首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of fine roots and external ectomycorrhizal mycelium of three species of trees was determined down to a soil depth of 55 cm to estimate the relative nutrient uptake capacity of the trees from different soil layers. In addition, a root bioassay was performed to estimate the nutrient uptake capacity of Rb+ and NH4+ by these fine roots under standardized conditions in the laboratory. The study was performed in monocultures of oak (Quercus robur L.), European beech (Fagus sylvatica L.) and Norway spruce [Picea abies (L.) Karst.] on sandy soil in a tree species trial in Denmark. The distribution of spruce roots was found to be more concentrated to the top layer (0–11 cm) than that of oak and beech roots, and the amount of external ectomycorrhizal mycelia was correlated to the distribution of the roots. The uptake rate of [86Rb+] by oak roots declined with soil depth, while that of beech or spruce roots was not influenced by soil depth. In modelling the nutrient sustainability of forest soils, the utilization of nutrient resources in deep soil layers has been found to be a key factor. The present study shows that the more shallow-rooted spruce can have a similar capacity to take up nutrients from deeper soil layers than the more deeply rooted oak. The distribution of roots and mycelia may therefore not be a reliable parameter for describing nutrient uptake capacity by tree roots at different soil depths.  相似文献   

2.
Background and AimsRoot proliferation is a response to a heterogeneous nutrient distribution. However, the growth of root hairs in response to heterogeneous nutrients and the relationship between root hairs and lateral roots remain unclear. This study aims to understand the effects of heterogeneous nutrients on root hair growth and the trade-off between root hairs and lateral roots in phosphorus (P) acquisition.MethodsNear-isogenic maize lines, the B73 wild type (WT) and the rth3 root hairless mutant, were grown in rhizoboxes with uniform or localized supply of 40 (low) or 140 (high) mg P kg−1 soil.ResultsBoth WT and rth3 had nearly two-fold greater shoot biomass and P content under local than uniform treatment at low P. Significant root proliferation was observed in both WT and rth3 in the nutrient patch, with the WT accompanied by an obvious increase (from 0.7 to 1.2 mm) in root hair length. The root response ratio of rth3 was greater than that of WT at low P, but could not completely compensate for the loss of root hairs. This suggests that plants enhanced P acquisition through complementarity between lateral roots and root hairs, and thus regulated nutrient foraging and shoot growth. The disappearance of WT and rth3 root response differences at high P indicated that the P application reduced the dependence of the plants on specific root traits to obtain nutrients.ConclusionsIn addition to root proliferation, the root response to a nutrient-rich patch was also accompanied by root hair elongation. The genotypes without root hairs increased their investment in lateral roots in a nutrient-rich patch to compensate for the absence of root hairs, suggesting that plants enhanced nutrient acquisition by regulating the trade-off of complementary root traits.  相似文献   

3.
构件理论认为植物根可以相对独立地吸收养分和对所处环境的养分条件做出响应。根据成本-收益理论, 单个根(构件)的生死、生长发育与其吸收的养分收益和自身建造、维持的消耗有关。基于此, 该文提出两个关于吸收根生死条件的假设: 1)当可利用养分低于低临界值, 根死亡在一段时滞(数天到几周)后发生; 2)当可利用养分高于高临界值并持续一段时间, 新的侧根产生。为了检验这两个假设, 用臭椿(Ailanthus altissima)、翠菊(Callistephus chinensis)、加拿大一枝黄花(Solidago canadensis)作实验物种, 设计了温室分根实验。每株植物选3个一级根, 分别引入3个不同养分水平的斑块: 0、20、200 μg N·g-1。每4天将根暴露并拍照, 查数新根数并测量细根总长度和一级侧根长。由于高养分处理斑块内根的快速生长, 实验在开始后8天或12天结束。结果显示: 除臭椿在0养分处理外, 三物种在各养分处理下都有侧根产生, 总根长均有增加; 臭椿、翠菊、加拿大一枝黄花在不同观测时间和养分水平处理间的侧根数目和总根长差异显著, 而一级侧根长除臭椿外变异均较小; 整个过程中没有根死亡。研究结果部分支持两个假设。本研究还为进一步探究根模块构件增殖、生死过程机制提出新的建议, 即除需要更长的实验时间外, 还应该考虑: 1)多种资源各自及联合对根生长、生死过程的影响; 2)资源斑块和整个根系生长背景的资源丰度对比; 3)根构建和根维持的相对C消耗。  相似文献   

