首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Osteoclasts modulate bone resorption under physiological and pathological conditions. Previously, we showed that both estrogens and retinoids regulated osteoclastic bone resorption and postulated that such regulation was directly mediated through their cognate receptors expressed in mature osteoclasts. In this study, we searched for expression of other members of the nuclear hormone receptor superfamily in osteoclasts. Using the low stringency homologous hybridization method, we isolated the peroxisome proliferator-activated receptor delta/beta (PPARdelta/beta) cDNA from mature rabbit osteoclasts. Northern blot analysis showed that PPARdelta/beta mRNA was highly expressed in highly enriched rabbit osteoclasts. Carbaprostacyclin, a prostacyclin analogue known to be a ligand for PPARdelta/beta, significantly induced both bone-resorbing activities of isolated mature rabbit osteoclasts and mRNA expression of the cathepsin K, carbonic anhydrase type II, and tartrate-resistant acid phosphatase genes in these cells. Moreover, the carbaprostacyclin-induced bone resorption was completely blocked by an antisense phosphothiorate oligodeoxynucleotide of PPARdelta/beta but not by the sense phosphothiorate oligodeoxynucleotide of the same DNA sequence. Our results suggest that PPARdelta/beta may be involved in direct modulation of osteoclastic bone resorption.  相似文献   

4.
We report the synthesis and biological activity of a new series of small molecule agonists of the human Peroxisome Proliferator-Activated Receptor delta (PPARdelta). Several hits were identified from our original libraries containing lipophilic carboxylic acids. Optimization of these hits by structure-guided design led to 7k (GW501516) and 7l (GW0742), which shows an EC(50) of 1.1 nM against PPARdelta with 1000-fold selectivity over the other human subtypes.  相似文献   

5.
6.
7.
After an injury, keratinocytes acquire the plasticity necessary for the reepithelialization of the wound. Here, we identify a novel pathway by which a nuclear hormone receptor, until now better known for its metabolic functions, potentiates cell migration. We show that peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) enhances two phosphatidylinositol 3-kinase-dependent pathways, namely, the Akt and the Rho-GTPase pathways. This PPARbeta/delta activity amplifies the response of keratinocytes to a chemotactic signal, promotes integrin recycling and remodeling of the actin cytoskeleton, and thereby favors cell migration. Using three-dimensional wound reconstructions, we demonstrate that these defects have a strong impact on in vivo skin healing, since PPARbeta/delta-/- mice show an unexpected and rare epithelialization phenotype. Our findings demonstrate that nuclear hormone receptors not only regulate intercellular communication at the organism level but also participate in cell responses to a chemotactic signal. The implications of our findings may be far-reaching, considering that the mechanisms described here are important in many physiological and pathological situations.  相似文献   

8.
Hair follicle morphogenesis depends on a delicate balance between cell proliferation and apoptosis, which involves epithelium-mesenchyme interactions. We show that peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) and Akt1 are highly expressed in follicular keratinocytes throughout hair follicle development. Interestingly, PPARbeta/delta- and Akt1-deficient mice exhibit similar retardation of postnatal hair follicle morphogenesis, particularly at the hair peg stage, revealing a new important function for both factors in the growth of early hair follicles. We demonstrate that a time-regulated activation of the PPARbeta/delta protein in follicular keratinocytes involves the up-regulation of the cyclooxygenase 2 enzyme by a mesenchymal paracrine factor, the hepatocyte growth factor. Subsequent PPARbeta/delta-mediated temporal activation of the antiapoptotic Akt1 pathway in vivo protects keratinocytes from hair pegs against apoptosis, which is required for normal hair follicle development. Together, these results demonstrate that epithelium-mesenchyme interactions in the skin regulate the activity of PPARbeta/delta during hair follicle development via the control of ligand production and provide important new insights into the molecular biology of hair growth.  相似文献   

9.
10.
11.
We designed and synthesized novel PPARδ antagonists based on the crystal structure of the PPARδ full agonist TIPP-204 bound to the PPARδ ligand-binding domain, in combination with our nuclear receptor helix 12 folding modification hypothesis. Representative compound 3a exhibits PPARδ-preferential antagonistic activity.  相似文献   

12.
Muscle-type carnitine palmitoyltransferase 1 (CPT1β) is considered to be the gene that controls fatty acid mitochondrial β-oxidation. A functional peroxisome proliferator-activated receptor (PPAR) responsive element (PPRE) and a myocite-specific (MEF2) site that binds MEF2A and MEF2C in the promoter of this gene had been previously identified. We investigated the roles of the PPRE and the MEF2 binding sites and the potential interaction between PPARα and MEF2C regulating the CPT1β gene promoter. Mutation analysis indicated that the MEF2 site contributed to the activation of the CPT1β promoter by PPAR in C2C12 cells. The reporter construct containing the PPRE and the MEF2C site was synergistically activated by co-expression of PPAR, retinoid X receptor (RXR) and MEF2C in non-muscle cells. Moreover, protein-binding assays demonstrated that MEF2C and PPAR specifically bound to one another in vitro. Also for the synergistic activation of the CPT1β gene promoter by MEF2C and PPARα-RXRα, a precise arrangement of its binding sites was essential.  相似文献   

