首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is shown here that distamycin A and actinomycin D can protect the recognition sites of endo R.EcoRI, EcoRII, HindII, HindIII, HpaI and HpaII from the attack of these restriction endonucleases. At proper distamycin concentrations only two endo R.EcoRI sites of phage lambda DNA are available for the restriction enzyme--sRI1 and sRI4. This phenomenon results in the appearance of larger DNA fragments comprising several consecutive fragments of endo R.EcoRI complete cleavage. The distamycin fragments isolated from the agarose gels can be subsequently cleaved by endo R.EcoRI with the yield of the fragments of complete digestion. We have compared the effect of distamycin A and actinomycin D on a number of restriction endonucleases having different nucleotide sequences in the recognition sites and established that antibiotic action depends on the nucleotide sequences of the recognition sites and their closest environment  相似文献   

2.
It is shown that distamycin A and actinomycin D protect the recognition sites of certain restriction endonucleases from the attack by these nucleases due to specific interaction of these antibiotics with double-stranded DNA. Distamycin A protects A-T containing sites and actinomycin G-C rich sites. Among Hind II recognition sites which have alternative structure (GTPyPuAC) distamycin A protects only Hpa I similar sites (GTTAAC). It is shown with several restriction endonucleases that antibiotic action depends on the nucleotide sequences in the recognition sites and in their closest environment. Proper concentrations of antibiotic give rise to larger fragments. Use of both distamycin A and actinomycin D allows to obtain a set of overlapping fragments. The data obtained with various DNAs and restriction endonucleases allow to conclude that these antibiotics may be useful for DNA mapping and for preparation of large functional fragments of DNA.  相似文献   

3.
Enzymic digestion of Simian virus 40 (SV40) DNA with Haemophilus aegyptius restriction endonuclease Hae III results in 10 major and eight minor fragments. These were resolved by electrophoresis on graduated polyacrylamide slab gels. All fragments have been characterized with respect to the size relative to the Haemophilus influenzae Rd fragments (Hind). They were ordered on the SV40 DNA map by means of overlap analysis of the double cleavage products derived from sequential digestion of Hind fragments with Hae III endonuclease and Hae fragments with Hind II + III enzyme, as well as by other reciprocal cleavage experiments, including those involving Haemophilus para-influenzae fragments. In this way the 18 Hae III cleavage sites and the 13 Hind sites have been localized on the circular SV40 DNA map.  相似文献   

4.
Lesion selectivity in blockage of lambda exonuclease by DNA damage.   总被引:4,自引:4,他引:0       下载免费PDF全文
Various kinds of DNA damage block the 3' to 5' exonuclease action of both E. coli exonuclease III and T4 DNA polymerase. This study shows that a variety of DNA damage likewise inhibits DNA digestion by lambda exonuclease, a 5' to 3' exonuclease. The processive degradation of DNA by the enzyme is blocked if the substrate DNA is treated with ultraviolet irradiation, anthramycin, distamycin, or benzo[a]-pyrene diol epoxide. Furthermore, as with the 3' to 5' exonucleases, the enzyme stops at discrete sites which are different for different DNA damaging agents. On the other hand, digestion of treated DNA by lambda exonuclease is only transiently inhibited at guanine residues alkylated with the acridine mustard ICR-170. The enzyme does not bypass benzo[a]-pyrene diol epoxide or anthramycin lesions even after extensive incubation. While both benzo[a]-pyrene diol epoxide and ICR-170 alkylate the guanine N-7 position, only benzo[a]-pyrene diol epoxide also reacts with the guanine N-2 position in the minor groove of DNA. Anthramycin and distamycin bind exclusively to sites in the minor groove of DNA. Thus lambda exonuclease may be particularly sensitive to obstructions in the minor groove of DNA; alternatively, the enzyme may be blocked by some local helix distortion caused by these adducts, but not by alkylation at guanine N-7 sites.  相似文献   

5.
Mitochondrial DNA from cultured C13/B4 hamster cells was cleaved by the restriction endonucleases Hpa II, Hind III, Eco RI and Bam HI into 7, 5, 3 and 2 unique fragments, respectively. The summed molecular weights of fragments obtained from electrophoretic mobilities in agarose-ethidium bromide gels (with Hpa I-cleaved T7 DNA as standard) and electron microscopic analysis of fragment classes isolated from gels (with SV40 DNA as standard) were in good agreement with the size of 10.37 +/- 0.22 x 10(6) daltons (15,700 +/- 330 nucleotide pairs) determined for the intact circular mitochondrial genome. Cyclization of all Hind III, Eco RI and Bam HI fragments was observed. A cleavage map containing the 17 restriction sites (+/- 1% s.d.) was constructed by electrophoretic analysis of 32P-labeled single- and double-enzyme digestion products and reciprocal redigestion of isolated fragments. The 7 Hpa II sites were located in one half of the genome. The total distribution of the 17 cleavages around the genome was relatively uniform. The position of the D-loop was determined from its location and expansion on 3 overlapping restriction fragments.  相似文献   