4.
Plant species can respond to small scale soil nutrient heterogeneityby proliferating roots or increasing nutrient uptake kineticsin nutrient-rich patches. Because root response to heterogeneitydiffers among species, it has been suggested that the distributionof soil resources could influence the outcome of interspecificcompetition. However, studies testing how plants respond toheterogeneity in the presence of neighbours are lacking. Inthis study, individuals of two species,Phytolacca americanaL.andAmbrosia artemisiifoliaL. were grown individually and incombination in soils with either a homogeneous or heterogeneousnutrient distribution. Above-ground biomass of individuallygrown plants of both species was greater when fertilizer waslocated in a single patch than when the same amount of fertilizerwas distributed evenly throughout the soil. Additionally, bothspecies proliferated roots in high-nutrient patches.A. artemisiifoliaexhibitedlarger root:shoot ratios, increased nitrogen depletion fromnutrient patches, and a higher growth rate thanP. americana,suggestingA. artemisiifoliais better suited to find and rapidlyexploit nutrient patches. In contrast to individually grownplants, soil nutrient distribution had no effect on final above-groundplant biomass for either species when grown with neighbours,even though roots were still concentrated in high nutrient patches.This study demonstrates that increased growth of isolated plantsas a consequence of localized soil nutrients is not necessarilyan indication that heterogeneity will affect interspecific encounters.In fact, despite a significant below-ground response, soil nutrientheterogeneity was inconsequential to above-ground performancewhen plants were grown with neighbours.Copyright 1999 Annalsof Botany Company Phytolacca americana, pokeweed,Ambrosia artemisiifolia, ragweed, nutrient heterogeneity, root proliferation, plasticity, foraging, nutrient patches.  相似文献   

5.
We evaluated (1) the responses of two co-occurring tropical tree species, Heliocarpuspallidus and Caesalpiniaeriostachys, to changes in light, (2) the ability of these species to search for and exploit a fertilized soil patch, (3) the relationship between the capacity to forage for a fertilized patch and the capacity to respond to changes in light availability and (4) how the relationship between light and nutrient acquisition influenced the competitive interactions between these species. Plants of the two species were exposed to a factorial combination of high (H) and low (L) light intensity and fertilized (+Fp) and unfertilized (−Fp) nutrient patches for 50 days. Half of the plants from H were then transferred to L (HL treatment), and half of the plants from L were transferred to H (LH). The remaining plants were kept in their original light condition and grown for another 50 days. Plants were grown in these light and patch treatments alone (one plant per pot) and in interspecific competition (one plant per species resulting in two plants per pot). Both species exploited fertilized patches by increasing root biomass and length in the patch. This enhanced plant productivity and growth rate mainly under LH and HH conditions for Heliocarpus and the HH condition for Caesalpinia). When plants in the HH light environment were grown with an unfertilized patch, plant biomass and relative growth rates (RGRs) were even lower than␣under the LL light environment [(HH–Fp)<LL]. However, the combined activity of shoot and roots when above- and below-ground resources were temporally and spatially heterogeneous influenced plant productivity and growth rate. The benefit from light increase (LH) was reduced when grown with an unfertilized patch. Larger reductions in root biomass, length and density in the patch, and in plant biomass and RGR, were exhibited by Heliocarpus than by Caesalpinia. These results suggest a close relationship between root foraging and light capture, where the benefit of the exploitation of the patch will be reflected in whole-plant benefit, if enough light is captured above-ground. In addition, the results suggest a change in the expected plant responses to light due to heterogeneity in soil nutrients, even though the fertilized patch was only a small proportion of the total soil volume. Leaf characteristics such as specific leaf area responded only to light conditions and not to patchily distributed nutrients. Root characteristics responded more strongly to nutrient heterogeneity. Competition modified the pattern of foraging under both high- and low-light conditions in Heliocarpus by 50 days, and the ability to forage for a fertilized patch under LL after 100 days of growth for Caesalpinia. Even though plant growth and productivity are greatly reduced under low-light conditions (HL and LL), competition modifies the ability of species to forage for a rich patch (especially for the fast-growing species Heliocarpus). Received: 24 November 1997 / Accepted: 15 June 1998  相似文献   

