首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Binding studies of the interaction of immobilized 1alpha- and 17alpha-aminoalkyl derivatives of 5alpha-dihydrotestosterone (DHT) with purified N-deglycosylated homodimeric human sex hormone-binding globulin (SHBG) were performed using a surface plasmon resonance biosensor. These 1alpha- and 17alpha-derivatives with spacers of appropriate lengths between the amine function and the steroid ring skeleton enabled privileged, sterically undisturbed, interactions of either the 17- or 3-characteristic functional groups of DHT with SHBG. The association constants (K(a)1) for the binding of these immobilized DHT derivatives to the first binding site of SHBG, determined by SPR measurements, were 0.16 x 10(7) M(-1) for 17alpha-aminopropyl-17beta-hydroxy-5alpha-androstan-3-one (1), 1.64 x 10(7) M(-1) for 17alpha-aminocaproyl-17beta-hydroxy-5alpha-androstan-3-one (2), and 1.2 x 10(8) M(-1) for 1alpha-aminohexyl-17beta-hydroxy-5alpha-androstan-3-one (3). These values were compared with global K(a) data for the corresponding nonimmobilized DHT derivatives from equilibrium measurements using competitions with a tritiated testosterone tracer: the K(a) values were 1.25 x 10(7) M(-1) for 1, 1.50 x 10(7) M(-1) for 2, and 140 x 10(7) M(-1) for 3, confirming a remarkably high binding affinity of this latter compound for SHBG. A global fitting analysis of the biosensor data revealed that the interaction of the three immobilized steroids with SHBG was best described by a kinetic model assuming two structurally independent binding sites. This hypothesis of a bivalent binding model was also directly suggested by a dual fluorescent signal observed by the flow cytometry analysis of SHBG immobilized as a hybrid complex binding simultaneously two 1alpha-aminohexyl DHT ligands, one formed by 3, covalently coupled to phycoerythrin-labeled latex microspheres, and the other by the same DHT derivative, coupled to a fluorescein derivative (4).  相似文献   

2.
Rat ventral prostate and liver were investigated for the binding in vitro to particulate fractions and for the metabolism of 5 alpha-androstane-3 beta, 17 beta-diol. Comparative investigations were carried out on the metabolism of 5 alpha-androstane-3 alpha, 17 beta-diol. Preparations of the liver were investigated in order to establish the organ specificity of the method. In the prostate, the bulk of the metabolites of 5 alpha-androstane-3 beta, 17 beta-diol was present as steroids of high polarity. Of the less polar metabolites, 17 beta-hydroxy-5 alpha-androstan-3-one, 3 beta-hydroxy-5 alpha-androstan, 17-one and 5 alpha-androstane-3 alpha, 17 beta-diol were detectable. The binding of a 5 alpha-androstane-3 beta, 17 beta-diol to mitochondria and microsomes was unspecific. In the liver, among the less polar metabolites, 3 beta-hydroxy-5 alpha-androstan-17-one was the main metabolite, and the binding was unspecific. The main metabolite in the prostate homogenate of 5 alpha-androstane-3 alpha, 17 beta-diol was 17 beta-hydroxy-5 alpha-androstan-3-one. The portion of highly polar steroids was very low. The portion of unmetabolized hormone was distributed almost equally among the different cell preparations except the nuclei, in which 17 beta-hydroxy-5 alpha-androstan-3-one was higher and 5 alpha-androstane-3 alpha, 17 beta-diol was lower than in the remaining cell fractions.  相似文献   

