首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A Seelig  P M Macdonald 《Biochemistry》1989,28(6):2490-2496
The binding of substance P (SP), a positively charged neurotransmitter peptide, to neutral and to negatively charged phospholipids has been investigated by means of a monolayer technique. Monolayers formed at room temperature from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), or mixtures of the two, were maintained throughout the course of a binding experiment at a constant surface pressure while the monolayer surface area was monitored. Injection of SP into the aqueous subphase (154 mM NaCl, 10 mM Tris adjusted to pH 7.4) led to an expansion of the monolayer surface area that was attributed to a spontaneous insertion of SP between the lipid molecules. A quantitative evaluation of the area increase at constant pressure yielded SP insertion isotherms that showed that levels of SP insertion increased directly with the monolayer POPG content and decreased to negligible levels at surface pressures above 35 +/- 1 mN/m. If electrostatic effects were ignored, these data showed biphasic behavior in Scatchard plots. The apparent binding constants ranged, at 20 mN/m, from (3.2 +/- 0.3) X 10(4) M-1 for 100% POPG monolayers to (2.0 +/- 0.05) X 10(3) M-1 for 25% POPG/75% POPC monolayers. At 32 mN/m, a monolayer surface pressure that mimics bilayer conditions, the apparent binding constant for a 100% POPG monolayer was measured to be (1.1 +/- 0.05) X 10(3) M-1. However, for a monolayer containing only 25% charged lipids, corresponding to a natural membrane composition, K app at 32 mN/m was estimated to be at most 41 M-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Melittin binding to mixed phosphatidylglycerol/phosphatidylcholine membranes   总被引:16,自引:0,他引:16  
The binding of bee venom melittin to negatively charged unilamellar vesicles and planar lipid bilayers composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) was studied with circular dichroism and deuterium NMR spectroscopy. The melittin binding isotherm was measured for small unilamellar vesicles containing 10 or 20 mol % POPG. Due to electrostatic attraction, binding of the positively charged melittin was much enhanced as compared to the binding to neutral lipid vesicles. However, after correction for electrostatic effects by means of the Gouy-Chapman theory, all melittin binding isotherms could be described by a partition Kp = (4.5 +/- 0.6) x 10(4) M-1. It was estimated that about 50% of the total melittin surface was embedded in a hydrophobic environment. The melittin partition constant for small unilamellar vesicles was by a factor of 20 larger than that of planar bilayers and attests to the tighter lipid packing in the nonsonicated bilayers. Deuterium NMR studies were performed with coarse lipid dispersions. Binding of melittin to POPC/POPG (80/20 mol/mol) membranes caused systematic changes in the conformation of the phosphocholine and phosphoglycerol head groups which were ascribed to the influence of electrostatic charge on the choline dipole. While the negative charge of phosphatidylglycerol moved the N+ end of the choline -P-N+ dipole toward the bilayer interior, the binding of melittin reversed this effect and rotated the N+ end toward the aqueous phase. No specific melittin-POPG complexes could be detected. The phosphoglycerol head group was less affected by melittin binding than its choline counterpart.  相似文献   

3.
The binding of the positively charged antimicrobial peptide cyclo[VKLdKVdYPLKVKLdYP] (GS14dK4) to various lipid bilayer model membranes was investigated using isothermal titration calorimetry. GS14dK4 is a diastereomeric lysine ring-size analogue of the naturally occurring antimicrobial peptide gramicidin S which exhibits enhanced antimicrobial and markedly reduced hemolytic activities compared with GS itself. Large unilamellar vesicles composed of various zwitterionic (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphorylcholine [POPC]) and anionic phospholipids {1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(glycerol)] [POPG] and 1-palmitoyl-2-oleoyl-sn-glycero-3-[phosphoserine] [POPS]}, with or without cholesterol, were used as model membrane systems. Dynamic light scattering results indicate the absence of any peptide-induced major alteration in vesicle size or vesicle fusion under our experimental conditions. The binding of GS14dK4 is significantly influenced by the surface charge density of the phospholipid bilayer and by the presence of cholesterol. Specifically, a significant reduction in the degree of binding occurs when three-fourths of the anionic lipid molecules are replaced with zwitterionic POPC molecules. No measurable binding occurs to cholesterol-containing zwitterionic vesicles, and a dramatic drop in binding is observed in the cholesterol-containing anionic POPG and POPS membranes, indicating that the presence of cholesterol markedly reduces the affinity of this peptide for phospholipid bilayers. The binding isotherms can be described quantitatively by a one-site binding model. The measured endothermic binding enthalpy (DeltaH) varies dramatically (+6.3 to +26.5 kcal/mol) and appears to be inversely related to the order of the phospholipid bilayer system. However, the negative free energy (DeltaG) of binding remains relatively constant (-8.5 to -11.5 kcal/mol) for all lipid membranes examined. The relatively small variation of negative free energy of peptide binding together with a pronounced variation of positive enthalpy produces an equally strong variation of TDeltaS (+16.2 to +35.0 kcal/mol), indicating that GS14dK4 binding to phospholipids bilayers is primarily entropy driven.  相似文献   

