首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The types and subunit composition of cAMP-dependent protein kinases in soluble rat ovarian extracts were investigated. Results demonstrated that three peaks of cAMP-dependent kinase activity could be resolved using DEAE-cellulose chromatography. Based on the sedimentation of cAMP-dependent protein kinase and regulatory subunits using sucrose density gradient centrifugation, identification of 8-N3[32P]cAMP labeled RI and RII in DEAE-cellulose column and sucrose gradient fractions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and Scatchard analysis of the cAMP-stimulated activation of the eluted peaks of kinase activity, the following conclusions were drawn regarding the composition of the three peaks of cAMP-dependent protein kinase activity: peak 1, eluting with less than or equal to 0.05 M potassium phosphate, consisted of the type I form of cAMP-dependent protein kinase; peak 2, eluting with 0.065-0.11 M potassium phosphate, consisted of free RI and a type II tetrameric holoenzyme; peak 3, eluting with 0.125 M potassium phosphate, consisted of an apparent RIIC trimer, followed by the elution with 0.15 M potassium phosphate of free RII. The regulatory subunits were confirmed as authentic RI and RII based upon their molecular weights and autophosphorylation characteristics. The more basic elution of the type II holoenzyme with free RI was not attributable to the ionic properties of the regulatory subunits, based upon the isoelectric points of photolabeled RI and RII and upon the elution location from DEAE-cellulose of RI and RII on dissociation from their respective holoenzymes by cAMP. This is the first report of a type II holoenzyme eluting in low salt fractions with free RI, and of the presence of an apparent RIIC trimer in a soluble tissue extract.  相似文献   

2.
The functional significance of the presence of two major (types I and II) isoforms of the cAMP-dependent protein kinase (PKA) is still enigmatic. The present study showed that peptide substrate enhanced the activation of PKA type I at low, physiologically relevant concentrations of cAMP through competitive displacement of the regulatory RI subunit. The effect was similar whether the substrate was a short peptide or the physiological 60-kDa protein tyrosine hydroxylase. In contrast, substrate failed to affect the cAMP-sensitivity of PKA type II. Size exclusion chromatography confirmed that substrate acted to physically enhance the dissociation of the RIalpha and Calpha subunits of PKA type I, but not the RIIalpha and Calpha subunits of PKA type II. Substrate availability can therefore fine-tune the activation of PKA type I by cAMP, but not PKA type II. The cAMP-dissociated RII and C subunits of PKA type II reassociated much faster than the PKA type I subunits in the presence of substrate peptide. This suggests that only PKA type II is able to rapidly reverse its activation after a burst of cAMP when exposed to high substrate concentration. We propose this as a possible reason why PKA type II is preferentially found in complexes with substrates undergoing rapid phosphorylation cycles.  相似文献   

3.
Homogeneous protein-protein interaction assays without the need of a separation step are an essential tool to unravel signal transduction events in live cells. We have established an isoform specific protein kinase A (PKA) subunit interaction assay based on bioluminescence resonance energy transfer (BRET). Tagging human Ralpha(I)-, Ralpha(II)-, as well as Calpha-subunits of PKA with Renilla luciferase (Rluc) as the bioluminescent donor or with green fluorescent protein (GFP2) as the energy acceptor, respectively, allows to directly probe PKA subunit interaction in living cells as well as in total cell extracts in order to study side by side PKA type I versus type II holoenzyme dynamics. Several novel, genetically encoded cAMP sensors and-for the first time PKA type I sensors-were generated. When C- and R-subunits are assembled to the respective holoenzyme complexes inside the cell, BRET occurs with a signal up to three times above the background. An increase of endogenous cAMP levels as well as treatment with the cAMP analog 8-Br-cAMP is reflected by a dose-dependent BRET signal reduction in cells expressing wild type proteins. In contrast to type II, the dissociation of the PKA type I holoenzyme complex was never complete in cells with maximally elevated cAMP levels. Both sensors dissociated completely upon treatment with 8-Br-cAMP after cell lysis, consistent with in vitro activation assays using holoenzymes assembled from purified PKA subunits. Interestingly, incubation of cells with the PKA antagonist Rp-8-Br-cAMPS leads to a significant BRET signal increase in cells expressing PKA type I or type II isoforms, indicating a stabilization of the holoenzyme complexes in vivo. Mutant RI subunits with reduced (hRIalpha-R210K) or abolished (hRIalpha-G200E/G324E) cAMP binding capability were studied to quantify maximal signal to noise ratios for the RI-BRET sensor. Utilizing BRET we demonstrate that PKA type II holoenzyme was rendered insensitive to beta-adrenergic receptor stimulation with isoproterenol when anchoring to the plasma membrane of COS-7 cells was disrupted by either using Ht31 peptide or by depletion of membrane cholesterol.  相似文献   