6.
Bingham  I.J.  Bengough  A.G. 《Plant and Soil》2003,250(2):273-282
Root systems of individual crop plants may encounter large variations in mechanical impedance to root penetration. Split-root experiments were conducted to compare the effects of spatial variation in soil strength on the morphological plasticity of wheat and barley roots, and its relationship to shoot growth. Plants of spring barley (Hordeum vulgare cv Prisma) and spring wheat (Triticum aestivum cv Alexandria) were grown for 12 days with their seminal roots divided between two halves of a cylinder packed with sandy loam soil. Three treatment combinations were imposed: loose soil where both halves of the cylinder were packed to 1.1 g cm–3 (penetrometer resistance 0.3 MPa), dense soil where both halves were packed to 1.4 g cm–3 (penetrometer resistance 1 MPa), and a split-root treatment where one half was packed to 1.1 and the other to 1.4 g cm–3. In barley, uniform high soil strength restricted the extension of main seminal root axes more than laterals. In the split-root treatment, the length of laterals and the dry weight of main axes and laterals were increased in the loose soil half and reduced in the dense soil half compared with their respective loose and dense-soil controls. No such compensatory adjustments between main axis and laterals and between individual seminal roots were found in wheat. Variation in soil strength had no effect on the density of lateral roots (number per unit main axis length) in either barley or wheat. The nature and extent of wheat root plasticity in response to variation in soil strength was very different from that in response to changes in N-supply in previous experiments. In spite of the compensatory adjustments in growth between individual seminal roots of barley, the growth of barley shoots, as in wheat, was reduced when part of the root system was in compacted soil.  相似文献   

7.
宁南山区典型植物根系分解特征及其对土壤养分的影响   总被引:1,自引:0,他引:1  
杨轩  李娅芸  安韶山  曾全超 《生态学报》2019,39(8):2741-2751
根系分解是陆地生态系统碳和养分循环的重要地下生态过程,研究宁南山区典型植物根系分解特征及其对土壤养分的影响,能够丰富和完善陆地生态系统的物质和能量循环机制,为我国黄土高原植被恢复过程中植物与土壤之间的养分循环提供依据。连续2年研究了宁南山区3种典型植物(长芒草、铁杆蒿和百里香)根系的分解特征及其对土壤养分的影响。结果表明,长芒草、铁杆蒿和百里香根系年分解指数(K)分别0.00891、0.01128、0.01408,分解速率依次表现为百里香铁杆蒿长芒草。分解16个月后3种典型植物根系释放大量养分,其中碳的释放量在57.05—124.39 g/kg;氮的释放量在0.12—0.47 g/kg。3种典型植物根系对土壤养分的影响主要表现为:试验结束时,0—5 cm表层土壤有机碳含量提高了0.17—0.35 g/kg,5—20 cm土层土壤有机碳含量提高了0.26—0.35 g/kg。相关性分析可知,植物根系养分释放量与土壤养分含量之间存在一定的负相关关系,当土壤养分含量较低时,根系会增加养分释放量进行补充。由此可知,根系分解提高了土壤养分含量,有效的促进了养分在根系-土壤中的循环。  相似文献   