3.
The four possible isomers 16beta-hydroxymethyl-5alpha-androstane-3beta,17beta-diol 1, 16alpha-hydroxymethyl-5alpha-androstane-3beta,17beta-diol 2, 16beta-hydroxymethyl-5alpha-androstane-3beta,17alpha-diol 3 and 16alpha-hydroxymethyl-5alpha-androstane-3beta,17alpha-diol 4 with proven configuration were converted into the corresponding 16beta-methyl-5alpha-androstane-3beta,17beta-diol 5, 16alpha-methyl-5alpha-androstane-3beta,17beta-diol 6, 16beta-methyl-5alpha-androstane-3beta,17alpha-diol 7, 16alpha-methyl-5alpha-androstane-3beta,17alpha-diol 8, furthermore into the 16beta-methyl-17beta-hydroxy-5alpha-androstane-3-one 13, 16alpha-methyl-17beta-hydroxy-5alpha-androstan-3-one 14, 16beta-methyl-17alpha-hydroxy-5alpha-androstan-3-one 15 and 16alpha-methyl-17alpha-hydroxy-5alpha-androstan-3-one 16. The steric structures of the resulting epimers were determined by means of 1H-, and 13C-NMR spectroscopy. In this way, comparison was possible with the C-16 epimers 5, 6 and 13, 14 prepared earlier by a different route, and the series of isomers could be completed with the steric structures of 16beta-methyl-17alpha-hydroxy-5alpha-androstan-3beta-ol 7 and 16alpha-methyl-17alpha-hydroxy-5alpha 8 and with their 3-keto derivatives 15 and 16. The relative binding affinities of the 16-methyl-5alpha-androstane-3beta,17-diols 5, 6, 7, 8 and 17-hydroxy-16-methyl-5alpha-androstan-3-ones 13, 14, 15, 16 were studied. The introduction of a 16-methyl substituent into 5alpha-androstane molecules substantially decreases the binding affinity to the androgen receptor and 16alpha-methyl derivatives were always bound more weakly than the 16beta-methyl isomers.  相似文献   

4.
Before including the detection of the methyl-5 alpha-dihydrotestosterones mesterolone (1 alpha-methyl-17 beta-hydroxy-5 alpha-androstan-3-one) and drostanolone (2 alpha-methyl-17 beta-hydroxy-5 alpha-androstan-3-one) in doping control procedures, their urinary metabolites were characterized by gas chromatography/mass spectrometry. Several metabolites were found after enzymatic hydrolysis and conversion of the respective metabolites to their trimethylsilyl-enol-trimethylsilyl ether derivatives. The major metabolites of mesterolone and drostanolone were identified as 1 alpha-methyl-androsterone and 2 alpha-methyl-androsterone, respectively. The parent compounds and the intermediate 3 alpha,17 beta-dihydroxysteroid metabolites were detected as well. The reduction into the corresponding 3 beta-hydroxysteroids was a minor metabolic pathway. All metabolites were found to be conjugated to glucuronic acid.  相似文献   

5.
B J Danzo  B C Eller 《Steroids》1984,44(5):435-445
We examined the influences of steroids present in the epididymis on androgen metabolism by epididymal tissue and on the binding of androgen metabolites to the epididymal androgen receptor in castrated adult rabbit epididymides under in vitro conditions. The conversion of [3H]testosterone to [3H]17 beta-hydroxy-5 alpha-androstan-3-one (5 alpha-DHT) and to [3H]5 alpha-androstane-3 alpha (beta), 17 beta-diol was inhibited by unlabeled steroids in the following manner progesterone greater than testosterone greater than estradiol. Unlabeled 5 alpha-DHT did not inhibit [3H]testosterone metabolism indicating that product inhibition is not an important regulatory event. The antiandrogen cyproterone acetate did not inhibit the formation of 5 alpha-reduced metabolites of [3H]testosterone. All of the compounds used inhibited androgen binding to the classically defined cytoplasmic and nuclear androgen receptor.  相似文献   