4.
M R Wenk  T Alt  A Seelig    J Seelig 《Biophysical journal》1997,72(4):1719-1731
The interaction of the nonionic detergent octyl-beta-D-glucopyranoside (OG) with lipid bilayers was studied with high-sensitivity isothermal titration calorimetry (ITC) and solid-state 2H-NMR spectroscopy. The transfer of OG from the aqueous phase to lipid bilayers composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) can be investigated by employing detergent at concentrations below the critical micellar concentration; it can be defined by a surface partition equilibrium with a partition coefficient of K = 120 +/- 10 M-1, a molar binding enthalpy of delta H degrees D = 1.3 +/- 0.15 kcal/mol, and a free energy of binding of delta G degrees D = -5.2 kcal/mol. The heat of transfer is temperature dependent, with a molar heat capacity of delta CP = -75 cal K-1 mol-1. The large heat capacity and the near-zero delta H are typical for a hydrophobic binding equilibrium. The partition constant K decreased to approximately 100 M-1 for POPC membranes mixed with either negatively charged lipids or cholesterol, but was independent of membrane curvature. In contrast, a much larger variation was observed in the partition enthalpy. delta H degrees D increased by about 50% for large vesicles and by 75% for membranes containing 50 mol% cholesterol. Structural changes in the lipid bilayer were investigated with solid-state 2H-NMR. POPC was selectively deuterated at the headgroup segments and at different positions of the fatty acyl chains, and the measurement of the quadrupolar splittings provided information on the conformation and the order of the bilayer membrane. Addition of OG had almost no influence on the lipid headgroup region, even at concentrations close to bilayer disruption. In contrast, the fluctuations of fatty acyl chain segments located in the inner part of the bilayer increased strongly with increasing OG concentration. The 2H-NMR results demonstrate that the headgroup region is the most stable structural element of the lipid membrane, remaining intact until the disordering of the chains reaches a critical limit. The perturbing effect of OG is thus different from that of another nonionic detergent, octaethyleneglycol mono-n-dodecylether (C12E8), which produces a general disordering at all levels of the lipid bilayer. The OG-POPC interaction was also investigated with POPC monolayers, using a Langmuir trough. In the absence of lipid, the measurement of the Gibbs adsorption isotherm for pure OG solutions yielded an OG surface area of AS = 51 +/- 3 A2. On the other hand, the insertion area AI of OG in a POPC monolayer was determined by a monolayer expansion technique as AI = 58 +/- 10 A2. The similar area requirements with AS approximately AI indicate an almost complete insertion of OG into the lipid monolayer. The OG partition constant for a POPC monolayer at 32 mN/m was Kp approximately 320 M-1 and thus was larger than that for a POPC bilayer.  相似文献   

5.
The interaction of phosphatidylserine (PS) synthase from Escherichia coli with lipid membranes was studied with a recently developed variant of the surface plasmon resonance technique, referred to as coupled plasmon-waveguide resonance spectroscopy. The features of the new technique are increased sensitivity and spectral resolution, and a unique ability to directly measure the structural anisotropy of lipid and proteolipid films. Solid-supported lipid bilayers with the following compositions were used: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC); POPC-1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate (POPA) (80:20, mol/mol); POPC-POPA (60:40, mol/mol); and POPC-1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG) (75:25, mol/mol). Addition of either POPA or POPG to a POPC bilayer causes a considerable increase of both the bilayer thickness and its optical anisotropy. PS synthase exhibits a biphasic interaction with the bilayers. The first phase, occurring at low protein concentrations, involves both electrostatic and hydrophobic interactions, although it is dominated by the latter, and the enzyme causes a local decrease of the ordering of the lipid molecules. The second phase, occurring at high protein concentrations, is predominantly controlled by electrostatic interactions, and results in a cooperative binding of the enzyme to the membrane surface. Addition of the anionic lipids to a POPC bilayer causes a 5- to 15-fold decrease in the protein concentration at which the first binding phase occurs. The results reported herein lend experimental support to a previously suggested mechanism for the regulation of the polar head group composition in E. coli membranes.  相似文献   