8.
Little is known of the mechanisms employed by woody plants to acquire key resources such as water and nutrients in hyperarid environments. For phreatophytic plants, deep roots are necessary to access the water table, but given that most nutrients in many desert ecosystems are stored in the upper soil layers, viable shallow roots may be equally necessary for nutrient uptake. We sought to better understand the interaction between water and nutrient uptake from soil horizons differing in the relative abundance of these resources. To this end, we monitored plant water and nutrient status before and after applying flood irrigation to four phreatophytic perennial plant species in the remote hyperarid Taklamakan desert in western China. Sap flow in the roots of five plants of the perennial desert species Alhagi sparsifolia Shap., Karelina caspica (Pall.) Less., Calligonum caput medusea Schrenk, and Eleagnus angustifolia Hill. was monitored using the heat ratio method (HRM). Additionally we measured predawn and midday water potential, foliar nitrate reductase activity (NRA), xylem sap nutrient concentration and the concentration of total solutes in the leaves before, 12 and 96 h after flooding to investigate possible short-term physiological effects on water and nutrient status. Rates of sap flow measured during the day and at night in the absence of transpiration did not change after flooding. Moderately high rates of sap flow (HRM heat pulse velocity, 5–25 cm h−1) detected during the day in soils that had a near zero water content at the surface indicated that all species had contact to groundwater. There was no evidence from sap flow data that plants had utilised flood water to increase maximum rates of transpiration under similar climatic conditions, and there was no evidence of a process to improve the efficiency of water or nutrient uptake, such as hydraulic redistribution (i.e. the passive movement of water from moist soil to very dry soil via roots). Measurements of plant water status, xylem sap nutrient status, foliar NRA and the concentration of osmotically active substances were also unaffected by flood irrigation. Our results clearly show that groundwater acts as the major source of water and nutrients for these plants. The inability of plants to utilise abundant surface soil–water or newly available nutrients following irrigation was attributed to the absence of fine roots in the topsoil layer.  相似文献   

9.
The uptake of nutrients from deep soil layers has been shown to be important for the long-term nutrient sustainability of forest soils. When modelling nutrient uptake in forest ecosystems, the nutrient uptake capacity of trees is usually defined by the root distribution. However, this leads to the assumption that roots at different soil depths have the same capacity to take up nutrients. To investigate if roots located at different soil depths differ in their nutrient uptake capacity, here defined as the nutrient uptake rate under standardized conditions, a bioassay was performed on excised roots (<1 mm) of eight oak trees (Quercus robur L.). The results showed that the root uptake rate of 86Rb+ (used as an analogue for K+) declined with increasing soil depth, and the same trend was found for . The root uptake rate of , on the other hand, did not decrease with soil depth. These different physiological responses in relation to soil depth indicate differences in the oak roots, and suggest that fine roots in shallow soil layers may be specialized in taking up nutrients such as K+ and which have a high availability in these layers, while oak roots in deep soil layers are specialized in taking up other resources, such as P, which may have a high availability in deep soil layers. Regardless of the cause of the difference in uptake trends for the various nutrients, these differences have consequences for the modelling of the soil nutrient pool beneath oak trees and raise the question of whether roots can be treated uniformly, as has previously been done in forest ecosystem models. Responsible Editor: Herbert Johannes Kronzucker.  相似文献   

10.
Carnivorous plants grow in nutrient-poor habitats and obtain substantial amount of nitrogen from prey. Specialization toward carnivory may decrease the ability to utilize soil-derived sources of nutrients in some species. However, no such information exists for pitcher plants of the genus Nepenthes, nor the effect of nutrient uptake via the roots on photosynthesis in carnivorous plants is known. The principal aim of present study was to investigate, whether improved soil nutrient status increases photosynthetic efficiency in prey-deprived pitcher plant Nepenthes talangensis. Gas exchange and chlorophyll (Chl) fluorescence were measured simultaneously and were correlated with Chl and nitrogen concentration as well as with stable carbon isotope abundance (δ13C) in control and fertilized N. talangensis plants. Net photosynthetic rate (P N) and maximum- (Fv/Fm) and effective quantum yield of photosystem II (ΦPSII) were greater in the plants supplied with nutrients. Biomass, leaf nitrogen, and Chl (a+b) also increased in fertilized plants. In contrast, δ13C did not differ significantly between treatments indicating that intercellular concentration of CO2 did not change. We can conclude that increased root nutrient uptake enhanced photosynthetic efficiency in prey-deprived N. talangensis plants. Thus, the roots of Nepenthes plants are functional and can obtain a substantial amount of nitrogen from the soil.  相似文献   