13.
Mutation of the nuclear receptor peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) severely affects placenta development, leading to embryonic death at embryonic day 9.5 (E9.5) to E10.5 of most, but not all, PPARbeta/delta-null mutant embryos. While very little is known at present about the pathway governed by PPARbeta/delta in the developing placenta, this paper demonstrates that the main alteration of the placenta of PPARbeta/delta-null embryos is found in the giant cell layer. PPARbeta/delta activity is in fact essential for the differentiation of the Rcho-1 cells in giant cells, as shown by the severe inhibition of differentiation once PPARbeta/delta is silenced. Conversely, exposure of Rcho-1 cells to a PPARbeta/delta agonist triggers a massive differentiation via increased expression of 3-phosphoinositide-dependent kinase 1 and integrin-linked kinase and subsequent phosphorylation of Akt. The links between PPARbeta/delta activity in giant cells and its role on Akt activity are further strengthened by the remarkable pattern of phospho-Akt expression in vivo at E9.5, specifically in the nucleus of the giant cells. In addition to this phosphatidylinositol 3-kinase/Akt main pathway, PPARbeta/delta also induced giant cell differentiation via increased expression of I-mfa, an inhibitor of Mash-2 activity. Finally, giant cell differentiation at E9.5 is accompanied by a PPARbeta/delta-dependent accumulation of lipid droplets and an increased expression of the adipose differentiation-related protein (also called adipophilin), which may participate to lipid metabolism and/or steroidogenesis. Altogether, this important role of PPARbeta/delta in placenta development and giant cell differentiation should be considered when contemplating the potency of PPARbeta/delta agonist as therapeutic agents of broad application.  相似文献   

14.
15.
Recent literature has suggested the benefit of selective PPARdelta agonists for the treatment of atherosclerosis and other disease states associated with the metabolic syndrome. Herein we report the synthesis and structure-activity relationships of a series of novel and selective PPARdelta agonists. Our search began with identification of a novel benzothiophene template which was modified by the addition of various thiazolyl, isoxazolyl, and benzyloxy-benzyl moieties. Further elucidation of the SAR led to the identification of benzofuran and indole based templates. During the course of our research, we discovered three new chemical templates with varying degrees of affinity and potency for PPARdelta versus the PPARalpha and PPARgamma subtypes.  相似文献   

16.
17.
The expression patterns of PPARβ/δ have been described, but the majority of these data are based on mRNA data. To date, there are no reports that have quantitatively examined the expression of PPARβ/δ protein in mouse tissues. In the present study, a highly specific PPARβ/δ antibody was developed, characterized, and used to examine tissue expression patterns of PPARβ/δ. As compared to commercially available anti-PPARβ/δ antibodies, one of six polyclonal anti-PPARβ/δ antibodies developed was significantly more effective for immunoprecipitation of in vitro-translated PPARβ/δ. This antibody was used for quantitative Western blot analysis using radioactive detection methods. Expression of PPARβ/δ was highest in colon, small intestine, liver, and keratinocytes as compared to other tissues including heart, spleen, skeletal muscle, lung, brain, and thymus. Interestingly, PPARβ/δ expression was localized in the nucleus and RXRα can be co-immunoprecipitated with nuclear PPARβ/δ. Results from these studies demonstrate that PPARβ/δ expression is highest in intestinal epithelium, liver, and keratinocytes, consistent with significant biological roles in these tissues.  相似文献   

18.
Advances in wound care are of great importance in clinical injury management. In this respect, the nuclear receptor peroxisome proliferator-activated receptor (PPAR)beta/delta occupies a unique position at the intersection of diverse inflammatory or anti-inflammatory signals that influence wound repair. This study shows how changes in PPARbeta/delta expression have a profound effect on wound healing. Using two different in vivo models based on topical application of recombinant transforming growth factor (TGF)-beta1 and ablation of the Smad3 gene, we show that prolonged expression and activity of PPARbeta/delta accelerate wound closure. The results reveal a dual role of TGF-beta1 as a chemoattractant of inflammatory cells and repressor of inflammation-induced PPARbeta/delta expression. Also, they provide insight into the so far reported paradoxical effects of the application of exogenous TGF-beta1 at wound sites.  相似文献   

19.
20.
The functional role of peroxisome proliferator-activated receptor-beta(PPARbeta; also referred to as PPARdelta) in epidermal cell growth remains controversial. Recent evidence suggests that ligand activation of PPARbeta/delta increases cell growth and inhibits apoptosis in epidermal cells. In contrast, other reports suggest that ligand activation of PPARbeta/delta leads to the induction of terminal differentiation and inhibition of cell growth. In the present study, the effect of the highly specific PPARbeta/delta ligand GW0742 on cell growth was examined using a human keratinocyte cell line (N/TERT-1) and mouse primary keratinocytes. Ligand activation of PPARbeta/delta with GW0742 prevented cell cycle progression from G1 to S phase and attenuated cell proliferation in N/TERT-1 cells. Despite specifically activating PPARbeta/delta as revealed by target gene induction, no changes in PTEN, PDK and ILK expression or downstream phosphorylation of Akt were found in either N/TERT-1 cells or primary keratinocytes. Further, altered cell growth resulting from serum withdrawal and the induction of caspase-3 activity by ultraviolet radiation were unchanged in the absence of PPARbeta/delta expression and/or the presence of GW0742. While no changes in the expression of mRNAs encoding cell cycle control proteins were found in response to GW0742, a significant decrease in the level of ERK phosphorylation was observed. Results from these studies demonstrate that ligand activation of PPARbeta/delta does not lead to an anti-apoptotic effect in either human or mouse keratinocytes, but rather, leads to inhibition of cell growth likely through the induction of terminal differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号