6.
The retro steroids 17beta-hydroxy-5beta,9beta,10alpha-androstan-3-one and 5beta,9beta,10alpha-androstane-3,17-dione were good substrates for cortisone reductase in the presence of NADH, and the products corresponded to the respective 3beta-hydroxy compounds, in which the 3beta-hydroxyl group is axial and the absolute configuration is 3S. The analogous natural steroids 17beta-hydroxy-5beta,9alpha,10beta-androstan-3-one and 5beta,9alpha,10beta-androstane-3,17-dione were very poor substrates, and gave the corresponding 3alpha(equatorial,3R)-hydroxy compounds, and, in the latter case, also an appreciable amount of 3beta(axial, 3S)-hydroxy-5beta,9alpha,10beta-androstan-17-one. The natural steroids 17beta-hydroxy-5alpha,9alpha,10beta-androstan-3-one and 5alpha,9alpha,10beta-androstane-3,17-dione were better substrates than the retro steroid 17beta-hydroxy-5alpha,9beta,10alpha-androstan-3-one, but were not such good substrates as the retro steroids 17beta-hydroxy-5beta,9beta,10alpha-androstan-3-one and 5beta,9beta,10alpha-androstane-3,17-dione. Unlike these retro steroid 5beta,9beta,10alpha-androstan-3-ones, the natural steroids 17beta-hydroxy-5alpha,9alpha,10beta-androstan-3-one and 5alpha,9alpha,10beta-androstane-3,17-dione gave the corresponding 3alpha(axial,3R)-hydroxy compounds. The retro steroid 17beta-hydroxy-5alpha,9beta,10alpha-androstan-3-one was not a good substrate, and the product of reaction corresponded to the 3alpha(axial,3R)-hydroxy compound. The nature of substrate recognition by this enzyme is discussed in the light of these structure-activity relationships.  相似文献   

7.
Significant metabolism of 5 alpha-androstane-3 beta,17 beta-diol to 17 beta-hydroxy-5 alpha-androstan-3-one was recorded in several tissues and organs from rats and humans. This bioconversion was further investigated in rat testis homogenates. 5 alpha-Androstane-3 beta,17 beta-diol was readily metabolized to 17 beta-hydroxy-5 alpha-androstan-3-one with NAD and/or NADP added as cofactors. When a NADPH generating system was included in the incubation, 5 alpha-androstane-3 beta,17 beta-diol was metabolized to 5 alpha-androstan-3 alpha,17 beta-diol. Only small amounts of 17 beta-hydroxy-5 alpha-androstan-3-one accumulated under the latter condition.  相似文献   

8.
Based on histological criteria, Kingsley and Bogdanove (3) reported that the benzoate ester of 17beta-hydroxy-5alpha-androstan-3-one (5alpha-DHT), unlike testosterone propionate, is unable to induce vaginal mucification when given subcutaneously to rats. In contrats, Kennedy (4) found in estrogen-pretreated rats that both 5alpha-DHT and testosterone induced vaginal mucification as indicated by increased vaginal sialic acid concentration.To determine if esterification of these androgens altered their ability to induce vaginal mucification, ovariectomized rats, pretreated for 3 days with 0.25 mug estradiol-17beta, were treated for 8 days with either sesame oil or 7 mumoles of testosterone, 5alpha-DHT and their respective propionate and benzoate esters. All treatments except 5-alpha-DHT benzoate increased vaginal weight and vaginal mucification, as assessed histochemically and biochemically. 5alpha-DHT propionate was less effective than 5alpha-DHT while testosterone benzoate, but not propionate was less effective than testosterone. To determine if estrogens are necessary for the vaginal effects of androgens, ovariectomized and ovariectomized-adrenalectomized rats were treated with testosterone or 5alpha-DHT. Adrenalectomy did not significantly affect the vaginal response to either androgen. It is therefore concluded that androgens are capable of inducing vaginal mucification in the absence of estrogens.  相似文献   

9.
A Philip  B E Murphy 《Steroids》1986,47(6):373-379
The cross-reactivities for binding sites on human sex hormone-binding globulin (SHBG) of a number of steroids of low polarity, including progesterone and estrogen metabolites, were studied. Binding relative to testosterone (100%) was low (less than or equal to 3%) except for 2-methoxyestrone (81%), 3-acetoxyestradiol (16%), 4-methoxyestradiol (6%), 3 beta-hydroxy-5 beta-pregnan-3-one (5.8%), 5 alpha-dihydrodeoxycorticosterone (4.5%), deoxycorticosterone (4%), 20 alpha-hydroxy-5 alpha-pregnan -3-one (4%), 4-methoxyestrone (4%) and 5 alpha-dihydroprogesterone (3.5%). 2-Methoxyestrone is the only steroid lacking a 17 beta-hydroxyl group which binds to SHBG with strong affinity.  相似文献   