11.
Root exudates as mediators of mineral acquisition in low-nutrient environments   总被引:39,自引:3,他引:36  
Plant developmental processes are controlled by internal signals that depend on the adequate supply of mineral nutrients by soil to roots. Thus, the availability of nutrient elements can be a major constraint to plant growth in many environments of the world, especially the tropics where soils are extremely low in nutrients. Plants take up most mineral nutrients through the rhizosphere where micro-organisms interact with plant products in root exudates. Plant root exudates consist of a complex mixture of organic acid anions, phytosiderophores, sugars, vitamins, amino acids, purines, nucleosides, inorganic ions (e.g. HCO3 , OH, H+), gaseous molecules (CO2, H2), enzymes and root border cells which have major direct or indirect effects on the acquisition of mineral nutrients required for plant growth. Phenolics and aldonic acids exuded directly by roots of N2-fixing legumes serve as major signals to Rhizobiaceae bacteria which form root nodules where N2 is reduced to ammonia. Some of the same compounds affect development of mycorrhizal fungi that are crucial for phosphate uptake. Plants growing in low-nutrient environments also employ root exudates in ways other than as symbiotic signals to soil microbes involved in nutrient procurement. Extracellular enzymes release P from organic compounds, and several types of molecules increase iron availability through chelation. Organic acids from root exudates can solubilize unavailable soil Ca, Fe and Al phosphates. Plants growing on nitrate generally maintain electronic neutrality by releasing an excess of anions, including hydroxyl ions. Legumes, which can grow well without nitrate through the benefits of N2 reduction in the root nodules, must release a net excess of protons. These protons can markedly lower rhizosphere pH and decrease the availability of some mineral nutrients as well as the effective functioning of some soil bacteria, such as the rhizobial bacteria themselves. Thus, environments which are naturally very acidic can pose a challenge to nutrient acquisition by plant roots, and threaten the survival of many beneficial microbes including the roots themselves. A few plants such as Rooibos tea (Aspalathus linearis L.) actively modify their rhizosphere pH by extruding OH and HCO3 to facilitate growth in low pH soils (pH 3 – 5). Our current understanding of how plants use root exudates to modify rhizosphere pH and the potential benefits associated with such processes are assessed in this review.  相似文献   

12.
We investigated soil exploration by roots and plant growth in a heterogeneous environment to determine whether roots can selectively explore a nutrient-rich patch, and how nutrient heterogeneity affects biomass allocation and total biomass before a patch is reached. Lolium perenne L. plants were grown in a factorial experiment with combinations of fertilization (heterogeneous and homogeneous) and day of harvest (14, 28, 42, or 56 days after transplanting). The plant in the heterogeneous treatment was smaller in its mean total biomass, and allocated more biomass to roots. The distributions of root length and root biomass in the heterogeneous treatment did not favor the nutrient-rich patch, and did not correspond to the patchy distribution of inorganic nitrogen. Specific root length (length/biomass) was higher and root elongation was more extensive both laterally and vertically in the heterogeneous treatment. These characteristics may enable plants to acquire nutrients efficiently and increase the probability of encountering nutrient-rich patches in a heterogeneous soil. However, heterogeneity of soil nutrients would hold back plant growth before a patch was reached. Therefore, although no significant selective root placement in the nutrient-rich patch was observed, plant growth before reaching nutrient-rich patches differed between heterogeneous and homogeneous environments.  相似文献   

