首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A portion of an insertion sequence present in a member of the RIRE3 family of retrotransposons in Oryza sativa L. cv. IR36 was found to have an LTR sequence followed by a PBS sequence complementary to the 3'-end region of tRNAMet, indicative of another rice retrotransposon (named RIRE7). Cloning and sequencing of PCR-amplified fragments that made up all parts of the RIRE7 sequence showed that RIRE7 is a gypsy-type retrotransposon with partial homology in the pol region to the rice gypsy-type retrotransposons RIRE2 and RIRE3 identified in rice previously. Interestingly, various portions of the RIRE7 sequence were homologous to several DNA segments present in the centromere regions of cereal chromosomes. Further cloning and nucleotide sequencing of fragments flanking RIRE7 copies showed that RIRE7 was inserted into a site within a tandem repeat sequence that has a unit length of 155 bp. The tandem repeat sequence, named TrsD, was homologous to tandem repeat sequences RCS2 and CentC, previously identified in the centromeric regions of rice and maize chromosomes. Fluorescence in situ hybridization (FISH) analysis of the metaphase chromosomes of O. sativa cv. Nipponbare showed that both RIRE7 and TrsD sequences were present in the centromere regions of the chromosomes. The presence of RIRE7 and the TrsD sequences in the centromere regions of several chromosomes was confirmed by the identification of several YAC clones whose chromosomal locations are known. Further FISH analysis of rice pachytene chromosomes showed that the TrsD sequences were located in a pericentromeric heterochromatin region. These findings strongly suggest that RIRE7 and TrsD are components of the pericentromeric heterochromatin of rice chromosomes.  相似文献   

2.
Ltr retrotransposons and the evolution of eukaryotic enhancers   总被引:3,自引:0,他引:3  
Since LTR retrotransposons and retroviruses are especially prone to regional duplications and recombination events, these viral-like systems may be especially conducive to the evolution of closely spaced combinatorial regulatory motifs. Using the Drosophila copia LTR retrotransposon as a model, we show that a regulatory region contained within the element's untranslated leader region (ULR) consists of multiple copies of an 8 bp motif (TTGTGAAA) with similarity to the core sequence of the SV40 enhancer. Naturally occurring variation in the number of these motifs is correlated with the enhancer strength of the ULR. Our results indicate that inter-element selection may favor the evolution of more active enhancers within permissive genetic backgrounds. We propose that LTR retroelements and perhaps other retrotransposons constitute drive mechanisms for the evolution of eukaryotic enhancers which can be subsequently distributed throughout host genomes to play a role in regulatory evolution. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Non-mobile retrotransposons mdg1het and aurora localized in Drosophila melanogaster heterochromatin were studied. A novel retrotransposon aurora comprising 324 bp LTRs was revealed as a 5 kb insertion causing 5 bp duplication of integration site in the heterochromatic Stellate gene. All the aurora copies are immobilized in D. melanogaster heterochromatin and adjoining chromosome regions 40, 41C and 80BC. Mobile aurora copies were revealed in D. simulans euchromatin by in situ hybridization technique. A comparison of 2.5 kb sequence of immobile mdg1het (including a half of ORF2 and 3'-LTR) with the correspondent sequence of transposable mdg1 copy [9] allowed to conclude that evolution of mdg1 subfamilies occurred under the selective pressure for the ability to transpose. The time period passed since the aurora and mdg1 copies integrated in heterochromatin was roughly estimated via divergence extent between the left and right LTR; for aurora copy it is 0-0.15 Myr, and for mdg1het copies it is 0-0.7 Myr.  相似文献   