6.
For cationic antimicrobial peptides to become useful therapeutic agents, it is important to understand their mechanism of action. To obtain high resolution data, this involves studying the structure and membrane interaction of these peptides in tractable model bacterial membranes rather than directly utilizing more complex bacterial surfaces. A number of lipid mixtures have been used as bacterial mimetics, including a range of lipid headgroups, and different ratios of neutral to negatively charged headgroups. Here we examine how the structure and membrane interaction of aurein 2.2 and some of its variants depend on the choice of lipids, and how these models correlate with activity data in intact bacteria (MICs, membrane depolarization). Specifically, we investigated the structure and membrane interaction of aurein 2.2 and aurein 2.3 in 1:1 cardiolipin/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (CL/POPG) (mol/mol), as an alternative to 1:1 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine(POPC)/POPG and a potential model for Gram positive bacteria such as S. aureus. The structure and membrane interaction of aurein 2.2, aurein 2.3, and five variants of aurein 2.2 were also investigated in 1:1 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE)/POPG (mol/mol) lipids as a possible model for other Gram positive bacteria, such as Bacillus cereus. Solution circular dichroism (CD) results demonstrated that the aurein peptides adopted α-helical structure in all lipid membranes examined, but demonstrated a greater helical content in the presence of POPE/POPG membranes. Oriented CD and 31P NMR results showed that the aurein peptides had similar membrane insertion profiles and headgroup disordering effects on POPC/POPG and CL/POPG bilayers, but demonstrated reduced membrane insertion and decreased headgroup disordering on mixing with POPE/POPG bilayers at low peptide concentrations. Since the aurein peptides behaved very differently in POPE/POPG membrane, minimal inhibitory concentrations (MICs) of the aurein peptides in B. cereus strain C737 were determined. The MIC results indicated that all aurein peptides are significantly less active against B. cereus than against S. aureus and S. epidermidis. Overall, the data suggest that it is important to use a relevant model for bacterial membranes to gain insight into the mode of action of a given antimicrobial peptide in specific bacteria.  相似文献   

7.
Tritrpticin and indolicidin are short 13-residue tryptophan-rich antimicrobial peptides that hold potential as future alternatives for antibiotics. Isothermal titration calorimetry (ITC) has been applied as the main tool in this study to investigate the thermodynamics of the interaction of these two cathelicidin peptides as well as five tritrpticin analogs with large unilamellar vesicles (LUVs), representing model and natural anionic membranes. The anionic LUVs were composed of (a) 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPE/POPG) (7:3) and (b) natural E. coli polar lipid extract. 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) was used to make model zwitterionic membranes. Binding isotherms were obtained to characterize the antimicrobial peptide binding to the LUVs, which then allowed for calculation of the thermodynamic parameters of the interaction. All peptides exhibited substantially stronger binding to anionic POPE/POPG and E. coli membrane systems than to the zwitterionic POPC system due to strong electrostatic attractions between the highly positively charged peptides and the negatively charged membrane surface, and results with tritrpticin derivatives further revealed the effects of various amino acid substitutions on membrane binding. No significant improvement was observed upon increasing the Tritrp peptide charge from +4 to +5. Replacement of Arg residues with Lys did not substantially change peptide binding to anionic vesicles but moderately decreased the binding to zwitterionic LUVs. Pro to Ala substitutions in tritrpticin, allowing the peptide to adopt an alpha-helical structure, resulted in a significant increase of the binding to both anionic and zwitterionic vesicles and therefore reduced the selectivity for bacterial and mammalian membranes. In contrast, substitution of Trp with other aromatic amino acids significantly decreased the peptide's ability to bind to anionic LUVs and essentially eliminated binding to zwitterionic LUVs. The ITC results were consistent with the outcome of fluorescence spectroscopy membrane binding and perturbation studies. Overall, our work showed that a natural E. coli polar lipid extract as a bacterial membrane model was advantageous compared to the simpler and more widely used POPE/POPG lipid system.  相似文献   

