首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
L-cysteine, D-penicillamine, and L-glutathione were oxidized to symmetrical disulfides in the presence of Cu(II)(3,5-DIPS)2 and air-oxygen at physiologic pH, 7.3. Air-oxygen caused the oxidation of thiol reduced copper, Cu(I), to Cu(II), as evidenced by expected spectrophotometric changes in these reaction mixtures. L-cysteine, D-penicillamine, and L-glutathione formed mixed disulfides and TNB with the addition of DTNB to solutions of these thiols. The observed order of reactivity for these thiols with DTNB was: L-cysteine greater than D-penicillamine greater than L-glutathione. Surprisingly, Cu(II)(3,5-DIPS)2 converted these mixed disulfides to their symmetrical disulfides and DTNB, and although the initial conversion rate was rapid, complete conversion required more than two hours. These observations suggest caution with regard to the spectrophotometric determination of thiols immediately after the addition of Ellman's reagent. These results also clarify an earlier report concerning the oxidation of thiols by Cu(II)(o-phenanthroline)2 and offer caution with regard to the determination of thiols using DTNB in the presence of copper complexes. Spectrophotometric data are provided in support of the suggestion that analysis of plasma or cellular samples for thiols be done in the absence of copper(II) complexes to avoid false negative results.  相似文献   

2.
Incubation of the material secreted by activated platelets leads to the formation of disulfide-linked dimers and multimers of one of the proteins, thrombospondin. To determine whether these complexes formed as a result of thiol-disulfide exchange (no change in the number of thiols) or of oxidation of thiols (a decrease in the number of thiols), the number of thiols in TSP was measured during formation of multimers. The number of thiols increased from about 3/mol to 4.8/mol. The half-time for the disappearance of monomers of thrombospondin was fourfold greater than the half-time for appearance of new thiols. The appearance of new thiols, as well as the formation of multimers, was inhibited by Ca2+. The appearance of new thiols was reversible; addition of Ca2+ reversed the process, and at pH 8, but not at pH 6 or 7, the appearance of new thiols spontaneously reversed. No new thiols formed during incubation of partially purified thrombospondin or after the supernatant solution had been treated with activated thiol-Sepharose to remove reactive thiol compounds. It is concluded that thrombospondin has a disulfide bond that is unstable in the absence of Ca2+. It can be attacked by a thiol of another molecule of thrombospondin to form disulfide-linked multimers, by a thiol of the same molecule of thrombospondin to generate isomerization of disulfide bonds or, as observed in this study, by another secreted thiol compound to give a mixed disulfide and a new thiol.  相似文献   

3.
4.
The skeletal muscle Ca(2+) release channel/ryanodine receptor (RyR1) is a prototypic redox-responsive ion channel. Nearly half of the 101 cysteines per RyR1 subunit are kept in a reduced (free thiol) state under conditions comparable with resting muscle. Here we assessed the effects of physiological determinants of cellular redox state (oxygen tension, reduced (GSH) or oxidized (GSSG) glutathione, and NO/O(2) (released by 3-morpholinosydnonimine)) on RyR1 redox state and activity. Oxidation of approximately 10 RyR1 thiols (from approximately 48 to approximately 38 thiols/RyR1 subunit) had little effect on channel activity. Channel activity increased reversibly as the number of thiols was further reduced to approximately 23/subunit, whereas more extensive oxidation (to approximately 13 thiols/subunit) inactivated the channel irreversibly. Neither S-nitrosylation nor tyrosine nitration contributed to these effects. The results identify at least three functional classes of RyR1 thiols and suggest that 1) the channel may be protected from oxidation by a large reservoir of functionally inert thiols, 2) the channel may be designed to respond to moderate oxidative stress by a change in activation setpoint, and 3) the channel is susceptible to oxidative injury under more extensive conditions.  相似文献   

