首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Phytomyza ilicicola (Diptera: Agromyzidae), a univoltine specialist leafminer, is one of the few insect herbivores of American holly. Adult emergence is closely synchronized with leaf flush in spring, and females make numerous feeding punctures on and oviposit in new leaves. Larvae hatch in late May and June, but their feeding period and development are prolonged so that more than 80% of the mine enlargement occurs from January until March of the following year. We propose that this unusual life cycle reflects adaptation to constraints imposed by seasonal and age-related changes in chemical and structural defenses, and in nutritional quality of holly foliage. As holly leaves age, there is a shift in allocation of defense investment away from allelochemicals, including phenolic compounds and saponins, toward leaf sclerophylly, spinose teeth, and low foliar nitrogen and water. Rapid increases in leaf toughness and decreases in nutritional quality limit availability of leaf tissues for adult feeding and oviposition to a two-to threeweek phenological window during leaf flush. Mature holly foliage is a nutritionally poor resource by nearly all criteria known to affect food quality for herbivores. This may be the main reason for the prolonged larval development of P. ilicicola. Alternatively, winter feeding and pupation in spring may be adaptations which help to ensure synchrony of adult emergence with leaf flush. Repeated puncturing by female P. ilicicola does not render leaves more suitable for larvae, nor is it a means by which females sample leaf exudate to assess leaf quality prior to oviposition. Rather, leaf puncturing occurs mostly on leaves that are relatively high in soluble nitrogen, and is apparently a means by which females obtain protein and sugars prior to and during oviposition.The investigation reported in this paper (No. 85-7-8-208) is in connection with a project of the Kentucky Agricultural Experiment Station and is published with the approval of the Director  相似文献   

2.
Herbivore feeding may induce an array of responses in plants, and each response may have its own temporal dynamics. Precise timing of these plant responses is vital for them to have optimal effect on the herbivores feeding on the plant. This study measured the temporal dynamics of various systemically induced responses occurring in Brassica juncea (L.) Czern. (Brassicaceae) leaves after insect herbivory in India and The Netherlands. Morphological (trichomes, leaf size) and chemical (glucosinolates, amino acids, sugars) responses were analysed. The effects of systemic responses were assessed using a specialist [Plutella xylostella L. (Lepidoptera: Plutellidae)] and a generalist [Spodoptera litura Fabricius (Lepidoptera: Noctuidae)] herbivore. We tested the hypotheses that morphological responses were slower than chemical responses and that generalist herbivores would be more affected by induced responses than specialists. Glucosinolates and trichomes were found to increase systemically as quickly as 4 and 7 days after herbivore damage, respectively. Amino acids, sugars, and leaf size remained unaffected during this period. The generalist S. litura showed a significant feeding preference for undamaged leaves, whereas the specialist herbivore P. xylostella preferred leaves that were damaged 9 days before. Performance bioassays on generalist S. litura revealed that larvae gained half the weight on leaves from damaged plants as compared to larvae feeding on leaves from undamaged plants. These studies show that although morphological responses are somewhat slower than chemical responses, they also contribute to induced plant resistance in a relatively short time span. We argue that before considering induced responses as resistance factors, their effect should be assessed at various points in time with both generalist and specialist herbivores.  相似文献   

3.
We used path analysis to ask whether leaf position or leaf light level was a better predictor of within-plant variation in leaf nitrogen concentration in five species of rain forest pioneer trees (Cecropia obtusifolia, Ficus insipida, Heliocarpus appendiculatus, Piper auritum, and Urera caracasana) from the Los Tuxtlas Biological Station, Veracruz, Mexico. Three hundred seventy-five leaves on 28 plants of the five species were analyzed for leaf nitrogen concentration, leaf mass per area, and leaf light interception at different positions (= nodes) along a shoot. Mean values of leaf nitrogen concentration ranged from 0.697 to 0.993 g/m2 in the five species, and varied by as much as 2.24 g/m2 among leaves on individual plants. Leaf position on the shoot explained significantly more of the within-plant variation in leaf nitrogen concentration than did leaf light level in four of the five species: Cecropia obtusifolia, Heliocarpus appendiculatus, Piper auritum (branch leaves only), and Urera caracasana. However, individual species differed considerably in the patterns of nitrogen allocation and leaf mass per area among leaves on a shoot. These results suggest that leaf nitrogen deployment in these plants is, in part, developmentally constrained and related to the predictability of canopy light distribution associated with plant growth form.  相似文献   