13.
Context-dependent foraging behaviour is acknowledged and well documented for a diversity of animals and conditions. The contextual determinants of plant foraging behaviour, however, are poorly understood. Plant roots encounter patchy distributions of nutrients and soil fungi. Both of these features affect root form and function, but how they interact to affect foraging behaviour is unknown. We extend the use of the marginal value theorem to make predictions about the foraging behaviour of roots, and test our predictions by manipulating soil resource distribution and inoculation by soil fungi. We measured plant movement as both distance roots travelled and time taken to grow through nutrient patches of varied quality. To do this, we grew Achillea millefolium in the centers of modified pots with a high-nutrient patch and a low-nutrient patch on either side of the plant (heterogeneous) or patch-free conditions (homogeneous). Fungal inoculation, but not resource distribution, altered the time it took roots to reach nutrient patches. When in nutrient patches, root growth decreased relative to homogeneous soils. However, this change in foraging behaviour was not contingent upon patch quality or fungal inoculation. Root system breadth was larger in homogeneous than in heterogeneous soils, until measures were influenced by pot edges. Overall, we find that root foraging behaviour is modified by resource heterogeneity but not fungal inoculation. We find support for predictions of the marginal value theorem that organisms travel faster through low-quality than through high-quality environments, with the caveat that roots respond to nutrient patches per se rather than the quality of those patches.  相似文献   

14.
Summary Changes in soil and plant nutrient conditions were evaluated following various burn and clip treatments in a longleaf pine-wiregrass savanna in Bladen Co., N.C., USA. Ground fires were found to add substantial quantities of N, P, K, Ca, and Mg to the soil, though not necessarily in forms immediately available to plants. Less than 1% of the total nitrogen in the charred residue (ash) is present as nitrate or ammonium. Considerable quantities of all nutrients examined were lost to the atmosphere during burning. Green leaf tissue in recently burned areas was consistently higher in N, P, K, Ca, and Mg compared to unburned areas. Howerver, when compared to similar tissues from clipped plots, burned area tissues were significantly higher in N, Ca, and Mg only. Data presented here suggest that tissue age significantly affects nutrient content and must be considered in any analysis of tissue nutrient content following burning. Within 4–6 months following fire, burned-area tissue nutrient content decreases to concentrations found in the unburned area. Burning resulted in initial enrichment of available soil nutrients including PO4, K+, Ca++, and Mg++, however, NO3 -, and NH4 + concentrations in burned soil were not significantly different from unbruned soil. Soil and plant nutrient changes in an area burned two years in succession indicate that repeated burning may diminish nutrient availability. Plant response to various nutrient enrichment treatments of the soil indicated that nitrogen is limiting growth in both burned and unburned soils and that burning may alter some factors other than nutrients which may retard plant growth in unburned areas.  相似文献   

15.
To understand the importance of plants in structuring the vertical distributions of soil nutrients, we explored nutrient distributions in the top meter of soil for more than 10,000 profiles across a range of ecological conditions. Hypothesizing that vertical nutrient distributions are dominated by plant cycling relative to leaching, weathering dissolution, and atmospheric deposition, we examined three predictions: (1) that the nutrients that are most limiting for plants would have the shallowest average distributions across ecosystems, (2) that the vertical distribution of a limiting nutrient would be shallower as the nutrient became more scarce, and (3) that along a gradient of soil types with increasing weathering-leaching intensity, limiting nutrients would be relatively more abundant due to preferential cycling by plants. Globally, the ranking of vertical distributions among nutrients was shallowest to deepest in the following order: P > K > Ca > Mg > Na = Cl = SO4. Nutrients strongly cycled by plants, such as P and K, were more concentrated in the topsoil (upper 20 cm) than were nutrients usually less limiting for plants such as Na and Cl. The topsoil concentrations of all nutrients except Na were higher in the soil profiles where the elements were more scarce. Along a gradient of weathering-leaching intensity (Aridisols to Mollisols to Ultisols), total base saturation decreased but the relative contribution of exchangeable K+ to base saturation increased. These patterns are difficult to explain without considering the upward transport of nutrients by plant uptake and cycling. Shallower distributions for P and K, together with negative associations between abundance and topsoil accumulation, support the idea that plant cycling exerts a dominant control on the vertical distribution of the most limiting elements for plants (those required in high amounts in relation to soil supply). Plant characteristics like tissue stoichiometry, biomass cycling rates, above- and belowground allocation, root distributions, and maximum rooting depth may all play an important role in shaping nutrient profiles. Such vertical patterns yield insight into the patterns and processes of nutrient cycling through time.  相似文献   