10.
The metabolism of methenolone acetate (17 beta-acetoxy-1-methyl-5 alpha-androst-1-en-3-one), a synthetic anabolic steroid, has been investigated in man. After oral administration of a 50 mg dose of the steroid to two male volunteers, twelve metabolites were detected in urine either in the glucuronide, sulfate or free steroid fractions. Methenolone, the parent steroid was detected in urine until 90 h after administration. Its cumulative urinary excretion accounted for 1.63% of the ingested dose. With the exception of 3 alpha-hydroxy-1-methylen-5 alpha-androstan-17-one, the major biotransformation product of methonolone acetate, metabolites were excreted in urine at lower levels, through minor metabolic routes. Most of methenolone acetate metabolites were isolated from the glucuronic acid fraction, namely methenolone, 3 alpha-hydroxy-1-methylen-5 alpha-androstan-17-one, 3 alpha-hydroxy-1 alpha-methyl-5 alpha-androstan-17-one, 17-epimethenolone, 3 alpha,6 beta-dihydroxy-1-methylen-5 alpha-androstan-17-one, 2 xi-hydroxy-1-methylen-5 alpha-androstan-3,17-dione, 6 beta-hydroxy-1-methyl-5 alpha-androst-1-en-3,17-dione, 16 alpha-hydroxy-1-methyl-5 alpha-androst-1-en-3,17-dione and 3 alpha,16 alpha-dihydroxy-1-methyl-5 alpha-androst-1-en-17-one. Interestingly, the metabolites detected in the sulfate fraction were isomeric steroids bearing a 16 alpha- or a 16 beta-hydroxyl group, whereas 1-methyl-5 alpha-androst-1-en-3,17-dione was the sole metabolite isolated from the free steroid fraction. Steroids identity was assigned on the basis of the mass spectral features of their TMS ether, TMS enol-TMS ether, MO-TMS, and d9-TMS ether derivatives and by comparison with reference and structurally related steroids. The data indicated that methenolone acetate was metabolized into several compounds resulting from oxidation of the 17-hydroxyl group and reduction of A-ring substituents, with or without concomitant hydroxylation at the C6 and C16 positions.  相似文献   

11.
Two proteins in the rat, androgen binding protein (ABP) and the cytoplasmic receptor (CR), have high affinity and limited capacity for binding androgens. To determine the structural requirements for binding with high affinity, each protein was partially purified and the ability of over 100 steroids to compete with [3H]dihydrotestosterone (17 beta-hydroxy-5 alpha-androstan-3-one) for binding sites was assessed. The results indicate marked differences in the steroid specificities of the two proteins. Some alterations of dihydrotestosterone at C-2 or C-2 and C-3 increase binding to ABP two to four-fold. Similarly, the affinity of 17 beta-hydroxy-7 alpha-methyl-4-estren-3-one for ABP increases two-fold when a double bond is created at C-14. Addition of a methyl group in the alpha position at C-7 or C-17, or an ethinyl group at C-17 cause little change in affinity; however, modifications at C-11 and C-17 beta, and deletion of the methyl group at C-10 significantly impair binding to ABP. Binding to the CR is maintained or increased by deletion of the methyl group at C-10. Binding is lessened by modifications at C-3 and C-17 beta. Most alterations at C-2, C-7, C-11, and C-17 alpha have only minor effects on binding to the CR. These studies should provide a molecular basis for predicting the effects of specific structural modifications. When some modifications at C-2 or C-2 and C-3 are combined with changes at C-17 beta, the resulting steroids retain very high affinity for ABP and very limited binding to the CR. Such steroids may provide a means for assessing the function of ABP.  相似文献   