4.
Pyrrolizidine alkaloids (PAs) are the major defense compounds of plants in the Senecio genus. Here I will review the effects of PAs in Senecio on the preference and performance of specialist and generalist insect herbivores. Specialist herbivores have evolved adaptation to PAs in their host plant. They can use the alkaloids as cue to find their host plant and often they sequester PAs for their own defense against predators. Generalists, on the other hand, can be deterred by PAs. PAs can also affect survival of generalist herbivores. Usually generalist insects avoid feeding on young Senecio leaves, which contain a high concentration of alkaloids. Structurally related PAs can differ in their effects on insect herbivores, some are more toxic than others. The differences in effects of PAs on specialist and generalists could lead to opposing selection on PAs, which may maintain the genetic diversity in PA concentration and composition in Senecio species.  相似文献   

5.

Introduction

Usually whole plant or whole leaf extracts are analyzed to study the chemical ecology of insect-plant interactions. For herbivore species the contact with the leaf surface enables them to estimate the quality of the plant. The relationship between the leaf-surface and leaf-tissue secondary metabolites (SMs) could offer important new insights in insect-plant interactions mediated by SMs. Pyrrolizidine alkaloids (PAs), typical defense chemicals in Jacobaea species, are repellent for generalist herbivores but are attractive to specialists.

Objectives

Explore whether the PAs on the leaf surface are a reliable representation of the PAs in the leaf tissue in PA-containing plants.

Method

The concentration of individual PAs present on the leaf surface and in the corresponding leaf tissue from 37 genotypes (one plant from each genotype) of an F2 generation of a cross between Jacobaea vulgaris and Jacobaea aquatica was measured by high performance liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). PAs were removed from the leaf surface by extraction with a slightly acidic aqueous solution.

Results

The total amount of PAs present on the surface of the leaves was only 0.015% (range 0.001–0.163%) of the total amount present in the leaf tissue. Most PAs present in the leaf tissue were also found on the surface, except for jaconine, dehydrojaconine, dehydrojacoline and usaramine N-oxide. Positive correlations between leaf-surface and leaf-tissue concentrations were found for most of the jacobine-like and otosenine-like PAs, but correlations for total PA, senecionine- and erucifoline-like PAs were not significant.

Conclusion

These results indicate that PA variation on the leaf surface only partially reflects the PA variation in the leaf tissue. Because most herbivores are affected in a different manner by individual PAs, this result means that the leaf surface does not give a reliable estimate of plant quality to herbivores.
  相似文献   

6.
This study assessed how the palatability of leaves of different age classes (young, intermediate and older) of Eucalyptus nitens seedlings varied with plant nutrient status, based on captive feeding trials with two mammalian herbivores, red-bellied pademelons (Thylogale billardierii), and common brushtail possums (Trichosurus vulpecula). Seedlings were grown under three nutrient treatments (low, medium and high), and we determined how palatability was related to chemical and physical characteristics of the leaves. Pademelons ate more older leaves than young and intermediate leaves for all treatments. This pattern was best explained by sideroxylonals (formylated phloroglucinol compounds known to deter herbivory by other marsupials), and/or essential oil compounds that were present in lower concentrations in older leaves. In the low-nutrient treatment, possums also ate more of the older leaves. However, in the medium- and high-nutrient treatments, possums ate more intermediate leaves than older leaves and showed a behavioural preference for young leaves (consuming younger leaves first) over intermediate and older leaves, in spite of high levels of sideroxylonals and essential oils. The young leaves did, however, have the highest nitrogen concentration of all the leaf age classes. Thus, either sideroxylonals and essential oils provided little or no deterrent to possums, or the deterrent was outweighed by other factors such as high nitrogen. This study indicates that mammalian herbivores show different levels of relative use and damage to leaf age classes at varying levels of plant nutrient status and, therefore, their impact on plant fitness may vary with environment.  相似文献   