5.
The fluorescent reagent, S-mercuric N-dansyl-cysteine, reacts specifically with thiols of the purified Ca2+-ATPase of the sarcoplasmic reticulum, producing an increase of fluorescence of fluorescence intensity at 500 nm (lambda ex = 335 nm). The reaction is stoichiometric, and the increase of the fluorescence intensity is proportional to the number of blocked thiols. Twelve reactive thiols per 10(5) daltons of ATPase peptide fall into roughly three classes. Blocking of the most reactive thiol entails little inhibition of enzyme activity. Blocking of the five thiols reacting next (intermediate class) results in almost complete inhibition of both phosphorylated intermediate formation and ATP hydrolysis. The second order rate constants of the reaction of thiols have been determined by stopped flow studies. The most reactive thiol and the six least reactive thiols can each be treated as a single class with respect to the rate constant; five thiols of intermediate reactivity appear to have different rate constants (k2, k3, ..k6). Of these constants, k1, corresponding to the most reactive thiol, does not change with [Ca2+]. Upon increasing [Ca2+] from 10(-9) to 10(-5) M, k2 increase and k7-12 decreases; the changes roughly parallel the activation of ATPase activity and the Ca2+ binding to the high affinity alpha sites (Ikemoto, N. (1975) J. Biol. Chem. 250, 7219-7224). Upon further increase of [Ca2+] k2 decreases and k7-12 increase, in parallel with the inhibition of ATPase activity and with the Ca2+ binding to the low affinity gamma sites.  相似文献   

6.
Many studies have examined the effects of thiol compounds upon cells in culture (e.g., upon signal transduction and regulation of gene expression), but few have considered how thiols can interact with cell culture media. A wide range of thiols (cysteine, GSH, N-acetylcysteine, gamma-glutamylcysteine, cysteinylglycine, cysteamine, homocysteine) were found to interact with three commonly used cell culture media (RPMI, MEM, DMEM) to generate hydrogen peroxide with complex concentration-dependencies. Thiols added to these media rapidly disappeared, although less H(2)O(2) was generated on a molar basis than the amount of thiol lost. Studies on cellular effects of thiols, especially those on redox regulation of gene expression or protein function, need to take into account that thiols are rapidly lost, and that their oxidation generates H(2)O(2), which can have multiple concentration-dependent effects on cell metabolism.  相似文献   

7.
E Reisler  M Burke  W F Harrington 《Biochemistry》1977,16(24):5187-5191
14C-Labeled fluorodinitrobenzene and N-ethylmaleimide have been used as chemical probes of the conformational states of myosin induced by the binding of MgADP and MgATP. The results indicate that in the high-energy conformation, MMgADP-Pi, the essential thiols are protected from modification but their diminished reactivity does not result from depletion of the reagent by reaction at nonessential thiols. The binding of MgADP to myosin exposes the essential thiols as reflected by an increased rate of their modification. The influence of the divalent cations Mg2+ and Ca2+ on the conformation of the M species has also been investigated. By monitoring the incorporation of fluorodinitrobenzene, the conformations of the M state in the presence of these cations can be clearly discerned.  相似文献   

8.
Various thiols exert non-specific effects on the activity of soluble guanylate cyclase under aerobic conditions. We studied the effects of thiols under anaerobic conditions (pO2 less than 6 Torr) on soluble guanylate cyclase, purified from bovine lung. Reduced glutathione stimulated the enzyme concentration-dependently with half-maximal enzyme stimulation at a concentration of about 0.5 mM. The extend of maximal enzyme stimulation (up to 80-fold) was comparable with the activation by NO-containing substances. The activation by glutathione was additive with the effect of sodium nitroprusside. Cysteine and various other thiols increased the enzyme activity 20-fold and 2- to 5-fold, respectively. The stimulatory effect of these thiols was not related to their reducing potency. Activation of soluble guanylate cyclase by glutathione was dose-dependently reduced in the presence of other thiols (cysteine greater than oxidized glutathione greater than S-methyl glutathione). Under aerobic conditions or with Mn-GTP as substrate, the effect of glutathione on soluble guanylate cyclase was suppressed. The results suggest a specific role for glutathione in the regulation of soluble guanylate cyclase activity and a modulation of this effect by redox reactions and other intracellular thiols.  相似文献   