6.
A physical map of Neurospora crassa mitochondrial DNA has been constructed using specific fragments obtained with restriction endonucleases. The DNA has 5 cleavage sites for endonuclease Bam HI, 12 for endonuclease Eco RI and more than 30 for endonuclease Hind III. The sequence of the Eco RI and Bam HI fragments has been established by analysis of partial fragments. By digestion of the Eco RI fragments with Bam HI, a complete overlapping map has been constructed. The position of the largest Hind III fragment on this map has also been determined. The map is circular and the added molecular weight of the fragments is 40 - 10(6), which is in good agreement with earlier measurements on intact DNA, using the electron microscope.  相似文献   

7.
8.
Mitochondrial DNA from rat liver contains six sites for cleavage by the restriction endonucleases Hind III and EcoRI. A large stretch of DNA, comprising about 40% of the mitochondrial genome is not cleaved by either of the enzymes; eight cleavage sites are located on a DNA stretch of 35% of the genome length suggestive of an unequal distribution of the A - T baspairs over the molecule. The number of Hind III and Eco R I fragments is much higher than reported for other mammalian mitochondrial DNAs up to now.  相似文献   

9.
Mitochondrial DNA of the ascomycete fungus Aspergillus nidulans, a circular molecule of 31 500 base pairs, is cleaved by restriction endonucleases Eco R I, Hind II, Hind III and Bgl II into 3, 7, 9 and 5 fragments, respectively. The relative positions of the cleavage sites could be mapped by analysis of fragments obtained by double enzyme digestions of whole DNA and by complete and partial redigestion of isolated restriction fragments.  相似文献   

10.
W A Scott  D J Wigmore 《Cell》1978,15(4):1511-1518
Simian virus 40 (SV40) chromatin isolated from infected BSC-1 cell nuclei was incubated with deoxyribonuclease I, staphylococcal nuclease or an endonuclease endogenous to BSC-1 cells under conditions selected to introduce one doublestrand break into the viral DNA. Full-length linear DNA was isolated, and the distribution of sites of initial cleavage by each endonuclease was determined by restriction enzyme mapping. Initial cleavage of SV40 chromatin by deoxyribonuclease I or by endogenous nuclease reduced the recovery of Hind III fragment C by comparison with the other Hind III fragments. Similarly, Hpa I fragment B recovery was reduced by comparison with the other Hpa I fragments. When isolated SV40 DNA rather than SV40 chromatin was the substrate for an initial cut by deoxyribonuclease I or endogenous nuclease, the recovery of all Hind III or Hpa I fragments was approximately that expected for random cleavage. Initial cleavage by staphylococcal nuclease of either SV40 DNA or SV40 chromatin occurred randomly as judged by recovery of Hind III or Hpa I fragments. These results suggest that, in at least a portion of the SV40 chromatin population, a region located in Hind III fragment C and Hpa I fragment B is preferentially cleaved by deoxyribonuclease I or by endogenous nuclease but not by staphylococcal nuclease.Complementary information about this nuclease-sensitive region was provided by the appearance of clusters of new DNA fragments after restriction enzyme digestion of DNA from viral chromatin initially cleaved by endogenous nuclease. From the sizes of new fragments produced by different restriction enzymes, preferential endonucleolytic cleavage of SV40 chromatin has been located between map positions 0.67 and 0.73 on the viral genome.  相似文献   

11.
The cellular sites of integration of avian sarcoma virus (ASV) have been examined in clones of duck embryo cells infected with the Bratislava 77 strain of ASV using restriction endonuclease digestion, agarose gel electrophoresis, Southern blotting, and hybridization with labeled ASV complementary DNA probes. DNA prepared from 11 clones of duck embryo cells infected with the Bratislava 77 strain of ASV was digested with the restriction enzymes HpaI, which cleaves once within the viral genome, and Hind III, which cleaves twice within the viral genome, and the virus-cell DNA juncture fragments were resolved by agarose gel electrophoresis. Analysis of the virus-cell junctures present in individual ASV-infected duck embryo clones revealed that all clones contain at least one copy of nondefective proviral DNA with some clones containing as many as 5 to 6 copies of proviral DNA. A comparison of the virus-cell juncture fragments present in different ASV-infected clones showed that each clone contains a unique set of virus-cell junctures. These data suggest that ASV DNA can integrate at multiple sites within the duck embryo cell genome and that these sites appear to be different as defined by digestion with the restriction enzymes HpaI and HindIII.  相似文献   