16.
Mentha aquatica L. was grown at different nutrient availabilities in water and in air at 60% RH. The plants were kept at 600 mmol m?3 free CO2 dissolved in water (40 times air equilibrium) and at 30 mmol m?3 CO2 in air to ensure CO2 saturation of growth in both environments. We quantified the transpiration-independent water transport from root to shoot in submerged plants relative to the transpiration stream in emergent plants and tested the importance of transpiration in sustaining nutrient flux and shoot growth. The acropetal water flow was substantial in submerged Mentha aquatica, reaching 14% of the transpiration stream in emergent plants. The transpiration-independent mass flow of water from the roots, measured by means of tritiated water, was diverted to leaves and adventitious shoots in active growth. The plants grew well and at the same rates in water and air, but nutrient fluxes to the shoot were greater in plants grown in air than in those that were submerged when they were rooted in fertile sediments. Restricted O2 supply to the roots of submerged plants may account for the smaller nutrient concentrations, though these exceeded the levels required to saturate growth. In hydroponics, the root medium was aerated and circulated between submerged and emergent plants to minimize differences in medium chemistry, and here the two growth forms behaved similarly and could fully exploit nutrient enrichment. It is concluded that the lack of transpiration from leaf surfaces in a vapour-saturated atmosphere, or under water, is not likely to constrain the transfer of nutrients from root to shoot in herbaceous plants. Nutrient deficiency under these environmental conditions is more likely to derive from restricted development and function of the roots in waterlogged anoxic soils or from low porewater concentrations of nutrients.  相似文献   

17.
We have measured the uptake capacity of nitrogen (N) and potassium (K) from different soil depths by injecting 15N and caesium (Cs; as an analogue to K) at 5 and 50 cm soil depth and analysing the recovery of these markers in foliage and buds. The study was performed in monocultures of 40-year-old pedunculate oak (Quercus robur), European beech (Fagus sylvatica) and Norway spruce (Picea abies (L.) Karst.) located at an experimental site in Palsgård, Denmark. The markers were injected as a solution through plastic tubes around 20 trees of each species at either 5 or 50 cm soil depth in June 2003. After 65 days foliage and buds were harvested and the concentrations of 15N and Cs analysed. The recovery of 15N in the foliage and buds tended to be higher from 5 than 50 cm soil depth in oak whereas they where similar in spruce and beech after compensation for differences in immobilization of 15N in the soil. In oak more Cs was recovered from 5 than from 50 cm soil depth whereas in beech and spruce no difference could be detected. Out of the three investigated tree species, oak was found to have the lowest capacity to take up Cs at 50 cm soil depth compared to 5 cm soil depth also after compensating for differences in discrimination against Cs by the roots. The uptake capacity from 50 cm soil depth compared with 5 cm was higher than expected from the root distribution except for K in oak, which can probably be explained by a considerable overlap of the uptake zones around the roots and mycorrhizal hyphae in the topsoil. The study also shows that fine roots at different soil depths with different physiological properties can influence the nutrient uptake of trees. Estimates of fine root distribution alone may thus not reflect the nutrient uptake capacity of trees with sufficient accuracy. Our study shows that deep-rooted trees such as oak may have lower nutrient uptake capacity at deeper soil layers than more shallow-rooted trees such as spruce, as we found no evidence that deep-rooted trees obtained proportionally more nutrients from deeper soil layers. This has implications for models of nutrient cycling in forest ecosystems that use the distribution of roots as the sole criterion for predicting uptake of nutrients from different soil depths.  相似文献   

18.