9.
The extent of conversion of supercoiled pBR322 plasmid DNA to the open circular and linear forms can be measured by HPLC on a Waters Gen Pak FAX column following in vitro gamma irradiation of the DNA. This radiation effect has proven to be useful for the study of the radioprotection of DNA by thiols and other drugs. This system was used with gamma irradiation in air at pH 7.0 and physiological ionic strength to compare radioprotection by a series of thiols, disulfides, and thioethers, all having approximately 10(8) s-1 effective hydroxyl radical scavenging rate (10 mm dm-3 drug) and having net charge (Z) ranging from -2 to +3. All sulfur compounds exhibited substantial protection due to scavenging of hydroxyl radicals in bulk solution but thiols exhibited a 24-fold variation in relative ability to protect the plasmid DNA from strand breaks, as assessed from the dose-response curves: mercaptosuccinate (Z = -2), 0.53; GSH (Z = -1), 0.67; 3-mercaptopropionate (Z = -1) 0.80; mercaptoethanol (Z = 0), 1.00; dithiothreitol (Z = 0), 1.5; cysteamine (Z = +1), 3.7; N-(2-mercaptoethyl)-1,3-diaminopropane (WR-1065, Z = +2), 6.7; N1-(2-mercaptoethyl)spermidine (WR-35980, Z = +3), 12. Comparison of these results with those obtained using disulfide and thioether radioprotectors indicated that local scavenging of hydroxyl radicals near DNA increases slightly with Z, apparently as a result of variations in thiol concentration near DNA, but this accounts for only a small fraction of the change with Z found for cationic thiols. The marked increase in protection found for cationic thiols was attributed to chemical repair of DNA radicals and was in accord with predictions based upon recently measured rates for chemical repair of DNA radicals and was in accord with predictions based upon recently measured rates for chemical repair of pBR322 radicals. It is concluded that chemical repair of DNA radicals by anionic thiols does not compete with the oxygen fixation reaction in air and that protection by these thiols occurs primarily via the scavenging of hydroxyl radicals. However, chemical repair of DNA radicals is significantly enhanced by counterion condensation for cationic thiols and becomes a significant factor in their ability to protect DNA against radiation damage under aerobic conditions.  相似文献   

10.
The modification of Escherichia coli citrate synthase (citrate oxaloacetatelyase(pro-3S-CH2.COO- leads to acetyl-CoA, EC 4.1.3.7) with 5,5'-dithiobis-(2-nitrobenzoic acid) has been investigated. (1) In low ionic strength (20 mM Tris.HCl, pH 8.0): (A) Eight thiol groups per tetramer of the native enzyme reacted with Nbs2. (b) Two of the eight accessible thiols were modified rapidly with the loss of 26% enzyme activity but with no change in the NADH inhibition. The remaining six were modified more slowly, resulting in a further 60% loss of activity and complete densensitization to NADH. (c) The 2nd-order rate constant for the modification of the rapidly reacting thiols is 2.5.10(4) M-1.min-1. At the reagent concentrations used (0.1 to 0.2 mM) the modification of the six thiols in the slow kinetic set appeared to be 1st-order; at 0.1 mM dithionitrobenzoic acid their rate of modification was approximately 30 times slower than the thiols in the fast kinetic set. (2) In high ionic strength (20 mM Tris.HCl, pH 8.0, 0.1 M KCl): (a) Four thiol groups were modified in a single kinetic set and it appeared that these thiols are four of the six slowly modified in the absence of KCl. (b) The modification resulted in 70% loss of enzyme activity and complete loss of NADH inhibition. (3) From the kinetic analysis it is proposed that the four thiol groups accessible to dithionitrobenzoic acid in the absence and presence of 0.1 M KCl are those involved in the response of NADH. Modification of any one of these four groups produced no reduction in the inhibition; instead, loss of NADH sensitivity was coincident with the appearance of tetrameric protein possessing three substituted thiols, whereas enzyme with one or two modified groups was still fully inhibited by NADH.  相似文献   

11.
Newcastle disease virus (NDV) fusion (F) protein directs membrane fusion, which is required for virus entry and cell-cell fusion. We have previously shown that free thiols are present in cell surface-expressed NDV F protein and that blocking the production of free thiols by thiol-disulfide exchange inhibitors inhibited the membrane fusion mediated by F protein (J Virol. 81:2328-2339, 2007). Extending these observations, we evaluated the role of the overexpression of two disulfide bond isomerases, protein disulfide isomerase (PDI) and ERdj5, in cell-cell fusion mediated by NDV glycoproteins. The overexpression of these isomerases resulted in significantly increased membrane fusion, as measured by syncytium formation and content mixing. The overexpression of these isomerases enhanced the production of free thiols in F protein when expressed without hemagglutination-neuraminidase (HN) protein but decreased free thiols in F protein expressed with HN protein. By evaluating the binding of conformation-sensitive antibodies, we found that the overexpression of these isomerases favored a postfusion conformation of surface-expressed F protein in the presence of HN protein. These results suggest that isomerases belonging to the PDI family catalyze the production of free thiols in F protein, and free thiols in F protein facilitate membrane fusion mediated by F protein.  相似文献   