4.
5.
Because retrotransposons are the major component of plant genomes, analysis of the target site selection of retrotransposons is important for understanding the structure and evolution of plant genomes. Here, we examined the target site specificity of the rice retrotransposon Tos17, which can be activated by tissue culture. We have produced 47,196 Tos17-induced insertion mutants of rice. This mutant population carries approximately 500,000 insertions. We analyzed >42,000 flanking sequences of newly transposed Tos17 copies from 4316 mutant lines. More than 20,000 unique loci were assigned on the rice genomic sequence. Analysis of these sequences showed that insertion events are three times more frequent in genic regions than in intergenic regions. Consistent with this result, Tos17 was shown to prefer gene-dense regions over centromeric heterochromatin regions. Analysis of insertion target sequences revealed a palindromic consensus sequence, ANGTT-TSD-AACNT, flanking the 5-bp target site duplication. Although insertion targets are distributed throughout the chromosomes, they tend to cluster, and 76% of the clusters are located in genic regions. The mechanisms of target site selection by Tos17, the utility of the mutant lines, and the knockout gene database are discussed. --The nucleotide sequence data were uploaded to the DDBJ, EMBL, and GenBank nucleotide sequence databases under accession numbers AG020727 to AG025611 and AG205093 to AG215049.  相似文献   

6.
Sabot F  Schulman AH 《Heredity》2006,97(6):381-388
LTR (long terminal repeat) retrotransposons are the main components of higher plant genomic DNA. They have shaped their host genomes through insertional mutagenesis and by effects on genome size, gene expression and recombination. These Class I transposable elements are closely related to retroviruses such as the HIV by their structure and presumptive life cycle. However, the retrotransposon life cycle has been closely investigated in few systems. For retroviruses and retrotransposons, individual defective copies can parasitize the activity of functional ones. However, some LTR retrotransposon groups as a whole, such as large retrotransposon derivatives and terminal repeats in miniature, are non-autonomous even though their genomic insertion patterns remain polymorphic between organismal accessions. Here, we examine what is known of the retrotransposon life cycle in plants, and in that context discuss the role of parasitism and complementation between and within retrotransposon groups.  相似文献   

7.
8.

Background and Aims

Peanut (Arachis hypogaea) is an allotetraploid (AABB-type genome) of recent origin, with a genome of about 2·8 Gb and a high repetitive content. This study reports an analysis of the repetitive component of the peanut A genome using bacterial artificial chromosome (BAC) clones from A. duranensis, the most probable A genome donor, and the probable consequences of the activity of these elements since the divergence of the peanut A and B genomes.

Methods

The repetitive content of the A genome was analysed by using A. duranensis BAC clones as probes for fluorescence in situ hybridization (BAC-FISH), and by sequencing and characterization of 12 genomic regions. For the analysis of the evolutionary dynamics, two A genome regions are compared with their B genome homeologues.

Key Results

BAC-FISH using 27 A. duranensis BAC clones as probes gave dispersed and repetitive DNA characteristic signals, predominantly in interstitial regions of the peanut A chromosomes. The sequences of 14 BAC clones showed complete and truncated copies of ten abundant long terminal repeat (LTR) retrotransposons, characterized here. Almost all dateable transposition events occurred <3·5 million years ago, the estimated date of the divergence of A and B genomes. The most abundant retrotransposon is Feral, apparently parasitic on the retrotransposon FIDEL, followed by Pipa, also non-autonomous and probably parasitic on a retrotransposon we named Pipoka. The comparison of the A and B genome homeologous regions showed conserved segments of high sequence identity, punctuated by predominantly indel regions without significant similarity.

Conclusions

A substantial proportion of the highly repetitive component of the peanut A genome appears to be accounted for by relatively few LTR retrotransposons and their truncated copies or solo LTRs. The most abundant of the retrotransposons are non-autonomous. The activity of these retrotransposons has been a very significant driver of genome evolution since the evolutionary divergence of the A and B genomes.  相似文献   