7.
1. The relationship between leaf palatability and litter decomposability is critical to understanding the effects of selective feeding by herbivores on decomposition processes, and several studies have reported that there is a positive relationship between them. 2. However, palatability is not always positively correlated with decomposability, because of species‐specific feeding adaptation of herbivores to host plants. Moreover, the effects of selective feeding by herbivores on soil decomposition processes should be understood in terms of the inputs of leaf litter and excrement. 3. The present study examined the relationships between leaf palatability and the decomposability of litter and frass, using Lymantria dispar Linnaeus and 15 temperate deciduous tree species. 4. Larvae of L. dispar exhibited a clear feeding preference, and subsequently the excreted frass mass differed among tree species. Litter and frass decomposability also differed among tree species, and frass was more rapidly decomposed than litter. There were no positive or negative correlations between palatability and decomposability of litter and frass. 5. These results indicate that L. dispar larvae may accelerate the decomposition process in temperate deciduous forests through selective feeding on plants with relatively low litter decomposability and the production of frass with higher decomposability than the litter.  相似文献   

8.
Secondary metabolites are one the most pervasive defensive mechanisms in plants. Many specialist herbivores have evolved adaptations to overcome these defensive compounds. Some herbivores can even take advantage of these compounds by sequestering them for protection and/or mate attraction. One of the most studied specialist insects that sequesters secondary metabolites is the arctiid moth Utetheisa ornatrix. This species sequesters pyrrolizidine alkaloids (PAs) from its host plant, the legume Crotalaria spp. The sequestered PAs are used as a predator repellent and as a mating pheromone. We used this species to test larval preference for different concentrations of PAs. We purified PAs from plant material and added them at different concentrations to an artificial diet. Larvae of U. ornatrix previously feeding on low and high PA concentration artificial diets were allowed to choose between two new artificial diets with different PA concentrations. The amount of PAs sequestered and larval preference were dependent on their previous exposure to low or high PA content in the diet. Larvae that were pretreated with a low PA diet significantly consumed more diet with the high PA concentration, while larvae that were pretreated with a high PA diet showed no discrimination between future feeding of different PA concentration diets. We discuss our results using mechanistic and evolutionary approaches. Finally, we discuss how these results have important implications on the evolution of plant herbivore interactions and how specialist herbivores may decrease the levels of chemical defenses on plant populations.  相似文献   

9.
The preference–performance hypothesis predicts that moth behaviour links plant variations with caterpillar attack and distribution, and the plant‐age hypothesis states that specialist herbivores are more successful in exploring younger plant tissue. We integrated these predictions to investigate underlying mechanisms by which moths and caterpillars of Plutella xylostella L. (Lepidoptera: Plutellidae) track and exploit within‐plant variability of leaf age and stratification. We measured leaf proteins, glucosinolates and fibre, as well as larval choice, developmental performance, and moth oviposition preference with regard to leaf age classes (young, mature and senescent) of three varieties (collard, cauliflower and cabbage) of the main host plant Brassica oleracea L. Larvae consistently fit the prediction that specialist herbivores prefer and perform better on young, upper leaves that have the highest protein level, despite the highest content of defence compounds. Conversely, moths laid more eggs on fibrous and less nutritious leaves from the lower and senescent stratum. We argue that the leaf stratification of host plants imposes conflicting selective pressures concerning offspring feeding and protection on adult females. If egg mortality is catastrophic on the upper nutritious leaves in a particular microclimatic context (e.g. sun, heat, winds, drought or rain‐washing), then oviposition preference will remain for the suboptimal lower and senescent leaves. The ability of larvae to spread upwards over the plant to access the more nutritious leaf stratum is critical when eggs are preferentially laid on the protective low‐quality leaves.  相似文献   