4.
A spontaneous transformant derived from a mouse lung epithelial cell line exhibited decreased cAMP-dependent protein kinase (PKA) activity. DEAE column chromatography demonstrated that this was caused by specific loss of the type I PKA isozyme (PKA I). Western immunoblot analysis indicated that indeed several mouse lung tumor-derived cell lines and spontaneous transformants of immortalized, nontumorigenic lung cell lines contained less PKA I regulatory subunit (RI) protein than normal cell lines. PKA II regulatory subunit protein differed only slightly among cell lines and showed no conspicuous trend between normal and neoplastic cells. The decrease in RI was apparently concomitant with decreased catalytic (C) subunit levels in neoplastic cells since no free catalytic subunit activity was detected by DEAE chromatography. Northern blot analysis using RI alpha and C alpha cDNA probes showed that the levels of RI alpha and C alpha mRNAs paralleled their intracellular protein concentrations; neoplastic cell lines contained significantly less RI alpha and C alpha mRNAs than the normal cell line. The decreased expression of both RI and C subunits therefore results in a net decrease of PKA I in neoplastic lung cells, an isozymic difference which may account for the differential effects of cAMP analogs on cell growth and differentiation in normal and neoplastic cells.  相似文献   

5.
Retinoylation (retinoic acid acylation) is a post-translational modification of proteins occurring in a variety of eukaryotic cell lines. There are at least 20 retinoylated proteins in the human myeloid leukemia cell line HL60 (N. Takahashi and T.R. Breitman (1990) J. Biol. Chem. 265, 19, 158-19, 162). Here we found that some retinoylated proteins may be cAMP-binding proteins. Five proteins, covalently labeled by 8-azido-[32P]cAMP which specifically reacts with the regulatory subunits of cAMP-dependent protein kinase, comigrated on two-dimensional polyacrylamide gel electrophoresis with retinoylated proteins of Mr 37,000 (p37RA), 47,000 (p47RA), and 51,000 (p51RA) labeled by [3H]retinoic acid treatment of intact cells. Furthermore, p47RA coeluted on Mono Q anion exchange chromatography with the type I cAMP-dependent protein kinase holoenzyme and p51RA coeluted on Mono Q anion exchange chromatography with the type II cAMP-dependent protein kinase holoenzyme. An antiserum specific to RI, the cAMP-binding regulatory subunit of type I cAMP-dependent protein kinase, immunoprecipitated p47RA. An antiserum specific to RII, the cAMP-binding regulatory subunit of type II cAMP-dependent protein kinase, immunoprecipitated p51RA. These results indicate that both the RI and the RII regulatory subunits of cAMP-dependent protein kinase are retinoylated. Thus, an early event in RA-induced differentiation of HL60 cells may be the retinoylation of subpopulations of both RI and RII.  相似文献   