8.
Accurately predicting the structural properties of phospholipid with a fully atomistic molecular model is critical for the study of pure phospholipid bilayers, mixed bilayer systems and bilayers containing proteins. The general amber force field (GAFF) has traditionally required the presence of a surface tension parameter to correctly model phospholipid bilayer properties such as area per lipid and order parameters. In this work, the GAFF partial charges for 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate (POPA), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphochiline (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) were re-parameterised utilising high-level ab initio calculations and the restrained electrostatic potential method. Simulations of pure POPA, POPC and POPG bilayers using the charge-modified GAFF and no applied surface tension are compared with available experimental data, the original GAFF model and the recent Lipid14 variant. The results indicate a significant improvement in the accuracy of the lipid model for reproducing experimental observables without the need for a surface tension parameter. The successful application of modifying the lipid charge distributions represents an alternative to the use of a surface tension parameter within GAFF, and highlights the importance of the partial charge calculations when modelling lipid bilayers.  相似文献   

9.
Model compounds of modified hydrophobicity (Eta), hydrophobic moment (mu) and angle subtended by charged residues (Phi) were synthesized to define the general roles of structural motifs of cationic helical peptides for membrane activity and selectivity. The peptide sets were based on a highly hydrophobic, non-selective KLA model peptide with high antimicrobial and hemolytic activity. Variation of the investigated parameters was found to be a suitable method for modifying peptide selectivity towards either neutral or highly negatively charged lipid bilayers. Eta and mu influenced selectivity preferentially via modification of activity on 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) bilayers, while the size of the polar/hydrophobic angle affected the activity against 1-palmitoyl-2-oleoylphosphatidyl-DL-glycerol (POPG). The influence of the parameters on the activity determining step was modest in both lipid systems and the activity profiles were the result of the parameters' influence on the second less pronounced permeabilization step. Thus, the activity towards POPC vesicles was determined by the high permeabilizing efficiency, however, changes in the structural parameters preferentially influenced the relatively moderate affinity. In contrast, intensive peptide accumulation via electrostatic interactions was sufficient for the destabilization of highly negatively charged POPG lipid membranes, but changes in the activity profile, as revealed by the modification of Phi, seem to be preferentially caused by variation of the low permeabilizing efficiency. The parameters proved very effective also in modifying antimicrobial and hemolytic activity. However, their influence on cell selectivity was limited. A threshold value of hydrophobicity seems to exist which restricted the activity modifying potential of mu and Phi on both lipid bilayers and cell membranes.  相似文献   

10.
The acetylated and amidated hexapeptide FRWWHR (combi-2), previously identified by combinatorial chemistry methods, shows strong antimicrobial activity. The binding of the peptide to 1-palmitoyl-2-oleoyl-sn-glycero-3-[(phospho-rac-(1-glycerol)] (POPG) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) vesicles was studied using fluorescence spectroscopy and isothermal titration calorimetry (ITC). Differential scanning calorimetry (DSC) with dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) multilamellar vesicles was performed to determine changes in the lipid phase behaviour upon binding the peptide. Two-dimensional proton nuclear magnetic resonance (NMR) spectroscopy, to solve the bound peptide structure, was performed in the presence of dodecylphosphatidylcholine (DPC) and sodium dodecyl sulphate (SDS) micelles. The fluorescence, ITC and DSC studies indicate that the peptide interacts preferentially with lipid vesicles containing negatively charged head groups. Conformational information determined using NMR indicate that the combi-2 peptide adopts a coiled amphipathic conformation when bound to SDS and DPC micelles. Leakage assays indicate that the peptide is not very efficient at causing leakage from calcein-filled large unilamellar vesicles comprised of POPG/POPC (1 : 1). The rapid passage of either the fluorescent-tagged peptides combi-2 or the previously studied peptide Ac-RRWWRF-NH(2) (combi-1) into Escherichia coli and Staphylococcus aureus suggests that instead of membrane disruption, the main bactericidal site of action of these peptides might be located inside bacteria.  相似文献   