9.
10.
11.
12.
13.
14.
Long terminal repeat (LTR) retrotransposons are the major DNA components of flowering plants. They are generally enriched in pericentromeric heterochromatin regions of their host genomes, which could result from the preferential insertion of LTR retrotransposons and the low effectiveness of purifying selection in these regions. To estimate the relative importance of the actions of these two factors on their distribution pattern, the LTR retrotransposons in Solanum lycopersicum (tomato) plants were characterized at the genome level, and then the distribution of young elements was compared with that of relatively old elements. The current data show that old elements are mainly located in recombination‐suppressed heterochromatin regions, and that young elements are preferentially located in the gene‐rich euchromatic regions. Further analysis showed a negative correlation between the insertion time of LTR retrotransposons and the recombination rate. The data also showed there to be more solo LTRs in genic regions than in intergenic regions or in regions close to genes. These observations indicate that, unlike in many other plant genomes, the current LTR retrotransposons in tomatoes have a tendency to be preferentially located into euchromatic regions, probably caused by their severe suppression of activities in heterochromatic regions. These elements are apt to be maintained in heterochromatin regions, probably as a consequence of the pericentromeric effect in tomatoes. These results also indicate that local recombination rates and intensities of purifying selection in different genomic regions are largely responsible for structural variation and non‐random distribution of LTR retrotransposons in tomato plants.  相似文献   

15.
Long Terminal Repeat (LTR) retrotransposons are ubiquitous components of plant genomes. Because of their copy-and-paste mode of transposition, these elements tend to increase their copy number while they are active. In addition, it is now well established that the differences in genome size observed in the plant kingdom are accompanied by variations in LTR retrotransposon content, suggesting that LTR retrotransposons might be important players in the evolution of plant genome size, along with polyploidy. The recent availability of large genomic sequences for many crop species has made it possible to examine in detail how LTR retrotransposons actually drive genomic changes in plants. In the present paper, we provide a review of the recent publications that have contributed to the knowledge of plant LTR retrotransposons, as structural components of the genomes, as well as from an evolutionary genomic perspective. These studies have shown that plant genomes undergo genome size increases through bursts of retrotransposition, while there is a counteracting process that tends to eliminate the transposed copies from the genomes. This process involves recombination mechanisms that occur either between the LTRs of the elements, leading to the formation of solo-LTRs, or between direct repeats anywhere in the sequence of the element, leading to internal deletions. All these studies have led to the emergence of a new model for plant genome evolution that takes into account both genome size increases (through retrotransposition) and decreases (through solo-LTR and deletion formation). In the conclusion, we discuss this new model and present the future prospects in the study of plant genome evolution in relation to the activity of transposable elements.  相似文献   

16.
Tek AL  Song J  Macas J  Jiang J 《Genetics》2005,171(3):1231-1238
Highly repetitive satellite DNA sequences are main components of heterochromatin in higher eukaryotic genomes. It is well known that satellite repeats can expand and contract dramatically, which may result in significant genome size variation among genetically related species. The origin of satellite repeats, however, is elusive. Here we report a satellite repeat, Sobo, from a diploid potato species, Solanum bulbocastanum. The Sobo repeat is mapped to a single location in the pericentromeric region of chromosome 7. This single Sobo locus spans approximately 360 kb of a 4.7-kb monomer. Sequence analysis revealed that the major part of the Sobo monomer shares significant sequence similarity with the long terminal repeats (LTRs) of a retrotransposon. The Sobo repeat was not detected in other Solanum species and is absent in some S. bulbocastanum accessions. Sobo monomers are highly homogenized and share >99% sequence identity. These results suggest that the Sobo repeat is a recently emerged satellite and possibly originated by a sudden amplification of a genomic region including the LTR of a retrotransposon and its flanking genomic sequences.  相似文献   