6.
In this work firstly are reported the chromatographic analysis of cAMP dependent protein kinases present in the cytosols obtained from rat Sertoli cells and peritubular cells. In both cell types two different isoenzymes have been detected, one eluting at 40-80 mM KC1 (type I) and a second one eluting at 150-200 mM KC1 (type II). Only the type I was strongly stimulated by cAMP whereas the type II was slightly cAMP dependent both in the Sertoli cells and in the peritubular cells.  相似文献   

7.
A-kinase anchoring proteins (AKAPs) target protein kinase A (PKA) to a variety of subcellular locations. Conventional AKAPs contain a 14-18-amino acid sequence that forms an amphipathic helix that binds with high affinity to the regulatory (R) subunit of PKA type II. More recently, a group of dual specificity AKAPs has been classified on the basis of their ability to bind the PKA type I and the PKA type II isozymes. In this study we show that dual specificity AKAPs contain an additional PKA binding determinant called the RI Specifier Region (RISR). A variety of protein interaction assays and immunoprecipitation and immunolocalization experiments indicates that the RISR augments RI binding in vitro and inside cells. Cellular delivery of the RISR peptide uncouples RI anchoring to Ezrin leading to release of T cell inhibition by cAMP. Likewise, expression of mutant Ezrin forms where RI binding has been abrogated by substitution of the RISR sequence prevents cAMP-mediated inhibition of T cell function. Thus, we propose that the RISR acts in synergy with the amphipathic helix in dual specificity anchoring proteins to enhance anchoring of PKA type I.  相似文献   

8.
Conflicting reports have attributed 8-chloro-cAMP (Cl-cAMP)-mediated inhibition of tumor cell growth to either a toxic 8-chloro-adenosine (Cl-AdR) breakdown product or a Cl-cAMP-mediated decrease in ratio of Type I to Type II regulatory (R) subunits of protein kinase A (PKA). Using the MCF-7 human breast cancer and S49 mouse lymphoma cell lines as models, we show that the effects of Cl-cAMP and other cAMP analogs on growth and R subunit expression are unrelated. MCF-7 cell growth was insensitive to most analogs and inducers of cAMP, but was potently inhibited by Cl-cAMP acting through uptake and phosphorylation of its Cl-AdR breakdown product. Possible roles of adenosine receptors or P(2) purinoceptors in these Cl-cAMP-mediated growth effects were ruled out by studies with agonists and antagonists. Cholera toxin markedly decreased the ratio of Type I to Type II R subunits in MCF-7 cells without affecting growth, while growth inhibitory concentrations of Cl-cAMP or Cl-AdR had insignificant effects on this ratio. In S49 cells, where PKA activation is known to inhibit cell growth, PKA-deficient mutants retained sensitivity to both Cl-cAMP and the related 8-bromo-cAMP. Adenosine kinase (AK)-deficient S49 cells were inhibited only by higher concentrations of these 8-halogenated cAMP analogs. Of the commonly used cAMP analogs, only 8-(4-chlorophenylthio)-cAMP acted purely as a cyclic nucleotide-having no effect on PKA-deficient cells, but strongly inhibiting both wild-type and AK-deficient cells. Where growth inhibitory concentrations of most cAMP analogs reduced RI expression in the AK-deficient mutant, a functionally equivalent concentration of (N(6), O(2'))dibutyryl-cAMP maintained or increased this expression.  相似文献   