10.
Kirk H  Vrieling K  Pelser PB  Schaffner U 《Oecologia》2012,168(4):1043-1055
At both a macro- and micro-evolutionary level, selection of and performance on host plants by specialist herbivores are thought to be governed partially by host plant chemistry. Thus far, there is little evidence to suggest that specialists can detect small structural differences in secondary metabolites of their hosts, or that such differences affect host choice or performance of specialists. We tested whether phytochemical differences between closely related plant species are correlated with specialist host choice. We conducted no-choice feeding trials using 17 plant species of three genera of tribe Senecioneae (Jacobaea, Packera, and Senecio; Asteraceae) and a more distantly related species (Cynoglossum officinale; Boraginaceae) containing pyrrolizidine alkaloids (PAs), and four PA-sequestering specialist herbivores of the genus Longitarsus (Chrysomelidae). We also assessed whether variation in feeding by specialist herbivores is attributable to different resource use strategies of the tested plant species. Plant resource use strategy was quantified by measuring leaf dry matter content, which is related to both plant nutritive value and to plant investment in quantitative defences. We found no evidence that intra-generic differences in PA profiles affect feeding by specialist herbivores. Instead, our results indicate that decisions to begin feeding are related to plant resource use strategy, while decisions to continue feeding are not based on any plant characteristics measured in this study. These findings imply that PA composition does not significantly affect host choice by these specialist herbivores. Leaf dry matter content is somewhat phylogenetically conserved, indicating that plants may have difficulty altering resource use strategy in response to selection pressure by herbivores and other environmental factors on an evolutionary time scale.  相似文献   

11.
Plants are attacked by many different herbivores. Some will consume whole leaves or roots, while others will attack specific types of tissue. Thus, insight into the metabolite profiles of different types of leaf tissues is necessary to understand plant resistance against herbivores. Jacobaea vulgaris, J. aquatica and three genotypes of their crossings were used to study the variation in metabolomic profiles between epidermis and mesophyll tissues. Extracts of epidermis and mesophyll tissues were obtained using carborundum abrasion (CA). Subsequently, 1H nuclear magnetic resonance (NMR) spectroscopy and multivariate data analyses were applied to compare the metabolome profiles. Orthogonal partial least-squares-discriminant analysis (OPLS-DA) resulted in a clear separation of epidermis and mesophyll extracts. The epidermis contained significantly higher amounts of jacaranone and phenylpropanoids, specifically chlorogenic (5-O-CQA) and feruloyl quinic (FQA) acids compared to the mesophyll. In contrast, the mesophyll showed significantly higher concentrations of pyrrolizidine alkaloids (PAs), specifically jacobine and jaconine. The tissue specific distribution of these compounds was constant over all genotypes tested. Phenylpropanoids, 5-O-CQA and FQA, as well as PAs are known for their inhibitory effect on herbivores, especially against thrips. Thrips feeding commences with the penetration of the epidermis, followed by ingestion of sub-epidermal or mesophyll. Thrips thus may have to encounter phenylpropanoids in the epidermis as the first line of defence, before encountering the PAs as the ultimate defence in the mesophyll. The finding of tissue specific defense may have a major impact on studies of plant resistance. We cannot judge resistance using analyses of a whole roots, leafs or flowers. In such a whole-organism approach, the levels of potential defense compounds are far below the real ones encountered in tissues involved in the first line of defense. Instead, it is of great importance to study the defence compounds in the specific tissue to which the herbivore is confined.  相似文献   