12.
A biologically active hybrid DNA molecule was constructed from plasmid Col E1 and the Eco R1 fragment of lambda DNA containing the gene for lambda repressor. The presence of this gene in the hybrid molecule was demonstrated genetically. The hybrid plasmid contains two closely located targets for restriction endonuclease Hind 111 in the integrated fragment. Thus, the plasmid may be used as a vector not only for Eco R1 fragments but also for Hind 111 fragments.  相似文献   

13.
A restriction endonuclease from Haemophilus influenzae (Hind III) specifically cleaved vaccinia DNA into 14 fragments. The molecular weights of these fragments were determined by gel electrophoresis and ranged from 0.5 x 10(6) to 30 x 10(6). Hind III digestion of the DNA from the WR and CV-1 strains of vaccinia revealed a small molecular difference in one of the resulting fragments. The average molecular weight of the entire vaccinia genome was calculated to be 125 x 10(6).  相似文献   

14.
A J Van der Eb  A Houweling 《Gene》1977,2(3-4):133-146
Five clones of rat kidney cells transformed by a small restriction endonuclease fragment of adenovirus 5 (Ad5) DNA (fragment HsuI G, which represents the left terminal 7% of the adenovirus genome) were analyzed with respect to the viral DNA sequences present in the cellular DNAs. In these analyses, the kinetics of renaturation of 32P-labeled specific fragments of Ad5 DNA was measured in the presence of a large amount of DNA extracted either from each of the transformed cell lines or from untransformed cells. The fragments were produced by digestion of 32P-labeled adenovirus 5 DNA with endo R.HsuI, or by digestion of 32P-labeled fragment HsuI G of adeno 5 DNA with endo R.HpaI. All five transformed lines were found to contain DNA sequences homologous to 75--80% of Ad5 fragment HsuI G only. Clones II and V contained approximately 48 copies per quantity of diploid cell DNA, clone VI about 35 copies, clone IV 22 copies and clone III 5--10 copies. These results indicate that a viral DNA segment as small as 5.5% of the Ad5 genome, contains sufficient information for the maintenance of transformation.  相似文献   

15.
A physical map of the bacteriophage T5 genome was constructed by ordering the fragments produced by cleavage of T5 DNA with the restriction endonucleases SalI (4 fragments), SmaI (4 fragments), BamI (5 fragments), and HpaI (28 fragments). The following techniques were used to order the fragments. (i) Digestion of DNA from T5 heat-stable deletion mutants was used to identify fragments located in the deletable region. (ii) Fragments near the ends of the T5 DNA molecule were located by treating T5 DNA with lambda exonuclease before restriction endonuclease cleavage. (iii) Fragments spanning other restriction endonuclease cleavage sites were identified by combined digestion of T5 DNA with two restriction endonucleases. (iv) The general location of some fragments was determined by isolating individual restriction fragments from agarose gels and redigesting the isolated fragments with a second restriction enzyme. (v) Treatment of restriction digests with lambda exonuclease before digestion with a second restriction enzyme was used to identify fragments near, but not spanning, restriction cleavage sites. (vi) Exonucleases III treatment of T5 DNA before restriction endonuclease cleavage was used to locate fragments spanning or near the natural T5 single-chain interruptions. (vii) Analysis of the products of incomplete restriction endonuclease cleavage was used to identify adjacent fragments.  相似文献   