12.
One of the biotransformation routes of oxymetholone (17 beta-hydroxy-2-hydroxymethylene-17 alpha-methyl-5 alpha-androstan-3-one) in man leads to the formation of 17 beta-hydroxy-17 alpha-methyl-5 alpha-androstan-3-one (mestanolone). To demonstrate that this latter steroid may be formed by decarboxylation of an intermediate metabolite of oxymetholone bearing a 2-carboxylic group, we studied the urinary excretion of oxymetholone acidic metabolites. Five new acidic metabolites are reported here for the first time, among which four are unusual seco steroids resulting from the oxidative cleavage of the A-ring. The most abundant compound is 17 beta-hydroxy-17 alpha-methyl-2,3-seco-5 alpha-androstane-2,3-dioic acid 1, the cumulative excretion of which accounted for 1.52% of the dose. Three other seco diacids were produced in smaller amounts, namely 17 beta-hydroxy-17 alpha-methyl-2,3-seco-5 alpha-androstane-2,4- dicarboxylic acid 3, 17 beta-hydroxy-17 alpha-methyl-1,3-seco-5 alpha-androstane-1,3-dioic acid 4 and 17 beta-hydroxy-17 alpha-methyl-2,4-seco-5 alpha-androstane-2,4-dioic acid 5. The fifth acidic metabolite was identified as 3 alpha, 17 beta-dihydroxy-17 alpha-methyl-5 alpha-androstane-2 beta-carboxylic acid 2. The excretion in urine of these acidic metabolites suggests that the 2-hydroxymethylene group in oxymetholone is readily oxidized to yield the corresponding beta-keto acid which can be (1) decarboxylated to form mestanolone; (2) reduced at C-3 to give compound 2; and (3) further oxidized to afford the unexpected seco diacids 1, 3, 4 and 5. The identity of compounds 1 and 2 was ascertained by GC/MS and 1H and 13C-NMR analysis of reference compounds. The other metabolites were characterized by GC/MS analysis.  相似文献   

13.
L Ballhorn  W F Mueller  F Korte 《Steroids》1979,33(4):379-388
In addition to using radioimmunoassays for the determination of estrogens and other steroids, the possibility of using mass fragmentography for analysis was investigated. t-Butyldimethylsilyl chloride was selected as a reagent for derivatisation because it forms rather stable silylethers. In all the mass-spectra obrained from the steroid derivatives, one pronounced peak suitable for mass fragmentography was always present. Some of the spectra of the investigated estrogens, as well as testosterone, 3 alpha-hydroxy-5 alpha-androstan-17-one and 17 alpha-methyl-17 beta-hydroxy-5 alpha-androstan-3-one are discussed. The stability of various t-butyldimethylsilylethers and the rate of enolization of testosterone and progesterone in the presence of the silylation-agent under different conditions were established.  相似文献   

14.
A pilot study of the endogenous steroid concentrations in human breast tumours was performed. The technique of high-resolution molecular-ion monitoring during combined g.l.c.-mass spectrometry was used to determine oestrone, oestradiol-17beta and oestriol in concentrations above 1ng/g wet wt. of tissue, and dehydroepiandrosterone, testosterone, androsterone (3alpha-hydroxy-5alpha-androstan-17-one) and 3beta-hydroxy-5alpha-androstan-17-one in concentrations exceeding 5ng/g, in extracts of five primary breast tumours.  相似文献   

15.
The synthesis and characterization of 17 alpha-(6'-hexanoic acid) derivatives of 5 alpha-dihydrotestosterone and testosterone, useful as ligands for affinity chromatography purification or as precursors for affinity-labeling of androgen-binding proteins, is described. Alkynylation of 3-ethylenedioxy-, 3 beta-hydroxy-, and 3 beta,5-dihydroxy-5 alpha-androstan-17-one precursors with the potassium derivative of 5-hexyn-1-ol led to the corresponding 17 alpha-(6'-hydroxyhex-1'-ynyl) derivatives, which were hydrogenated over 10% Pt-C catalyst to give 17 alpha-(6'-hydroxyhexyl) derivatives. Chromic acid oxidation of the primary hydroxy group of the 3-ethylenedioxy-17-hexyl intermediate into carboxylic acid followed by acid cleavage of the 3-ketal group gave 17 alpha-(5'-carboxypentyl)-5 alpha-dihydrotestosterone, which was also obtained directly by chromic acid oxidation of the 3 beta-hydroxy intermediate. Chromic acid oxidation of the primary hydroxy group of the 3 beta,5 alpha-dihydroxy precursor resulted in a 5 alpha-hydroxy-3-oxo intermediate, which was dehydrated to give 17 alpha-(5'-carboxypentyl)testosterone. The 17 alpha configuration of these derivatives and of synthetic precursors was established by comparing their molecular rotations and their 1H and 13C nuclear magnetic resonance (NMR) spectra including solvent effects, with data reported for 17 alpha- or 17 beta-substituted steroid analogs as well as with 1H and 13C NMR reference data recorded in this work for 17 alpha-ethynyltestosterone, 17 alpha-ethynyl-19-nortestosterone, 17 alpha-ethyl-19-nortestosterone, 17 alpha-methyltestosterone, and 17 alpha-methyl-5 alpha-dihydrotestosterone.  相似文献   