12.
Caterpillars and spider mites are herbivores with different feeding mechanisms. Spider mites feed on the cell content via stylets, while caterpillars, as chewing herbivores, remove larger amounts of photosynthetically active tissue. We investigated local and systemic effects of short-term caterpillar and spider mite herbivory on cotton in terms of primary metabolism and growth processes. After short-term caterpillar feeding, leaf growth and water content were decreased in damaged leaves. The glutamate/glutamine ratio increased and other free amino acids were also affected. In contrast, mild spider mite infestation did not affect leaf growth or amino acid composition, but led to an increase in total nitrogen and sucrose concentrations. Both herbivores induced locally increased dark respiration, suggesting an increased mobilization of storage compounds potentially available for synthesis of defensive substances, but did not affect assimilation and transpiration. Systemically induced leaves were not significantly affected by the treatments performed in this study. The results show that cotton plants do not compensate the loss of photosynthetic tissue with higher photosynthetic efficiency of the remaining tissue. However, early plant responses to different herbivores leave their signature in primary metabolism, affecting leaf growth. Changes in amino acid concentrations, total nitrogen and sucrose content may affect subsequent herbivore performance.  相似文献   

13.
Poplar (Populus spp.) is a widely distributed tree genus of significant economic and ecological importance. Poplar trees accumulate proanthocyanidins (PAs) in leaves, roots, and a variety of other tissues. Damage to leaves by insects causes a rapid accumulation of PAs, both at the site of damage and distally in undamaged leaves. This rapid PA accumulation is mediated by the activation of genes encoding enzymes involved in PA synthesis. PAs have been hypothesized to deter insect feeding and reduce the nutritive value of poplar leaf tissue, but experimental evidence supporting a role for PAs as an effective inducible defense against herbivores is lacking. Our recent paper described the identification of a MYB gene that regulates the PA pathway under multiple stress conditions, and we used this gene to constitutively activate the PA pathway in poplar. Here we describe observations that suggest that poplar PAs may have roles besides insect defense, for example, responses to UV light. The PA-modified trees will be a useful tool for analyzing the biological roles of PAs in this important model tree.Key words: tannins, herbivory, flavonoid, UV light, light stress  相似文献   

14.
Seedlings of five species of dipterocarp trees were planted in experimental plots in rain forest gaps in Sabah, Malaysia, and the rates of herbivory on their mature leaves recorded over 6 mo. A novel method was used to estimate the feeding pressure exerted by the local insect herbivore community, derived from the relative abundances of the dominant generalist herbivores and their feeding preferences. Characteristics of the leaves related to their defense and nutritional value were measured—phenolic content, laminar fracture toughness, laminar thickness, and nitrogen content. Three main groups of herbivorous insects were present—coleopteran and lepidopteran herbivores, which were sampled by hand from the seedlings, and orthopteran herbivores, which were sampled by sweep netting. The feeding preferences of the main coleopteran and orthopteran herbivores were determined using laboratory feeding trials. Combining variables in a Principal Components Analysis, a clear separation was found between the five seedling species along the first extracted component. This correlated closely with herbivory rates between species. The first extracted component comprised a negative influence of phenolic content and positive effects of nitrogen content, laminar fracture toughness, abundances of coleopteran and lepidopteran herbivores, and estimated feeding pressure of the coleopteran community. Further studies are required to determine the potential applications of the latter measure of estimated herbivore community impact.  相似文献   

15.
1. Root hemiparasites are common components of many ecosystems and can affect both the biomass and the nutritional quality of the plants they infect. The consequences of these modifications for the preference and performance of three herbivore feeding guilds sharing a host with the hemi‐parasite were examined. 2. It was predicted that as the hemiparasite increased in biomass its impact on the host would increase, as would the indirect impacts on the herbivores. It was also predicted that herbivores from different feeding guilds would respond differently to the presence of the hemiparasite, reflecting the extent to which they utilise resources disrupted by the parasite and hence are in competition with it. 3. The preference and performance of phloem‐feeding aphids, xylem‐feeding spittle bugs, and leaf‐feeding grasshoppers were measured on the host grass species, Holcus lanatus L. (Poaceae), with and without attachment from the hemi‐parasite, Rhinanthus minor L. (Orobanchaceae). 4. The effects of R. minor on the host were dependent on the hemiparasite's stage of growth, being most pronounced when it was at peak biomass. At this stage it caused a significant reduction in the biomass, water content, and total nitrogen content of the host plants. 5. Overall, herbivores benefited from, or preferred, shared host plants more than uninfected plants. The aphid benefited from sharing a host with R. minor, showing increased population growth on, and preference for, parasitised plants. The spittle bug also showed a preference for parasitised plants. The grasshopper, Chorthippus brunneus Thunberg (Orthoptera: Acrididae), did not show a preference for, or a performance response to, parasitised hosts, but it consumed significantly more plant material when caged on parasitised plants. 6. These data support the prediction that invertebrate herbivores responded to changes in host plant traits driven by the hemiparasite, and strongly suggest that these indirect interactions could impact on population and community processes within natural communities.  相似文献   