12.
Thiol oxidation by hypochlorous acid and chloramines is a favorable reaction and may be responsible for alterations in regulatory or signaling pathways in cells exposed to neutrophil oxidants. In order to establish the mechanism for such changes, it is necessary to appreciate whether these oxidants are selective for different thiols as compared with other scavengers. We have measured rate constants for reactions of amino acid chloramines with a range of thiols, methionine, and ascorbate, using a combination of stopped-flow and competitive kinetics. For HOCl, rate constants are too fast to measure directly by our system and values relative to reduced glutathione were determined by competition with methionine. For taurine chloramine, the rate constants for reaction with 5-thio-2-nitrobenzoic acid, GSH, methionine, and ascorbate at pH 7.4 were 970, 115, 39, and 13 M(-1) s(-1), respectively. Values for 10 thiols varied by a factor of 20 and showed an inverse relationship to the pK(a) of the thiol group. Rate constants for chloramines of glycine and N-alpha-acetyl-lysine also showed these relationships. Rates increased with decreasing pH, suggesting a mechanism involving acid catalysis. For hypochlorous acid, rates of reaction with 5-thio-2-nitrobenzoic acid, GSH, cysteine, and most of the other thiols were very similar. Relative reactivities varied by less than 5 and there was no dependence on thiol pK(a). Chloramines have the potential to be selective for different cellular thiols depending on their pK(a). For HOCl to be selective, other factors must be important, or its reactions could be secondary to chloramine formation.  相似文献   

13.
Eu et al., reported that O2 dynamically controls the redox state of 6-8 out of 50 thiols per skeletal ryanodine receptor (RyR1) subunit and thereby tunes the response of Ca2+-release channels to authentic nitric oxide (NO) [J.P. Eu, J. Sun, L. Xu, J.S. Stamler, G. Meissner, The skeletal muscle calcium release channel: coupled O2 sensor and NO signaling functions, Cell 102 (2000) 499-509]. A role for O2 was based on the observation that RyR1 can be activated by submicromolar NO at physiological ( approximately 10 mmHg) but not ambient (approximately 150 mmHg) pO2. At ambient pO2, these critical thiols were oxidized but incubation at low pO2 reset the redox state of these thiols, closed RyR1 channels and made these thiols available for nitrosation by low NO concentrations. Eu et al., postulated the existence of a redox/O2sensor that couples channel activity to NO and pO2 and explained that "the nature of the 'redox/O2 sensor' that couples channel activity to intracellular redox chemistry is a mystery". Here, we re-examined the effect of pO2 on RyR1 and find that incubation of RyR1 at low pO2 did not alter channel activity and NO (0.5-50 microM) failed to activate RyR1 despite a wide range of pO2 pre-incubation conditions. We show that low levels of NO do not activate RyR1, do not reverse the inhibition of RyR1 by calmodulin (CaM) even at physiological pO2. Similarly, the pre-incubation of SR vesicles in low pO2 (for 10-80 min) did not inhibit channel activity or sensitization of RyR1 to NO. We discuss the significance of these findings and propose that caution should be taken when considering a role for pO2 and nitrosation by NO as mechanisms that tune RyRs in striated muscles.  相似文献   

14.
S-nitrosation of mitochondrial proteins has been proposed to contribute to the pathophysiological interactions of nitric oxide (NO) and its derivatives with mitochondria but has not been shown directly. Furthermore, little is known about the mechanism of formation or the fate of these putative S-nitrosothiols. Here we have determined whether mitochondrial membrane protein thiols can be S-nitrosated on exposure to free NO from 3,3-bis(aminoethyl)-1-hydroxy-2-oxo-1-triazene (DETA-NONOate) by interaction with S-nitrosoglutathione or S-nitroso-N-acetylpenicillamine (SNAP) and by the NO derivative peroxynitrite. S-Nitrosation of protein thiols was measured directly by chemiluminescence detection. S-Nitrosoglutathione and S-nitroso-N-acetylpenicillamine led to extensive protein thiol oxidation, with about 30% of the modified protein thiols persistently S-nitrosated. In contrast, there was no protein thiol oxidation or S-nitrosation on exposure to 3,3-bis (aminoethyl)-1-hydroxy-2-oxo-1-triazene. Peroxynitrite extensively oxidized protein thiols but produced negligible amounts of S-nitrosothiols. Therefore, mitochondrial membrane protein thiols are S-nitrosated by preformed S-nitrosothiols but not by NO or by peroxynitrite. These S-nitrosated protein thiols were readily reduced by glutathione, so S-nitrosation will only persist when the mitochondrial glutathione pool is oxidized. Respiratory chain complex I was S-nitrosated by S-nitrosothiols, consistent with it being an important target for S-nitrosation during nitrosative stress. The S-nitrosation of complex I correlated with a significant loss of activity that was reversed by thiol reductants. S-Nitrosation was also associated with increased superoxide production from complex I. These findings point to a significant role for complex I S-nitrosation and consequent dysfunction during nitrosative stress in disorders such as Parkinson disease and sepsis.  相似文献   

