One domain (FBRD) consists of three consecutive repeats, whereas the other domain (UFBD) resides on a non-repeated stretch of approximately 100 amino acids and is located 100 amino acids amino-terminal of FBRD. Each of these domains is capable of binding Fn when expressed as a separate protein. In strain 100076, protein F2 activity is regulated in response to alterations in the concentration of atmospheric oxygen.  相似文献   

6.
7.
We demonstrate that disruption of the htrA (high temperature requirement A) gene in either the virulent Bacillus anthracis Vollum (pXO1(+) , pXO2(+) ), or in the ΔVollum (pXO1(-), pXO2(-), nontoxinogenic and noncapsular) strains, affect significantly the ability of the resulting mutants to withstand heat, oxidative, ethanol and osmotic stress. The ΔhtrA mutants manifest altered secretion of several proteins, as well as complete silencing of the abundant extracellular starvation-associated neutral protease A (NprA). VollumΔhtrA bacteria exhibit delayed proliferation in a macrophage infection assay, and despite their ability to synthesize the major B. anthracis toxins LT (lethal toxin) and ET (oedema toxin) as well as the capsule, show a decrease of over six orders of magnitude in virulence (lethal dose 50% = 3 × 10(8) spores, in the guinea pig model of anthrax), as compared with the parental wild-type strain. This unprecedented extent of loss of virulence in B. anthracis, as a consequence of deletion of a single gene, as well as all other phenotypic defects associated with htrA mutation, are restored in their corresponding trans-complemented strains. It is suggested that the loss of virulence is due to increased susceptibility of the ΔhtrA bacteria to stress insults encountered in the host. On a practical note, it is demonstrated that the attenuated Vollum ΔhtrA is highly efficacious in protecting guinea pigs against a lethal anthrax challenge.  相似文献   

8.
9.
Serum opacity factor (SOF) is a unique multifunctional virulence determinant expressed at the surface of Streptococcus pyogenes and has been shown to elicit protective immunity against GAS infection in a murine challenge model. SOF consists of two distinct domains with different binding capacities: an N-terminal domain that binds apolipoprotein AI and a C-terminal repeat domain that binds fibronectin and fibrinogen. The capacity of SOF to opacify serum by disrupting the structure of high density lipoproteins may preclude its use as a vaccine antigen in humans. This study generated mutant forms of recombinant SOF with reduced (100-fold) or abrogated opacity factor (OF) activity, for use as vaccine antigens. However, alterations introduced into the N-terminal SOF peptide (SOFDeltaFn) by mutagenesis to abrogate OF activity, abolish the capacity of SOF to protect against lethal systemic S. pyogenes challenge in a murine model. Mutant forms of purified SOFDeltaFn peptide were also used to assess the contribution of OF activity to the pathogenic processes of cell adhesion and cell invasion. Using latex beads coated with full-length SOF, SOFDeltaFn peptide, or a peptide encompassing the C-terminal repeats (FnBD), we demonstrate that adhesion to HEp-2 cells is mediated by both SOFDeltaFn and FnBD. The HEp-2 cell binding displayed by the N-terminal SOFDeltaFn peptide is independent of OF activity. We demonstrate that while the N terminus of SOF does not directly mediate intracellular uptake by epithelial cells, this domain enhances epithelial cell uptake mediated by full-length SOF, in comparison to the FnBD alone.  相似文献   

10.
11.
Invasive serotype M3 Streptococcus pyogenes are among the most frequently isolated organisms from patients suffering from invasive streptococcal disease and have the potential to invade primary human endothelial cells (EC) via a rapid and efficient mechanism. FbaB protein, the fibronectin-binding protein expressed by M3 S. pyogenes, was herein identified as a potent invasin for EC. By combining heterologous gene expression with allelic replacement, we demonstrate that FbaB is essential and sufficient to trigger EC invasion via a Rac1-dependent phagocytosis-like uptake. FbaB-mediated uptake follows the classical endocytic pathway with lysosomal destination. FbaB is demonstrated to be a streptococcal invasin exhibiting EC tropism. FbaB thus initiates a process that may contribute to the deep tissue tropism and spread of invasive S. pyogenes isolates into the vascular EC lining.  相似文献   

12.
Fibronectin-binding protein I (SfbI) from Streptococcus pyogenes plays a key role in bacterial adhesion to, and invasion of, eukaryotic cells. In addition, SfbI exhibits a considerable potential as mucosal adjuvant and can trigger polyclonal activation of B cells. Here, we report that SfbI is also capable of binding human IgG in a nonimmune fashion. SfbI was reactive with IgG1, IgG2, IgG3, and IgG4 isotypes (type IIo IgG-binding profile). The affinity constant (Kd) of the SfbI-IgG interaction was in the range of 1-2 x 10(-5) M. Further studies demonstrated that the SfbI binding was mediated by the Fc component of the IgG molecule. Experiments performed using purified recombinant proteins spanning different domains of SfbI showed that the IgG-binding activity was restricted to the fibronectin-binding domains, and in particular to the fibronectin-binding repeats. Finally, the presence of recombinant SfbI resulted in an impairment of both phagocytosis of IgG-coated RBCs and Ab-dependent cell cytotoxicity by macrophages. These results demonstrated for the first time that, in addition to its major role during the colonization process, SfbI may also favor bacterial immune evasion after the onset of the infection by interfering with host clearance mechanisms.  相似文献   