16.
Physical maps of the genome of Moloney murine leukemia virus (M-MLV) DNA were constructed by using bacterial restriction endonucleases. The in vitro-synthesized M-MLV double-stranded DNA was used as the source of the viral DNA. Restriction endonucleases Sal I and Hind III cleave viral DNA at only one site and, thus, generate two DNA fragments. The two DNA fragments generated by Sal I are Sal IA (molecular weight, 3.5 x 10(6)) and Sal IB (molecular weight, 2.4 x 10(6)) and by Hind III are Hind IIIA (molecular weight, 3.6 x 10(6) and Hind IIIB (molecular weight, 2.3 x 10(6)). Restriction endonuclease Bam I generates four fragments of molecular weights of 2.1 x 10(6) (Bam IA), 2 X 10(6) (Bam IB), 1.25 X 10(6) (Bam IC), and 0.24 x 10(6) (Bam ID), whereas restriction endonuclease Hpa I cleaves the M-MLV double-stranded DNA twice to give three fragments of molecular weights of 4.4 x 10(6) (Hpa IA), 0.84 X 10(6) (Hpa IB), and 0.74 x 10(6) (Hpa IC). Digestion of M-MLV double-stranded DNA with restriction endonuclease Sma I produces four fragments of molecular weights of 3.9 x 10(6) (Sma IA), 1.3 X 10(6) (Sma IB), 0.28 X 10(6) (Sma IC), and 0.21 x 10(6) (Sma ID). A mixture of restriction endonucleases Bgl I and Bgl II (Bgl I + II) cleaves the viral DNA at four sites generating five fragments of approximate molecular weights of 2 x 10(6) (Bgl + IIA), 1.75 X 10(6) (Bgl I + IIB), 1.25 X 10(6) (Bgl I + IIC), 0.40 X 10(6) (Bgl I + IID), and 0.31 x 10(6) (Bgl I + IIE). The order of the fragments in relation to the 5' end and 3' end of the genome was determined either by using fractional-length M-MLV double-stranded DNA for digestion by restriction endonucleases or by redigestion of Sal IA, Sal IB, Hind IIIA, and Hind IIIB fragments with other restriction endonucleases. In addition, a number of other restriction endonucleases that cleave in vitro-synthesized M-MLV double-stranded DNA have also been listed.  相似文献   

17.
A physical map of the adeno-associated virus type 2 genome has been constructed on the basis of the five fragments produced by the restriction endonucleases HindII + III from Hemophilus influenzae. There are three endo R-HindII cleavage sites and one endo R-HindIII site. Evidence has been obtained to support the existence of two nucleotide sequence permutations in adeno-associated virus DNA, the start points of which have been estimated to be separated by 1% of the genome. The three cleavage fragments produced by endo R-Eco RI have been ordered and oriented with respect to the endo R-HindII + III cleavage map.  相似文献   

18.
The distribution of length heterogeneity in adjacent repeating units of X. laevis 5S DNA has been examined by “cloning” 5S DNA in bacteria. Fragments of 5S DNA produced by partial digestion with Hind III and containing 1, 4, and 5 repeating units have been inserted at the single Hind III site of the tetracycline-resistance plasmid, pSC101, and the hybrid plasmids cloned in E. coli. Adjacent 5S DNA repeats in the cloned multi-repeat fragments can differ in length. This finding rules out some mechanisms which have been proposed to account for the parallel evolution of tandem repeated DNAs. The results are consistent with an unequal crossing-over mechanism and place some constraints on the molecular processes in this recombinatory event.  相似文献   

19.
Construction and analysis of viable deletion mutants of simian virus 40.   总被引:148,自引:87,他引:61       下载免费PDF全文
T E Shenk  J Carbon    P Berg 《Journal of virology》1976,18(2):664-671
Viable mutants of simian virus 40 (SV40), with deletions ranging in size from 15 to 200 base pairs, have been obtained by infecting CV-1P cells with circularly permuted linear SV40 DNA. The linear DNA was produced by cleavage of closed circular DNA with DNase I in the presence of Mn2+, followed, in some cases, by mild digestion with lambda 5'-exonuclease. The SV40 map location and the size of each deletion were determined by using the S1 nuclease mapping procedure (Shenk et al., 1975) and the change in size of fragments produced by Hind II + III endonuclease cleavage. Deletions in at least three regions of the SV40 chromosome have slight or no effect on the rate or yield of viral multiplication and on vira-induced cellular transformation. These regions are located at the following coordinates on the SV40 physical map: 0.17 to 0.18; 0.54 to 0.59; and 0.68 to 0.74.  相似文献   

20.
The restriction enzymes Hind III and Hae III cleave Xenopus laevis 5S DNA at one and three sites, respectively, in each repeating unit of approximately 700 base pairs. The cleavage sites for both enzymes have been located within the repeating unit by denaturation mapping of the restriction fragments. The Hind III products and one of the Hae III fragments are variable in length, indicating heterogeneity in the length of the repeating unit in 5S DNA. This length heterogeneity is confined to the major A + T-rich spacer region. Repeating units differ from each other by discrete quanta of approximately 15 base pairs. The A + T-rich spacer has been shown to consist largely of tandem subrepeats of just this size (Brownlee, Cartwright, and Brown, 1974). We suggest that the repeat-length heterogeneity is due to variable numbers of these subrepeats in the spacer regions of the major repeating units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号