16.
Zhang H  Qiu Z 《Steroids》2006,71(13-14):1088-1090
5alpha-Androst-1-ene-3,17-dione (5) as a prodrug of 1-testosterone (4) was prepared in four steps from 17beta-Acetoxy-5alpha-androstan-3-one (stanolone acetate) (1) in high yield. Thus, stanolone acetate (1) was brominated in the presence of hydrogen chloride in acetic acid to give 17beta-acetoxy-2-bromo-5alpha-androstan-3-one (2), which underwent dehydrobromination using lithium carbonate as base with lithium bromide as an additive to give 17beta-acetoxy-5alpha-androst-1-en-3-one (3) in almost quantitative yield with 97% of purity. Compound (3) was hydrolyzed with sodium hydroxide to give 17beta-hydroxy-5alpha-androst-1-en-3-one (4,1-testosterone), which was oxidized with chromium trioxide to afford 5alpha-androst-1-ene-3,17-dione (5). The overall yield of 5 was 78.2% with purity of 99%. In this method, the formation of 4-ene was diminished when 1-ene was introduced, and its mechanism was also discussed.  相似文献   

17.
In efforts to develop potent 5 alpha-reductase inhibitors without affinity for the androgen receptor, synthetic 3-oxo-5 alpha-steroids were tested for their ability to inhibit 5 alpha-reductase, using [14C]testosterone as the substrate, and for their ability to inhibit the binding of [3H]5 alpha-dihydrotestosterone to the androgen receptor of rat prostate cytosol. 2',3' alpha-Tetrahydrofuran-2'-spiro-17-(5 alpha-androstan-3-one) is not an inhibitor of 5 alpha-reductase and has a high affinity for the androgen receptor; substitution of the -CH2- at the 4-position with N-H resulted in a good inhibitor of 5 alpha-reductase. The 4-N-CH3 derivative is even more active, whereas the N-CH2-CH3 derivative is inactive. These 4-aza derivatives have much lower affinity for the androgen receptor than the parent compound. The 4-N-H derivatives of several 3-oxo-5 alpha-steroids were found to be 20-100% as potent as their corresponding 4-N-CH3 analogs as inhibitors of 5 alpha-reductase, whereas their androgen receptor affinities were at least 40-fold lower than their 4-N-CH3 analogs. Their 5 beta-isomers did not inhibit either 5 alpha-reductase or the androgen receptor binding of [3H]5 alpha-dihydrotestosterone. Two of these 4-N-H steroids, 17 beta-N,N-diethylcarbamoyl-4-aza-5 alpha-androstan-3-one and 17 beta-N, N-diisopropylcarbamoyl-4-aza-5 alpha-androstan-3-one, are potent 5 alpha-reductase inhibitors with Ki values equal to 29.2 +/- 1.7 and 12.6 +/- 0.8 nM, respectively, but have little affinity for the androgen receptor. The inhibition of 5 alpha-reductase by both compounds is competitive with testosterone. When [3H]testosterone was incubated with minced rat prostate in the presence of either of these two 4-azasteroids, the nuclear concentration of 5 alpha-dihydrotestosterone decreased and that of testosterone increased. The total nuclear uptake of testosterone plus 5 alpha-dihydrotestosterone was not significantly affected. These 4-azasteroids should be useful for investigating the importance of 5 alpha-reductase in androgen action in vivo.  相似文献   