13.
14.
Streptococcus pyogenes expresses a fibronectin-binding surface protein (Sfb protein) which mediates adherence to human epithelial cells. The nucleotide sequence of the sfb gene was determined and the primary sequence of the Sfb protein was analysed. The protein consists of 638 amino acids and comprises five structurally distinct domains. The protein starts with an N-terminal signal peptide followed by an aromatic domain. The central part of the protein is formed by four proline-rich repeats which are flanked by non-repetitive spacer sequences. A second repeat region, consisting of four repeats that are distinct from the proline repeats and have been shown to form the fibronectin-binding domain, is located in the Cterminal part of the protein. The protein ends with a typical cell wall and membrane anchor region. Comparative sequence analysis of the N-terminal aromatic domain revealed similarities with carbohydrate-binding sites of other proteins. The proline repeat region of the Sfb protein shares characteristic features with proline-rich repeats of functionally distinct surface proteins from pathogenic Gram-positive cocci. Immunoelectron microscopy revealed an even distribution of the fibronectin-binding domain of Sfb protein on the surface of streptococcal cells. Analyses of 38 sfb genes originating from different S. pyogenes isolates revealed primary sequence variability in regions coding for the N-termini of mature Sfb proteins, whereas sequences coding for the central and C-terminal repeats were highly conserved. The repeat sequences are postulated to act as target sites for intragenic recombination events that result in variable numbers of repeats within the different sfb genes. A model of the Sfb protein is presented.  相似文献   

15.
16.
Group A Streptococcus pyogenes has surface-located fibronectin (Fn)-binding proteins known to be a major virulence factor, which adheres to and invades host cells. We present a novel Fn-binding protein of group A streptococcus serotype M3 and M18 strains isolated from patients with toxic shock-like syndrome (TSLS). By searching the whole genome sequence of an M3 strain from a TSLS patient, an open reading frame was found among the putative surface proteins. It possessed an LPXTG motif and Fn-binding repeat domains in the C-terminal region and was designated as FbaB (Fn-binding protein of group A streptococci type B). The fbaB gene was found in all M3 and M18 strains examined, although not in other M serotypes. Furthermore, FbaB protein was expressed on the cell surface of TSLS strains but not on non-TSLS ones. Enzyme-linked immunosorbent assay and ligand blotting revealed that recombinant FbaB exhibits a strong Fn-binding ability. An FbaB-deficient mutant strain showed 6-fold lower adhesion and invasion efficiencies to HEp-2 cells than the wild type. Moreover, mortality was decreased in mice infected with the mutant strain in comparison to the wild type. These data suggest that FbaB is etiologically involved in the development of invasive streptococcal diseases.  相似文献   

17.
Streptococcus mutans , a commensal of the human oral cavity, can survive in the bloodstream and cause infective endocarditis (IE). However, the virulence factors associated with this manifestation of disease are not known. Here, we demonstrate that AtlA, an autolysin of S. mutans is a newly identified fibronectin (Fn) binding protein and contributes to bacterial resistance to phagocytosis and survival in the bloodstream. Interestingly, prior exposure to plasma at low concentrations was sufficient to enhance bacterial survival in the circulation. Calcium ions at physiological plasma concentrations induced maturation of AtlA from the 104–90 kDa isoform resulting in increased Fn binding and resistance to phagocytosis. An isogenic mutant strain defective in AtlA expression exhibited reduced survival and virulence when tested in a rat model of IE compared with the wild-type and complemented strains. The data presented suggest that plasma components utilized by S. mutans enhanced survival in the circulation and AtlA is a virulence factor associated with infective endocarditis.  相似文献   

18.
Intranasal administration of antigens coupled to full-length fibronectin-binding protein I (SfbI) of Streptococcus pyogenes results in the elicitation of improved humoral and cellular immune responses, at both systemic and mucosal levels. We want to evaluate if SfbI also exhibits adjuvant properties when co-administered with the antigen, as well as identify the minimal domain responsible for its adjuvanticity. To achieve this aim, mice were immunized by the intranasal route with the model antigen beta-galactosidase (beta-gal) co-administered with recombinant proteins spanning different portions of the SfbI protein. The obtained results demonstrated that the adjuvant properties of SfbI were maintained intact when admixed to the model antigen. Similar kinetics and absolute titers of beta-gal-specific IgG antibodies as well as a dominant IgG(1) isotype response pattern were observed using SfbI derivatives spanning either the aromatic and proline-rich (H10) or the fibronectin-binding (H12) domains, respectively. The use of all tested derivatives also stimulated the elicitation of efficient beta-gal-specific IgA responses in lung lavages (23-25% of the total IgA). The obtained results suggest that different sub-domains of the SfbI protein can be used as adjuvants for the development of mucosal vaccines.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号