17.
Study on the evolution of the grande retrotransposon in the zea genus   总被引:5,自引:0,他引:5  
The study of Grande retrotransposon (RTN) variation reported here comprises the intrinsic element variability and the changes that element insertion provokes in the Zea genome, including its abundance among species. Sequence analysis of a defined long-terminal repeat (LTR) region from Grande RTN revealed a high level of sequence divergence since no identical sequences were found among the 65 clones examined that belong to different Zea species or maize inbred lines. Average diversity values within accessions ranged from 0.17 to 0.37 substitutions per nucleotide. Phylogenetic analysis revealed a lack of concordance between the phylogenetic tree obtained from LTR sequences and the conventional taxonomic tree, suggesting that different subfamilies of Grande elements existed before Zea speciation. When sequence-specific amplification polymorphism (SSAP) marker data, which combines genomic and RTN variation, are used, the derived trees reflect the established species phylogeny and allow, as well, differentiating among some maize lines. Finally, the evaluation of Grande abundance, using different element probes in all the Zea species but Z. luxurians, revealed around 5,700 copies per haploid genome in all the diploid species examined, indicating a similar expansion process of Grande in all the Zea genomes. This number of copies represents in all cases around a 3% of the genome, which implies that Grande RTN is an important component of the maize genome. The copy number ratio LTR/gag is around 2 in all the species analyzed, indicating that overwhelming majority of elements have internal region. Thus, mechanisms such as homologous recombination between LTRs of a single RTN, which would remove the internal region and one LTR, leaving behind a single recombinant LTR, seems not to be active in maize for Grande RTN.  相似文献   

18.
Staginnus C  Desel C  Schmidt T  Kahl G 《Génome》2010,53(12):1090-1102
Several repetitive elements are known to be present in the genome of chickpea (Cicer arietinum L.) including satellite DNA and En/Spm transposons as well as two dispersed, highly repetitive elements, CaRep1 and CaRep2. PCR was used to prove that CaRep1, CaRep2, and previously isolated CaRep3 of C. arietinum represent different segments of a highly repetitive Ty3-gypsy-like retrotransposon (Metaviridae) designated CaRep that makes up large parts of the intercalary heterochromatin. The full sequence of this element including the LTRs and untranslated internal regions was isolated by selective amplification. The restriction pattern of CaRep was different within the annual species of the genus Cicer, suggesting its rearrangement during the evolution of the genus during the last 100 000 years. In addition to CaRep, another LTR and a non-LTR retrotransposon family were isolated, and their restriction patterns and physical localization in the chickpea genome were characterized. The LINE-like element CaLin is only of comparatively low abundance and reveals a considerable heterogeneity. The Ty1-copia-like element (Pseudoviridae) CaTy is located in the distal parts of the intercalary heterochromatin and adjacent euchromatic regions, but it is absent from the centromeric regions. These results together with earlier findings allow to depict the distribution of retroelements on chickpea chromosomes, which extensively resembles the retroelement landscape of the genome of the model legume Medicago truncatula Gaertn.  相似文献   

19.
20.
C Linares  A Serna  A Fominaya 《Génome》1999,42(4):706-713
A repetitive sequence, pAs17, was isolated from Avena strigosa (As genome) and characterized. The insert was 646 bp in length and showed 54% AT content. Databank searches revealed its high homology to the long terminal repeat (LTR) sequences of the specific family of Ty1-copia retrotransposons represented by WIS2-1A and Bare. It was also found to be 70% identical to the LTR domain of the WIS2-1A retroelement of wheat and 67% identical to the Bare-1 retroelement of barley. Southern hybridizations of pAs17 to diploid (A or C genomes), tetraploid (AC genomes), and hexaploid (ACD genomes) oat species revealed that it was absent in the C diploid species. Slot-blot analysis suggested that both diploid and tetraploid oat species contained 1.3 x 10(4) copies, indicating that they are a component of the A-genome chromosomes. The hexaploid species contained 2.4 x 10(4) copies, indicating that they are a component of both A- and D-genome chromosomes. This was confirmed by fluorescent in situ hybridization analyses using pAs17, two ribosomal sequences, and a C-genome specific sequence as probes. Further, the chromosomes involved in three C-A and three C-D intergenomic translocations in Avena murphyi (AC genomes) and Avena sativa cv. Extra Klock (ACD genomes), respectively, were identified. Based on its physical distribution and Southern hybridization patterns, a parental retrotransposon represented by pAs17 appears to have been active at least once during the evolution of the A genome in species of the Avena genus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号