11.
Tritrpticin and indolicidin are short 13-residue tryptophan-rich antimicrobial peptides that hold potential as future alternatives for antibiotics. Isothermal titration calorimetry (ITC) has been applied as the main tool in this study to investigate the thermodynamics of the interaction of these two cathelicidin peptides as well as five tritrpticin analogs with large unilamellar vesicles (LUVs), representing model and natural anionic membranes. The anionic LUVs were composed of (a) 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPE/POPG) (7:3) and (b) natural E. coli polar lipid extract. 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) was used to make model zwitterionic membranes. Binding isotherms were obtained to characterize the antimicrobial peptide binding to the LUVs, which then allowed for calculation of the thermodynamic parameters of the interaction. All peptides exhibited substantially stronger binding to anionic POPE/POPG and E. coli membrane systems than to the zwitterionic POPC system due to strong electrostatic attractions between the highly positively charged peptides and the negatively charged membrane surface, and results with tritrpticin derivatives further revealed the effects of various amino acid substitutions on membrane binding. No significant improvement was observed upon increasing the Tritrp peptide charge from + 4 to + 5. Replacement of Arg residues with Lys did not substantially change peptide binding to anionic vesicles but moderately decreased the binding to zwitterionic LUVs. Pro to Ala substitutions in tritrpticin, allowing the peptide to adopt an α-helical structure, resulted in a significant increase of the binding to both anionic and zwitterionic vesicles and therefore reduced the selectivity for bacterial and mammalian membranes. In contrast, substitution of Trp with other aromatic amino acids significantly decreased the peptide's ability to bind to anionic LUVs and essentially eliminated binding to zwitterionic LUVs. The ITC results were consistent with the outcome of fluorescence spectroscopy membrane binding and perturbation studies. Overall, our work showed that a natural E. coli polar lipid extract as a bacterial membrane model was advantageous compared to the simpler and more widely used POPE/POPG lipid system.  相似文献   

12.
Prion diseases are neurodegenerative disorders characterized by the aggregation of an abnormal form of prion protein. The interaction of prion protein and cellular membrane is crucial to elucidate the occurrence and development of prion diseases. Its fragment, residues 106–126, has been proven to maintain the pathological properties of misfolded prion and was used as a model peptide. In this study, explicit solvent molecular dynamics (MD) simulations were carried out to investigate the adsorption, folding and aggregation of PrP106–126 with different sizes (2-peptides, 4-peptides and 6-peptides) on the surface of both pure neutral POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and negatively charged POPC/POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol) (3:1) lipids. MD simulation results show that PrP106–126 display strong affinity with POPC/POPG but does not interact with pure POPC. The positively charged and polar residues participating hydrogen bonding with membrane promote the adsorption of PrP106–126. The presence of POPC and POPC/POPG exert limited influence on the secondary structures of PrP106–126 and random coil structures are predominant in all simulation systems. Upon the adsorption on the POPC/POPG surface, the aggregation states of PrP106–126 have been changed and more small oligomers were observed. This work provides insights into the interactions of PrP106–126 and membranes with different compositions in atomic level, which expand our understanding the role membrane plays in the development of prion diseases. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.  相似文献   

13.
The synthetic 25-residue signal peptide of cytochrome c oxidase subunit IV was labelled with the fluorophor 7-nitrobenz-2-oxa-1,3-diazole (NBD) at its single cysteine residue. Addition of small unilamellar vesicles of 1-palmitoyl 2-oleoyl phosphatidylcholine (POPC) to the labelled peptide resulted in a shift of the NBD excitation and emission spectra to shorter wavelengths. Binding of the peptide to the vesicles was measured by the increase in the fluorescence emission yield. A surface partition constant of (3.9 +/- 0.5) x 10(3) M-1 was derived from these titrations. When the membrane contained, in addition to POPC, negatively charged 1-palmitoyl 2-oleoyl phosphatidylglycerol (POPG), the NBD fluorescence spectra were further shifted to shorter wavelengths and exhibited increased quantum yields. The apparent partition constants were increased to 10(4)-10(5) M-1 for vesicles with 20 or 100 mol% POPG. Lateral diffusion of the peptide was measured by fluorescence recovery after photobleaching in multibilayers of POPC, POPG, POPC/POPG (4:1) and 1,2-dimyristoyl phosphatidylcholine. The lateral diffusion coefficients of the peptide in bilayers of POPC (8 x 10(-8) cm2/s at 21 degrees C) were 1.5-1.6-fold greater than those of NBD-labelled phospholipids (5 x 10(-8) cm2/s at 21 degrees C), but 1.5-1.8-fold smaller (3 x 10(-8) cm2/s in 20% POPG and at 21 degrees C) than the lipid diffusion coefficients in the negatively charged bilayers. It is concluded that the signal peptide associates with phospholipid bilayers in two different forms, which depend on the lipid charge. The experiments with POPC bilayers are well explained by a model in which the peptide partitions into the region of the phospholipid head-groups and diffuses along the membrane/water interface. If POPG is present in the membrane, electrostatic attractions between the basic residues of the peptide and the acidic lipid head-groups result in a deeper penetration of the bilayer. For this case, two models that are both consistent with the experimental data are discussed, in which the peptide either forms an oligomer of three to six partially helical membrane-spanning monomers, or inserts into the bilayer with its amphiphilic helical segment aligned parallel to the plane of the membrane and located near the head-group and outer hydrocarbon region of the bilayer.  相似文献   