15.
Protein cysteine thiols can be divided into four groups based on their reactivities: those that form permanent structural disulfide bonds, those that coordinate with metals, those that remain in the reduced state, and those that are susceptible to reversible oxidation. Physicochemical parameters of oxidation-susceptible protein thiols were organized into a database named the Balanced Oxidation Susceptible Cysteine Thiol Database (BALOSCTdb). BALOSCTdb contains 161 cysteine thiols that undergo reversible oxidation and 161 cysteine thiols that are not susceptible to oxidation. Each cysteine was represented by a set of 12 parameters, one of which was a label (1/0) to indicate whether its thiol moiety is susceptible to oxidation. A computer program (the C4.5 decision tree classifier re-implemented as the J48 classifier) segregated cysteines into oxidation-susceptible and oxidation-non-susceptible classes. The classifier selected three parameters critical for prediction of thiol oxidation susceptibility: (1) distance to the nearest cysteine sulfur atom, (2) solvent accessibility, and (3) pKa. The classifier was optimized to correctly predict 136 of the 161 cysteine thiols susceptible to oxidation. Leave-one-out cross-validation analysis showed that the percent of correctly classified cysteines was 80.1% and that 16.1% of the oxidation-susceptible cysteine thiols were incorrectly classified. The algorithm developed from these parameters, named the Cysteine Oxidation Prediction Algorithm (COPA), is presented here. COPA prediction of oxidation-susceptible sites can be utilized to locate protein cysteines susceptible to redox-mediated regulation and identify possible enzyme catalytic sites with reactive cysteine thiols.  相似文献   

16.
The thiol oxidant diazene dicarboxylic acid bis [N,N-dimethylamide] (diamide) is known to reversibly activate K-Cl cotransport in sheep red blood cells [1]. Although the detailed mechanism of activation is unknown, functional thiols at the membrane or at the cytoplasmic level are recognized as important. To search for membrane bound thiols involved in the regulation of K-Cl cotransport, sheep red cells were first exposed to diamide at concentrations activating K-Cl cotransport, and then to the alkylating agent N-ethylmaleimide (NEM) in order to block non-oxidized thiols. White ghosts, prepared by osmotic lysis from these cells, were again treated with NEM followed by reduction of the diamide-induced dithiols with dithio-threitol (DTT) concentrations known to reverse the diamide-induced K-Cl flux [1]. Maximum 3H-NEM incorporation into the DTT-reduced thiols occurred at 50 M DTT. Saturation labelling by 3H-NEM of about 2 × 104 diamide-protected thiols/cell occurred at 25 M NEM. Diamide protected about 0.1% of all membrane thiols chemically determined earlier [2]. Membranes from high K (HK) and low K (LK) sheep red cells did not differ significantly in the number of diamide-protected thiols, and polyacrylamide gels revealed a similar protein distribution of 3H-NEM-labelled thiols. Since diamide is known to stimulate K-Cl flux in LK cells ten times more than in HK cells this finding is consistent with the hypothesis of a cytoplasmic control effecting different K-Cl flux activities in the membranes of the two cation genotypic red blood cells.  相似文献   