9.
The primary mediator of cAMP action in mammalian cells is cAMP-dependent protein kinase (PKA). There are two types of PKA, type I (PKA-I) and type II (PKA-II), which share a common catalytic subunit but contain distinct regulatory subunits, RI and RII, respectively. Evidence suggests that increased expression of RIalpha/PKA-I correlates with neoplastic cell growth. Here, we show that sequence-specific oligonucleotide inhibition of RIalpha expression results in inhibition of growth and modulation of cAMP signaling in cancer cells. The antisense promoted growth inhibition in a time-dependent, concentration-dependent, and sequence-dependent manner in human cancer cells in monolayer culture, and it inhibited colony formation in soft agar and tumor growth in nude mice. Among the cancer cells are LS-174T, HCT-15, and Colo-205 colon carcinoma cells; A-549 lung carcinoma cells; LNCaP prostate adenocarcinoma cells; Molt-4 leukemia cells; and Jurkat T lymphoma cells. Northern blot and immunoprecipitation analyses revealed that the growth inhibitory effect of the antisense correlated with a decrease in RIalpha expression at both the mRNA and protein levels. Pulse-chase experiments revealed that the antisense-directed inhibition of RIalpha expression resulted in compensatory changes in expression of the isoforms of R and C subunits and cAMP signaling in a cell type-specific manner. These results demonstrate that cAMP is ubiquitous in the regulation of cell growth and that the antisense oligonucleotide, which inhibits the synthesis of the RIalpha subunit of PKA, can be targeted to a single gene for treatment of cancer in a variety of cell types.  相似文献   

10.
11.
G Cadd  G S McKnight 《Neuron》1989,3(1):71-79
  相似文献   

12.
Both Ca(2+)- and cAMP-mediated second messenger cascades acutely regulate mucin secretion from human colonic epithelial cells. To better understand the cAMP-dependent regulation of mucin secretion we have characterized the complement of cAMP-dependent protein kinase (PKA) isoforms in mucus-secreting T84 cells, and determined which of these isoforms is responsible for agonist-stimulated mucin secretion. Our results show the presence of both type I and type II PKA in cells that also contain large mucin granules. Forskolin caused a rapid and sustained increase in PKA activity that reached a maximum 5-10 min following its addition. Secretion of mucin was detected 15 min following exposure to forskolin, and continued to increase for a further 15 min before reaching a plateau. Mucin secretion was also measured in the presence of combinations of site-selective cAMP analog pairs, which preferentially activate either type I or type II PKA. Similar levels of mucin secretion were observed for both type I and type II PKA-selective analog pairs. Subsequent addition of forskolin was unable to further increase mucin secretion. Thus, activation of either type I or type II PKA is able to maximally stimulate secretion of mucins from T84 human colonic epithelial cells.  相似文献   

13.
14.
Signalling through protein kinase A (PKA) triggers a multitude of intracellular effects in response to a variety of extracellular stimuli. To guarantee signal specificity, different PKA isoforms are compartmentalised by A-kinase anchoring proteins (AKAPs) into functional microdomains. By using genetically encoded fluorescent reporters of cAMP concentration that are targeted to the intracellular sites where PKA type I and PKA type II isoforms normally reside, we directly show for the first time spatially and functionally separate PKA microdomains in mouse skeletal muscle in vivo. The reporters localised into clearly distinct patterns within sarcomers, from where they could be displaced by means of AKAP disruptor peptides indicating the presence of disparate PKA type I and PKA type II anchor sites within skeletal muscle fibres. The functional relevance of such differential localisation was underscored by the finding of mutually exclusive and AKAP-dependent increases in [cAMP] in the PKA type I and PKA type II microdomains upon application of different cAMP agonists. Specifically, the sensors targeted to the PKA type II compartment responded only to norepinephrine, whereas those targeted to the PKA type I compartment responded only to α-calcitonin gene-related peptide. Notably, in dystrophic mdx mice the localisation pattern of the reporters was altered and the functional separation of the cAMP microdomains was abolished. In summary, our data indicate that an efficient organisation in microdomains of the cAMP/PKA pathway exists in the healthy skeletal muscle and that such organisation is subverted in dystrophic skeletal muscle.  相似文献   