14.
Gonçalves E  Kitas E  Seelig J 《Biochemistry》2005,44(7):2692-2702
Cell-penetrating peptides (CPPs) comprise a group of arginine-rich oligopeptides that are able to deliver exogenous cargo into cells. A first step in the internalization of CPPs is their binding to the cell surface, a reaction likely to involve membrane phospholipids and/or heparan sulfate proteoglycans (HSPGs). The present work characterizes the interaction of R(9), one of the most efficient CPPs, with either heparan sulfate (HS) or lipid vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG). Isothermal titration calorimetry shows that R(9) binds to HS with high affinity. Assuming that HS has n independent and equivalent binding sites for R(9), we find an association constant of 3.1 x 10(6) M(-1) at 28 degrees C. At this temperature, the reaction enthalpy is DeltaH(degrees)pep = - 5.5 kcal/mol and approximately 7 R(9) molecules bind per HS chain, which is equivalent to approximately 0.95 cationic/anionic charge ratio. Delta decreases in magnitude upon an increase in temperature, and the reaction becomes entropy-driven at higher temperatures (>or=37 degrees C). The positive heat-capacity change entailed by this reaction (DeltaC(degrees)P = +167 cal mol(-1) K(-1)) indicates the loss of polar residues on R(9)-HS binding, suggesting that hydrophobic forces play no major role on binding. Calorimetric analysis of the interaction of R(9) with POPC/POPG (75:25) vesicles reveals an association constant of 8.2 x 10(4) M(-1) at 28 degrees C. Using a surface partition equilibrium model to correct for electrostatic effects, we find an intrinsic partition constant of approximately 900 M(-1), a value that is also confirmed by electrophoretic mobility measurements. This corresponds to an electrostatic contribution of approximately 33% to the total free energy of binding. Deuterium nuclear magnetic resonance (NMR) shows no change in the headgroup conformation of POPC and POPG, suggesting that binding takes place at some distance from the plane of the polar groups. (31)P NMR indicates that the lipid bilayer remains intact upon R(9) binding. The fact that R(9) binds with greater affinity to HS than to anionic lipid vesicles makes the former molecule a more likely target in binding this CPP to the cell surface.  相似文献   

15.
Cell penetrating peptides (CPPs) are able to cross membranes without using receptors but only little information about the underlying mechanism is available. In this work, we investigate the interaction of the two arginine-rich CPPs RW9 and RL9 with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG), and POPC/POPG membranes with varying POPG content using isothermal titration calorimetry (ITC), solid-state nuclear magnetic resonance (NMR) spectroscopy, and molecular dynamics (MD) simulations. Both peptides were derived from the known CPP penetratin and it was shown previously that RW9 is able to penetrate membranes better than RL9. Overall, the results show that both RW9 and RL9 have a relatively small influence on the membrane. They increase the order of the lipids in the headgroup region and reduce order in the acyl chains indicating that they are located in the lipid/water interface. In addition, the flexibility of the membrane is slightly increased by both peptides but RW9 has a larger influence than RL9. The differences observed in the influences on POPC and POPG as well as MD simulations on the mixed POPC/POPG bilayers of 850 ns length each show that both peptides preferentially associate with and enrich the charged PG lipids almost 2fold in an area of 12 Å around the peptides. As expected, we could not observe any membrane crossing on the simulation time scale of 850 ns but observed that some peptides flipped their orientation during binding to the membrane. Interestingly, all observed flips coincided with structural changes in the peptides indicating that structural changes or flexibility might play a role during the binding of arginine-rich CPPs to membranes.  相似文献   