17.
18.
Certain cultivars of some crops, including durum wheat (Triticum durum Desf.), have a propensity to accumulate cadmium in the grain. In the 1980s, a Canadian wheat breeding program generated five pairs of near-isogenic lines of durum wheat that vary in cadmium-accumulation. Within each pair, one member accumulates twofold to threefold higher concentrations of cadmium in the shoot and grain. However, the physiological explanation for the high-low phenotype is unknown. We studied correlations between concentrations of cadmium and non-protein thiols, including phytochelatins, in these five pairs of near-isogenic lines to test the hypothesis that differential retention of cadmium-binding complexes in the root would explain the phenotype. The expected high-low pattern of cadmium accumulation was found in three of the pairs. In one pair, cadmium was positively correlated with cysteine and glutathione in the roots and with phytochelatins 2 and 4 in the shoots but in another pair cadmium was strongly negatively correlated with phytochelatins 2 and 4 in the shoots and unrelated to cysteine or glutathione. No correlations between concentrations of cadmium and the non-protein thiols were found in the third pair or in the remaining two pairs. The production of phytochelatins is a well-described response to cadmium but the lack of consistent correlation between cadmium and non-protein thiols in these five near-isogenic lines indicates that complexation with non-protein thiols does not explain differential translocation of cadmium in durum wheat.  相似文献   

19.
Reversible oxidation on proteins of vicinal thiols to form intraprotein disulfides is believed to be an important means by which redox sensitivity is conferred on cellular signaling and metabolism. Affinity chromatography using immobilized phenylarsine oxide (PAO), which binds preferentially to vicinal thiols over monothiols, has been used in very limited studies to isolate the fraction of cellular proteins that exhibit reversible oxidation of vicinal thiols to presumed disulfide bonds. A challenge to the use of PAO-affinity chromatography for isolation of readily oxidizable vicinal thiol proteins (VTPs) has been the lack of a disulfide reducing agent that reverses oxidation of the PAO-binding protein thiols and maintains these in the reduced state necessary to bind PAO but does not also compete with the VTPs for binding to the immobilized PAO. The present study demonstrates that the capture from a detergent-soluble rat brain extract of VTPs by PAO-affinity chromatography was improved greatly by use of the reducing agent tris(2-carboxyethyl)-phosphine which, unlike more traditional disulfide-reducing agents, does not contain a thiol group. Moreover, we show that, while a substantial fraction of total brain proteins contain PAO-binding thiols, only a fraction of these were readily and reversibly oxidized. The two most abundant of these redox-active proteins were identified as albumin and triose phosphate isomerase (TPI). We propose that TPI is a candidate intracellular redox receptor protein. The improved PAO-affinity method detailed here should enable the discovery of lower abundance novel redox-active regulatory proteins.  相似文献   

20.
The free thiols of platelet thrombospondin (TSP) were derivatized with labeled N-ethylmaleimide (NEM) or iodoacetamide (IAM). When Ca2+ was chelated with EDTA, 2.9 mol of NEM or 2.6 mol of IAM reacted/mol of native TSP. No additional thiols were found after denaturation with urea. Since TSP has three apparently identical polypeptide chains, this suggests one free thiol/polypeptide chain. Ca2+ protected all of the thiols from reaction with IAM. In Ca2+ about half the thiols reacted normally with NEM and the others were unreactive, indicating that the thiols of TSP are not identical. The number of reactive thiols as a function of [Ca2+] revealed a sigmoidal curve with a transition midpoint of 207 microM. The ability of analogs of NEM to compete for derivatization of the thiols with labeled NEM was greater with larger, more hydrophobic agents. Gel electrophoretic separation of labeled TSP that had been partially digested with thrombin and trypsin indicated that some of the label was in the C-terminal tryptic fragment but that most was in the adjacent trypsin-sensitive region. After cyanogen bromide cleavage of the labeled and reduced protein, four labeled fractions were obtained from a gel filtration column. With subsequent combinations of tryptic digestion and reversed-phase high performance liquid chromatography, labeled peptides were purified from these four fractions, and the amino acid sequences were determined. Twelve labeled cysteines were identified, each with a specific radioactivity less than that of the thiol labeling reagent, indicating that only a fraction of that cysteine in a population of TSP molecules was a free thiol at the time of derivatization. While 2 labeled cysteines are in the non-repeating C-terminal portion of the molecule, the other 10 labeled cysteines are in the adjacent trypsin-sensitive type 3 repeats proposed (Lawler, J., and Hynes, R. O. (1986) J. Cell. Biol. 103, 1635-1648) as the calcium-binding region of the molecule. The disulfide bonds most sensitive to reduction by dithioerythritol were also stabilized by Ca2+, implying location in the Ca2(+)-sensitive part of the molecule. It is proposed that one equivalent of free thiol/polypeptide chain is distributed among 12 different cysteine residues through an intramolecular thioldisulfide isomerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号