15.
There are at least three isozymes (C alpha, C beta, and C gamma) of the mammalian catalytic (C) subunit of cAMP-dependent protein kinase (PKA) (Beebe, S., Oyen, O., Sandberg, M., Froysa, A., Hansson, V., and Jahnsen, T. (1990) Mol. Endocrinol. 4, 465-475). To compare the C gamma and C alpha isozymes, the respective cDNAs were expressed in permanently transformed Kin-8 PKA-deficient Y1 adrenal cells using the mouse metallothionein promoter. The recombinant C subunits were characterized as immunoreactive, zinc-inducible, cAMP-dependent kinase activities. In contrast to C alpha, histone was a better substrate than Leu-Arg-Arg-Ala-Ser-Leu-Gly (Kemptide) for C gamma. Furthermore, C gamma histone kinase activity was not inhibited by the protein kinase inhibitor peptide (5-24 amide), which has been widely used as a PKA-specific inhibitor. The major C gamma peak (type I) eluted from DEAE-Sepharose at a higher NaCl concentration (120 mM) than the C alpha type I eluted (70 mM). C gamma and C alpha type II eluted between 220 and 240 mM NaCl. C gamma required higher concentrations of cAMP than C alpha did for dissociation from the mutant type I holoenzyme. These differences provided a basis for the separation of the mutant RI-associated isozymes on DEAE-Sepharose. Both C alpha (41-42 kDa) and C gamma (39-40 kDa) were identified by a C subunit antibody after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot analysis. Zinc induced the PKA-mediated rounding phenotype in C gamma and C alpha clones, thereby restoring the cells to the parent Y1 adrenal cell phenotype. Collectively, these data indicate that C gamma is an active PKA C subunit but suggest that C gamma and C alpha have different protein and peptide recognition determinants.  相似文献   

16.
Control of specificity in cAMP signaling is achieved by A-kinase anchoring proteins (AKAPs), which assemble cAMP effectors such as protein kinase A (PKA) into multiprotein signaling complexes in the cell. AKAPs tether the PKA holoenzymes at subcellular locations to favor the phosphorylation of selected substrates. PKA anchoring is mediated by an amphipathic helix of 14-18 residues on each AKAP that binds to the R subunit dimer of the PKA holoenzymes. Using a combination of bioinformatics and peptide array screening, we have developed a high affinity-binding peptide called RIAD (RI anchoring disruptor) with >1000-fold selectivity for type I PKA over type II PKA. Cell-soluble RIAD selectively uncouples cAMP-mediated inhibition of T cell function and inhibits progesterone synthesis at the mitochondria in steroid-producing cells. This study suggests that these processes are controlled by the type I PKA holoenzyme and that RIAD can be used as a tool to define anchored type I PKA signaling events.  相似文献   

17.
Mammalian tissues and cell lines express two major types of cAMP-dependent protein kinase, PKA-I and PKA-II, which can be distinguished at the molecular level by the presence of either type I or type II regulatory subunits in the holoenzyme. An expression vector for the mouse type II regulatory subunit (RII alpha) was transfected into ras-transformed NIH3T3 (R3T3) cells, which contain approximately equal amounts of both holoenzymes, PKA-I and PKA-II. In RII alpha-overexpressing R3T3 cells, PKA-II levels were increased, and the level of PKA-I declined. The decrease in PKA-I was dependent on the amount of RII alpha expressed, and at high levels of RII alpha expression, PKA-I was completely eliminated. In contrast, overexpression of the type I regulatory subunit (RI alpha) did not alter PKA isozyme levels. We propose that competition between RII alpha and RI alpha for a limited pool of catalytic subunit results in preferential assembly of PKA-II and that significant amounts of PKA-I are formed only if catalytic subunit is present in excess of the RII alpha subunit. The PKA-I isozyme, which is absent in untransformed 3T3 cells, is not essential for the transformed phenotype of R3T3 cells. RII alpha-overexpressing R3T3 cells that are devoid of PKA-I continued to exhibit a transformed phenotype including anchorage-independent growth. Overexpression of RII alpha provides a genetic approach that may prove useful in demonstrating specific functions for the two PKA isozymes in cAMP-dependent signal transduction pathways.  相似文献   