16.
Lu JX  Damodaran K  Blazyk J  Lorigan GA 《Biochemistry》2005,44(30):10208-10217
An 18-residue peptide, KWGAKIKIGAKIKIGAKI-NH(2) was designed to form amphiphilic beta-sheet structures when bound to lipid bilayers. The peptide possesses high antimicrobial activity when compared to naturally occurring linear antimicrobial peptides, most of which adopt an amphipathic alpha-helical conformation upon binding to the lipids. The perturbation of the bilayer by the peptide was studied by static (31)P and (2)H solid-state NMR spectroscopy using POPC and POPG/POPC (3/1) bilayer membranes with sn-1 chain perdeuterated POPC and POPG as the isotopic labels. (31)P NMR powder spectra exhibited two components for POPG/POPC bilayers upon addition of the peptide but only a slight change in the line shape for POPC bilayers, indicating that the peptide selectively disrupted the membrane structure consisting of POPG lipids. (2)H NMR powder spectra indicated a reduction in the lipid chain order for POPC bilayers and no significant change in the ordering for POPG/POPC bilayers upon association of the peptide with the bilayers, suggesting that the peptide acts as a surface peptide in POPG/POPC bilayers. Relaxation rates are more sensitive to the motions of the membranes over a large range of time scales. Longer (31)P longitudinal relaxation times for both POPG and POPC in the presence of the peptide indicated a direct interaction between the peptide and the POPG/POPC bilayer membranes. (31)P longitudinal relaxation studies also suggested that the peptide prefers to interact with the POPG phospholipids. However, inversion-recovery (2)H NMR spectroscopic experiments demonstrated a change in the relaxation rate of the lipid acyl chains for both the POPC membranes and the POPG/POPC membranes upon interaction with the peptide. Transverse relaxation studies indicated an increase in the spectral density of the collective membrane motion caused by the interaction between the peptide and the POPG/POPC membrane. The experimental results demonstrate significant dynamic changes in the membrane in the presence of the antimicrobial peptide and support a carpet mechanism for the disruption of the membranes by the antimicrobial peptide.  相似文献   

17.
The binding of the charged form of two local anesthetics, dibucaine and etidocaine, to bilayers composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) was measured simultaneously with ultraviolet spectroscopy and deuterium magnetic resonance. Because of their amphiphilic molecular structure, both drugs intercalate between the lipid molecules, increasing the surface area and imparting a positive electric charge onto the membrane. The ultraviolet (UV) binding isotherms were therefore analyzed in terms of a model which specifically took into account the bilayer expansion as well as the charge-induced concentration variations near the membrane surface. By formulating a quantitative expression for the change in surface area upon drug intercalation and combining it with the Gouy-Chapman theory, the binding of charged dibucaine and etidocaine to the lipid membrane was best described by a partition equilibrium, with surface partition coefficients of 660 +/- 80 M-1 and 11 +/- 2 M-1 for dibucaine and etidocaine, respectively (pH 5.5, 0.1 M NaCl/50 mM buffer). Deuterium magnetic resonance demonstrated further that the binding of drug changed the head-group conformation of the lipid molecules. Invoking the intercalation model, a linear variation of the deuterium quadrupole splittings of the choline segments with the surface charge density was observed, suggesting that the phosphocholine head-group may act as a 'molecular electrometer' with respect to surface charges.  相似文献   

18.
Plantaricin A (plA) is a 26-residue bacteria-produced peptide pheromone with membrane-permeabilizing antimicrobial activity. In this study the interaction of plA with membranes is shown to be highly dependent on the membrane lipid composition. PlA bound readily to zwitterionic 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) monolayers and liposomes, yet without significantly penetrating into these membranes. The presence of cholesterol attenuated the intercalation of plA into SOPC monolayers. The association of plA to phosphatidylcholine was, however, sufficient to induce membrane permeabilization, with nanomolar concentrations of the peptide triggering dye leakage from SOPC liposomes. The addition of the negatively charged phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol POPG (SOPC/POPG; molar ratio 8:2) enhanced the membrane penetration of the peptide, as revealed by (i) peptide-induced increment in the surface pressure of lipid monolayers, (ii) increase in diphenylhexatriene (DPH) emission anisotropy measured for bilayers, and (iii) fluorescence characteristics of the two Trps of plA in the presence of liposomes, measured as such as well as in the presence of different quenchers. Despite deeper intercalation of plA into the SOPC/POPG lipid bilayer, much less peptide-induced dye leakage was observed for these liposomes than for the SOPC liposomes. Further changes in the mode of interaction of plA with lipids were evident when also the zwitterionic phospholipid, 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphoethanolaminne (POPE) was present (SOPC/POPG/POPE, molar ratio 3:2:5), thus suggesting increase in membrane spontaneous negative curvature to affect the mode of association of this peptide with lipid bilayer. PlA induced more efficient aggregation of the SOPC/POPG and SOPC/POPG/POPE liposomes than of the SOPC liposomes, which could explain the attenuated peptide-induced dye leakage from the former liposomes. At micromolar concentrations, plA killed human leukemic T-cells by both necrosis and apoptosis. Interestingly, plA formed supramolecular protein-lipid amyloid-like fibers upon binding to negatively charged phospholipid-containing membranes, suggesting a possible mechanistic connection between fibril formation and the cytotoxicity of plA.  相似文献   