16.
Summary Centaurea maculosa seedlings were grown in pots to study the effects of root herbivory by Agapeta zoegana L. (Lep.: Cochylidae) and Cyphocleonus achates Fahr. (Col.: Curculionidae), grass competition and nitrogen shortage (each present or absent), using a full factorial design. The aims of the study were to analyse the impact of root herbivory on plant growth, resource allocation and physiological processes, and to test if these plant responses to herbivory were influenced by plant competition and nitrogen availability. The two root herbivores differed markedly in their impact on plant growth. While feeding by the moth A. zoegana in the root cortex had no effect on shoot and root mass, feeding by the weevil C. achates in the central vascular tissue greatly reduced shoot mass, but not root mass, leading to a reduced shoot/root ratio. The absence of significant effects of the two herbivores on root biomass, despite considerable consumption, indicates that compensatory root growth occurred. Competition with grass affected plant growth more than herbivory and nutrient status, resulting in reduced shoot and root growth, and number of leaves. Nitrogen shortage did not affect plant growth directly but greatly influenced the compensatory capacity of Centaurea maculosa to root herbivory. Under high nitrogen conditions, shoot biomass of plants infested by the weevil was reduced by 30% compared with uninfested plants. However, under poor nitrogen conditions a 63% reduction was observed compared with corresponding controls. Root herbivory was the most important stress factor affecting plant physiology. Besides a relative increase in biomass allocation to the roots, infested plants also showed a significant increase in nitrogen concentration in the roots and a concomitant reduction in leaf nitrogen concentration, reflecting a redirection of the nitrogen to the stronger sink. The level of fructans was greatly reduced in the roots after herbivore feeding. This is thought to be a consequence of their mobilisation to support compensatory root growth. A preliminary model linking the effects of these root herbivores to the physiological processes of C. maculosa is presented.  相似文献   

17.
Plants defend against attack from herbivores by direct and indirect defence mechanisms mediated by the accumulation of phytoalexins and release of volatile signals, respectively. While the defensive arsenals of some plants, such as tobacco and Arabidopsis are well known, most of rice's (Oryza sativa) defence metabolites and their effectiveness against herbivores remain uncharacterized. Here, we used a non‐biassed metabolomics approach to identify many novel herbivory‐regulated metabolic signatures in rice. Most were up‐regulated by herbivore attack while only a few were suppressed. Two of the most prominent up‐regulated signatures were characterized as phenolamides (PAs), p‐coumaroylputrescine and feruloylputrescine. PAs accumulated in response to attack by both chewing insects, i.e. feeding of the lawn armyworm (Spodoptera mauritia) and the rice skipper (Parnara guttata) larvae, and the attack of the sucking insect, the brown planthopper (Nilaparvata lugens, BPH). In bioassays, BPH insects feeding on 15% sugar solution containing p‐coumaroylputrescine or feruloylputrescine, at concentrations similar to those elicited by heavy BPH attack in rice, had a higher mortality compared to those feeding on sugar diet alone. Our results highlight PAs as a rapidly expanding new group of plant defence metabolites that are elicited by herbivore attack, and deter herbivores in rice and other plants.  相似文献   