18.
A gas chromatographic-mass spectrometric (GC-MS) method for analysis of unconjugated steroids in a rat testis is described. A combined solvent-solid extraction procedure, utilizing Lipidex 1000 and Sep-Pak C18, gives a 25-fold purified extract. Steroids in this extract are fractionated by straight phase high-performance liquid chromatography (HPLC) on a LiChrosorb DIOL column in n-hexane-2-propanol, 92:8 (v/v). Four fractions are collected and the steroids are converted to tert-butyldimethylsilyl (TBDMS), 3-enol-TBDMS, and mixed TBDMS-trimethylsilyl (TMS) derivatives using TBDMS- and TMS-imidazole with sodium formate as catalyst under conditions suitable for the steroids present in the respective fractions. The derivatives are purified by reversed phase HPLC in 100% methanol and are analyzed by GC-MS, using selected ion monitoring of the major ions of high mass. For quantification, a mixture of known amounts of ten 14C-labelled steroids, [3H]estradiol and [2H3]estradiol are added to the testis homogenate. The mean concentrations (ng/g wet wt) of the twelve steroids determined were: 4-androstene-3, 17-dione, 4.0; testosterone, 127; 17 beta-hydroxy-5 alpha-androstan-3-one, 4.5; 5 alpha-androstane-3 alpha, 17 beta-diol, 5.7; 5 alpha-androstane-3 beta, 17 beta-diol, 1.5; progesterone, 5.5; 17 alpha-hydroxyprogesterone, 14.4; 3 beta-hydroxy-5-androsten-17-one, 0.07; 5-androstene-3 beta, 17 beta-diol, 0.25; 3 beta-hydroxy-5-pregnen-20-one, 10.3; 3 beta, 17 beta-dihydroxy-5-pregnen-20-one, 0.95; and estradiol, 0.025. Variations between animals were large whereas testes from the same animal in most cases had similar steroid concentrations.  相似文献   

19.
The amino-terminal laminin G-like domain of human sex hormone-binding globulin (SHBG) contains a single high affinity steroid-binding site. Crystal structures of this domain in complex with several different steroid ligands have revealed that estradiol occupies the SHBG steroid-binding site in an opposite orientation when compared with 5 alpha-dihydrotestosterone or C19 androgen metabolites (5 alpha-androstan-3 beta,17 beta-diol and 5 alpha-androstan-3 beta,17 alpha-diol) or the synthetic progestin levonorgestrel. Substitution of specific residues within the SHBG steroid-binding site confirmed that Ser(42) plays a key role in determining high affinity interactions by hydrogen bonding to functional groups at C3 of the androstanediols and levonorgestrel and the hydroxyl at C17 of estradiol. Among residues participating in the hydrogen bond network with hydroxy groups at C17 of C19 steroids or C3 of estradiol, Asp(65) appears to be the most important. The different binding mode of estradiol is associated with a difference in the position/orientation of residues (Leu(131) and Lys(134)) in the loop segment (Leu(131)-His(136)) that covers the steroid-binding site as well as others (Leu(171)-Lys(173) and Trp(84)) on the surface of human SHBG and may provide a basis for ligand-dependent interactions between SHBG and other macromolecules. These new crystal structures have also enabled us to construct a simple space-filling model that can be used to predict the characteristics of novel SHBG ligands.  相似文献   

20.
Homogenates prepared from fetal rhesus monkey testes were incubated with progesterone, 4-androstene-3,17-dione, testosterone and 17 beta-hydroxy-5 alpha-androstan-3-one. The major progesterone metabolite was 17-hydroxy-4-pregnene-3,20-dione. Testosterone also accumulated in the progesterone incubations. 4-Androstene-3,17-dione was converted chiefly to testosterone. Testosterone was not actively metabolized by the fetal monkey testis. 17 beta-Hydroxy-5 alpha-androstan-3-one was actively converted primarily to 5 alpha-androstane-3 beta,17 beta-diol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号