19.
Hedin EM  Høyrup P  Patkar SA  Vind J  Svendsen A  Hult K 《Biochemistry》2005,44(50):16658-16671
The triglyceride lipase (EC 3.1.1.3) Thermomyces lanuginosus lipase (TLL) binds with high affinity to unilamellar phospholipid vesicles that serve as a diluent interface for both lipase and substrate, but it displays interfacial activation on only small and negatively charged such vesicles [Cajal, Y., et al. (2000) Biochemistry 39, 413-423]. The productive-mode binding orientation of TLL at the lipid-water interface of small unilamellar vesicles (SUV) consisting of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG) was previously determined using electron spin resonance (ESR) spectroscopy in combination with site-directed spin-labeling [Hedin, E. M. K., et al. (2002) Biochemistry 41, 14185-14196]. In our investigation, we have studied the interfacial orientation of TLL when bound to large unilamellar vesicles (LUV) consisting of POPG, and bound to SUV consisting of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC). Eleven single-cysteine TLL mutants were spin-labeled as previously described, and studied upon membrane binding using the water soluble spin-relaxation agent chromium(III) oxalate (Crox). Furthermore, dansyl-labeled vesicles revealed the intermolecular fluorescence quenching efficiency between each spin-label positioned on TLL, and the lipid membrane. ESR exposure and fluorescence quenching data show that TLL associates closer to the negatively charged PG surface than the zwitterionic PC surface, and binds to both POPG LUV and POPC SUV predominantly through the concave backside of TLL opposite the active site, as revealed by the contact residues K74C-SL, R209C-SL, and T192C-SL. This orientation is significantly different compared to that on the POPG SUV, and might explain the differences in activation of the lipase. Evidently, both the charge and accessibility (curvature) of the vesicle surface determine the TLL orientation at the phospholipid interface.  相似文献   

20.
P M Macdonald  J Seelig 《Biochemistry》1987,26(5):1231-1240
The binding of calcium to bilayer membranes composed of mixtures, in various proportions, of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) plus 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) was investigated by using atomic absorption spectroscopy and deuterium nuclear magnetic resonance. The number of bound calcium ions, X2, was determined in the low calcium concentration range (up to 100 mM) via atomic absorption spectroscopy. Simultaneous measurements of the deuterium magnetic resonance spectra of POPC, specifically deuteriated at the alpha-methylene segment of the choline head group, revealed a linear relationship between the quadrupole splitting, delta vQ, and X2 for each particular proportion of POPC-POPG. The amount of bound calcium was then determined at much greater calcium concentrations, where the atomic absorption spectroscopy measurements were unreliable, using deuterium magnetic resonance. At low Ca2+ concentrations, the amount of bound Ca2+ increased linearly with increasing proportion of POPG, demonstrating an electrostatic contribution to Ca2+ binding. At high Ca2+ concentrations, the calcium binding isotherms exhibited saturation behavior with a maximum binding capacity of 0.5 Ca2+ and 1.0 Ca2+ per phospholipid for pure POPC and mixtures of POPC-POPG, respectively. Simultaneous deuteriation of POPG and POPC showed that both lipids remained in a fluidlike lipid bilayer at all Ca2+ concentrations tested. Any phase separation of quasi-crystalline Ca2+-POPG clusters could be excluded. The residence time of Ca2+ at an individual head group binding site was shorter than 10(-6)-10(-5) s. Thus, Ca2+ ions accumulate near the negatively charged POPG-POPC membrane surface but move freely in a "trough" of the electrical potential. The effective surface charge density, sigma, could be determined from the measured amount of bound Ca2+. Subsequently, the surface potential, psi 0, and the concentration of free Ca2+ ions at the plane of ion binding could be calculated by employing the Gouy-Chapman theory. The availability of these parameters allowed a rigorous evaluation of various models for the chemical contribution to Ca2+ binding. For mixed POPC-POPG bilayers, a simple Langmuir adsorption model yielded the best fit to the experimental data, and the binding constants were 19.5 and 18.8 M-1 for POPG contents of 20 and 50 mol %, respectively. Sodium binding was comparatively weak with a binding constant of 0.6-0.85 M-1.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号