18.
It has been suggested that plant physical and chemical traits vary considerably in space and time. Hence, leaf‐mining insects may adjust their oviposition in response to leaf attributes representing high quality. Moreover, herbivorous insects can modify leaf morphology by acting as stressors, increasing, for example, fluctuating asymmetry (FA) levels. Here, we investigate oviposition preference in Agnippe sp.2, a leaf‐mining moth of Erythroxylum tortuosum, in relation to differences in leaf nutritional quality (i.e. levels of water, nitrogen and tannin content), leaf area (i.e. quantity of resource hypothesis) and FA. We also verify whether temporal variation in plant nutritional quality emerges as an alternative hypothesis to explain oviposition distribution in time, and whether this leaf miner is a stress‐causing agent, increasing FA during larval development. Mined leaves and leaves with and without eggs were periodically collected from plants located in a Cerrado fragment in Brazil. In the laboratory, leaf traits were assessed (using image analysis software) and quantified (biochemical analysis) according to the aims previously determined. Oviposition probability did not change in relation to variations in nitrogen, tannins and FA of leaves. However, leaf‐miner females preferred to oviposit on leaves having large areas and low water contents. It was also verified that new leaves of E. tortuosum, which carried most leaf‐miner eggs, presented significantly lower tannins and greater levels of nitrogen and water than old leaves. The oviposition choice exhibited by leaf miners was found to be non‐random because they appear to use resource quantity and water content as cues as where to lay their eggs. The temporal variation of plant nutritional quality is likely to influence the time of leaf‐miner oviposition; and leaf FA was not increased during larval feeding, suggesting that these herbivores do not cause variations in FA levels.  相似文献   

19.
Benzoxazinoids are a class of indole-derived plant chemical defenses comprising compounds with a 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one skeleton and their derivatives. These phytochemicals are widespread in grasses, including important cereal crops such as maize, wheat and rye, as well as a few dicot species, and display a wide range of antifeedant, insecticidal, antimicrobial, and allelopathic activities. Although their overall effects against insect herbivores are frequently reported, much less is known about how their modes of action specifically influence insect physiology. The present review summarizes the biological activities of benzoxazinoids on chewing, piercing-sucking, and root insect herbivores. We show how within-plant distribution modulates the exposure of different herbivore feeding guilds to these defenses, and how benzoxazinoids may act as toxins, feeding deterrents and digestibility-reducing compounds under different conditions. In addition, recent results on the metabolism of benzoxazinoids by insects and their consequences for plant-herbivore interactions are addressed, as well as directions for future research.  相似文献   

20.
Abstract 1. Water stress may increase or reduce the suitability of plants for herbivores. The recently proposed ‘pulsed stress hypothesis’ suggests consideration of stress phenology (pulsed vs. continuous stress) to explain these conflicting effects of plant water stress on herbivore performance. 2. This hypothesis was tested for the effect of differing stress intensity on performance and preference of insect herbivores belonging to different feeding guilds, namely leaf‐chewing insects (Spodoptera littoralis caterpillars) and phloem‐feeding insects (Aphis pomi aphids), on apple plants (Malus domestica). The plants were non‐stressed or exposed to a low or high intensity of pulsed water stress. 3. Plant responses to the different stress levels were generally monotonic. Growth, stomatal conductance (gs), leaf water, and old‐leaf nitrogen concentration decreased, whereas young‐leaf nitrogen concentration and leaf mass per area (LMA) increased with increasing stress intensity. The stable isotope composition of foliar carbon (δ13C) responded non‐monotonically to the drought treatments. The δ13C values were highest in low‐stress plants, intermediate in high‐stress plants, and lowest in non‐stressed plants. 4. The preference and performance responses of the caterpillars were also non‐monotonic. Non‐stressed plants were intermediately, low‐stress plants least, and high‐stress plants most attractive or suitable. Aphid population growth was highest on non‐stressed plants and lowest on low‐stress plants. 5. The results highlight the importance of water stress intensity for the outcome of interactions between herbivores and drought‐affected plants. They show that pulsed water stress may enhance or reduce insect herbivore performance and plant resistance, depending on stress intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号