Background

A hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource acquisition is optimized by the coincidence of root foraging and resource availability in time and space. Since water and nitrate enter deeper soil strata over time and are initially depleted in surface soil strata, root systems with rapid exploitation of deep soil would optimize water and N capture in most maize production environments.• The ideotype Specific phenes that may contribute to rooting depth in maize include (a) a large diameter primary root with few but long laterals and tolerance of cold soil temperatures, (b) many seminal roots with shallow growth angles, small diameter, many laterals, and long root hairs, or as an alternative, an intermediate number of seminal roots with steep growth angles, large diameter, and few laterals coupled with abundant lateral branching of the initial crown roots, (c) an intermediate number of crown roots with steep growth angles, and few but long laterals, (d) one whorl of brace roots of high occupancy, having a growth angle that is slightly shallower than the growth angle for crown roots, with few but long laterals, (e) low cortical respiratory burden created by abundant cortical aerenchyma, large cortical cell size, an optimal number of cells per cortical file, and accelerated cortical senescence, (f) unresponsiveness of lateral branching to localized resource availability, and (g) low Km and high Vmax for nitrate uptake. Some elements of this ideotype have experimental support, others are hypothetical. Despite differences in N distribution between low-input and commercial maize production, this ideotype is applicable to low-input systems because of the importance of deep rooting for water acquisition. Many features of this ideotype are relevant to other cereal root systems and more generally to root systems of dicotyledonous crops.  相似文献   

19.
Brand  J.D.  Tang  C.T.  Graham  R.D. 《Plant and Soil》2000,224(2):207-215
Two glasshouse experiments were conducted to examine the effects of nutrient supply and rhizobial inoculation on the performance of Lupinus pilosus genotypes differing in tolerance to calcareous soils. In experiment 1, plants were grown for 84 days in a calcareous soil (50% CaCO3; soil water content 90% of field capacity) at four nutrient treatments (no-added nutrients, added nutrients without Fe, added nutrients with soil applied FeEDDHA, added nutrients with foliar applied FeSO4). In experiment 2, plants were grown for 28 days with supply of NH4NO3 without inoculation or inoculated with Bradyrhizobium sp. (Lupinus). Chlorosis in the youngest leaves was a good indicator of the relative tolerance of the genotypes to the calcareous soil in both experiments, except the treatment with FeEDDHA at 5 mg kg–1 soil which was toxic to all genotypes. Chlorosis scores correlated with chlorophyll meter readings and chlorophyll concentrations. The foliar application of FeSO4 did not fully alleviate chlorotic symptoms despite concentrations of active or total Fe in the youngest leaves being increased. Adding nutrients and chemical nitrogen did not change the severity of chlorosis or improve the growth of the plant. The nutrient supply did not alter the ranking of tolerance of genotypes to the calcareous soil. The results suggest that nutrient deficiency or poor nodulation was not a major cause of poor plant growth on calcareous soils and that bicarbonate may exert a direct effect on chlorophyll synthesis. The mechanism for tolerance is likely to be related to an ability to exclude bicarbonate or prevent its transport to the leaves.  相似文献   

20.
Nutrient uptake and translocation by above-ground adventitious roots and below-ground roots of woodySalix syringiana saplings were studied with gamma spectrometry. Each of four radionuclides (75Se,138Cs,54Mn, and65Zn) administered to adventitious and belowground roots were detected in stems and leaves within one month. Nuclides tended to be immobilized in the leaves and branches closest to the adventitious roots that absorbed them, while nuclides absorbed from below-ground sources were distributed more evenly throughout the plant. The capacity of adventitious roots to acquire nutrients from above-ground sources suggests they function as a potential auxiliary pathway of nutrient uptake and might enhance plant nutrient status where below-ground root uptake it hindered by adverse soil conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号