18.
BackgroundActivation of protein kinase A (PKA) occurs during retinoic acid (RA)-induced granulocytic differentiation of human promyelocytic leukemia HL60 cells. It is known that the RIIα regulatory subunit of PKA, is modified by RA (retinoylated) in the early stages of differentiation. We have investigated the effects of RA on PKA during cell differentiation in order to understand the potential significance of this process in the retinoylation of RIIα subunits.MethodsImmunoblotting, immunoprecipitation, confocal microscopy, PCR, and PKA activity assays were employed for characterizing the effects of RA on PKA.ResultsWe found that RA induces intracellular mobility of RIIα and the activation of PKA in HL60 cells. Increases in RIIα levels were observed in RA-treated HL60 cells. RA treatment altered intracellular localization of the PKA subunits, RIIα and Cα, and increased their protein levels in the nuclei as detected by both immunoblotting and immunostaining analyses. Coincident with the increase in nuclear Cα, RA-treated HL60 cells showed increases in both the protein phosphorylation activity of PKA and the levels of phosphorylated proteins in nuclear fractions as compared to control cells. In addition, RIIα protein was stabilized in RA-treated HL60 cells as compared to control cells.ConclusionsThese results suggest that RA stabilizes RIIα protein and activates PKA in the nucleus, with a resultant increase in the phosphorylation of nuclear proteins.General significanceOur evidence suggests that retinoylation of PKA might contribute to its stabilization and activation and that this could potentially participate in RA's ability to induce granulocytic differentiation of HL60 cells.  相似文献   

19.
Chloride exitacross the apical membranes of secretory epithelial cells is acutelyregulated by the cAMP-mediated second messenger cascade. To betterunderstand the regulation of transepithelial chloride secretion, wehave characterized the complement of cAMP-dependent protein kinase(PKA) isoforms present in the human colonic epithelial cell line T84.Our results show that both type I and type II PKA are present in T84cells. Immunoprecipitation of8-azido-[32P]cAMP-labeledcell lysates revealed that the major regulatory subunits of PKA wereRI and RII. In addition, immunogold electron microscopy showed that RII labeling was found on membranes of thetrans Golgi network and on apicalplasma membrane. In contrast, RI was randomly distributed throughoutthe cytoplasm, with no discernible membrane association. Northern blotanalysis of T84 RNA revealed that C was the predominantly expressedcatalytic subunit. Short-circuit current measurements were performed in the presence of combinations of site-selective cAMP analog pairs topreferentially activate either PKA type I or PKA type II in intact T84cell monolayers. Maximal levels of chloride secretion (~100µA/cm2) were observed for bothtype I and type II PKA-selective analog pairs. Subsequent addition offorskolin was unable to further increase chloride secretion. Thusactivation of either type I or type II PKA is able to maximallystimulate chloride secretion in T84 colonic epithelial cells.

  相似文献   

20.
Two forms of rat liver aryl hydrocarbon receptor were separated by chromatography on DEAE-cellulose in the presence of molybdate. After labeling for 2 h at 0 degrees C, the receptor separated on the DEAE column into a flow-through peak (peak I) and a peak eluting at 80 mM KCl (peak II). It had been reported previously that exposure to high salt in the presence of molybdate caused the appearance of both 9 and 5-6 S receptor forms. After confirming this, I examined the relationship of the peak I and peak II receptors to these receptor forms. In high salt buffer containing molybdate, the peak I receptor sedimented in the 5-6 S region and the peak II receptor at 9 S. High salt buffer lacking molybdate converted both peak I and peak II receptors to forms sedimenting in the 5-6 S region. In low salt buffer containing molybdate, the peak I receptor sedimented at slightly more than 7 S and the peak II receptor at 9-10 S. Thus, the peak II receptor could be stabilized by molybdate as a 9 S form, and the peak I receptor was converted by high salt from a 7 to a 5-6 S form, despite the presence of molybdate. Most of the peak I receptor bound to a DNA-cellulose column and was eluted by high salt. The peak II receptor showed very little DNA binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号