首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Basic fibroblast growth factor (FGF)-2 is important for vessel formation and/or maintenance of vascular integrity in the embryo. FGF signaling may be mediated through transmembrane tyrosine kinase receptors or directly through intracellular pathways that do not involve receptor activation. To determine the role of receptor-mediated signaling in endothelial cells, an adenovirus encoding truncated FGF receptor (FGFR)-1, under the control of the cytomegalovirus promoter, was expressed in endothelial cells. FGF signaling was impaired, as indicated by inhibition of MAPK phosphorylation. Functional consequences included inhibition of endothelial cell migration and induction of apoptosis. To address the role of endothelial FGFR signaling in vascular development, recombinant adenovirus encoding a dominant-negative FGFR was injected into the sinus venosus of embryonic day 9.0 cultured mouse embryos. Previous studies demonstrated that transgenes delivered via adenovirus, under the control of the cytomegalovirus promoter, are expressed selectively in the developing vasculature. Embryos expressing a control adenovirus developed normally, whereas those expressing the FGFR-1 mutant exhibited abnormal embryonic and extra-embryonic vascular development. These data demonstrate that FGF, by signaling through the FGFR, plays a pivotal role in the development and maintenance of a mature vascular network in the embryo.  相似文献   

3.
The plasma membrane is not homogeneous but contains specific subcompartments characterized by their unique lipid and protein composition. Based on their enrichment in various signaling molecules, these membrane microdomains are recognized to be sites of localized signal transduction for a number of extracellular stimuli. We have previously shown that fibroblast growth factor-2 (FGF2) induced a specific signaling response within a lipid raft membrane microdomain in human neuroblastoma cells characterized by the tyrosine phosphorylation of a p80 phosphoprotein. Herein, we show that this protein is the signaling adaptor FRS2 and that it is localized exclusively to lipid rafts in vitro and in vivo. We have examined how the tyrosine phosphorylation and serine-threonine phosphorylation of FRS2 within lipid rafts affect the response of cells to FGF2 signaling. Our data suggest that activation of protein kinase C, Src family kinases, and MEK1/2 are involved in regulating serine-threonine phosphorylation of FRS2, which can indirectly affect FRS2 phosphotyrosine levels. We also show that Grb2 is recruited to lipid rafts during signaling events and that activation of MEK1/2 by different mechanisms within lipid rafts may lead to different cellular responses. This work suggests that compartmentalized signaling within lipid rafts may provide a level of specificity for growth factor signaling.  相似文献   

4.
Constitutively activated Ras proteins are associated with a large number of human cancers, including those originating from skeletal muscle tissue. In this study, we show that ectopic expression of oncogenic Ras stimulates proliferation of the MM14 skeletal muscle satellite cell line in the absence of exogenously added fibroblast growth factors (FGFs). MM14 cells express FGF-1, -2, -6, and -7 and produce FGF protein, yet they are dependent on exogenously supplied FGFs to both maintain proliferation and repress terminal differentiation. Thus, the FGFs produced by these cells are either inaccessible or inactive, since the endogenous FGFs elicit no detectable biological response. Oncogenic Ras-induced proliferation is abolished by addition of an anti-FGF-2 blocking antibody, suramin, or treatment with either sodium chlorate or heparitinase, demonstrating an autocrine requirement for FGF-2. Oncogenic Ras does not appear to alter cellular export rates of FGF-2, which does not possess an NH(2)-terminal or internal signal peptide. However, oncogenic Ras does appear to be involved in releasing or activating inactive, extracellularly sequestered FGF-2. Surprisingly, inhibiting the autocrine FGF-2 required for proliferation has no effect on oncogenic Ras-mediated repression of muscle-specific gene expression. We conclude that oncogenic Ras-induced proliferation of skeletal muscle cells is mediated via a unique and novel mechanism that is distinct from Ras-induced repression of terminal differentiation and involves activation of extracellularly localized, inactive FGF-2.  相似文献   

5.
Fibroblast growth factor receptors (Fgfrs) consist of four signaling family members and one nonsignaling "decoy" receptor, Fgfr-like 1 (Fgfrl1), all of which are expressed in the developing kidney. Several studies have shown that exogenous fibroblast growth factors (Fgfs) affect growth and maturation of the metanephric mesenchyme (MM) and ureteric bud (UB) in cultured tissues. Transgenic and conditional knockout approaches in whole animals have shown that Fgfr1 and Fgfr2 (predominantly the IIIc isoform) in kidney mesenchyme are critical for early MM and UB formation. Conditional deletion of the ligand, Fgf8, in nephron precursors or global deletion of Fgfrl1 interrupts nephron formation. Fgfr2 (likely the IIIb isoform signaling downstream of Fgf7 and Fgf10) is critical for ureteric morphogenesis. Moreover, Fgfr2 appears to act independently of Frs2α (the major signaling adapter for Fgfrs) in regulating UB branching. Loss of Fgfr2 in the MM leads to many kidney and urinary tract anomalies, including vesicoureteral reflux. Thus Fgfr signaling is critical for patterning of virtually all renal lineages at early and later stages of development.  相似文献   

6.
We have confirmed the hypothesis that a mitotoxin resulting from the conjugation of basic fibroblast growth factor and saporin exerts its cytotoxic effect through specific interaction with the basic fibroblast growth factor (FGF) receptor. Accordingly, the mitotoxin stimulates tyrosine phosphorylation of the 90 kD substrate that characterizes the initial cellular response to basic FGF. Cross-linking experiments show that radio-labeled basic fibroblast growth factor-saporin (FGF-SAP) binds to the receptor. Suramin, an inhibitor of growth factor receptor binding, inhibits the cytotoxicity of basic FGF-SAP. In a study of 4 different cell types, there is a decrease in the ED50 of the mitotoxin as the receptor number per cell increases. We have verified the cytotoxicity of the mitotoxin in 3 different assay systems. As expected, it is effective in the inhibition of protein synthesis and DNA synthesis, as well as of cell count. Binding of basic FGF-SAP which will result in cytotoxicity occurs very rapidly; 5 minutes of incubation of 10 nM basic FGF-SAP with cells results in 80% inhibition of cell count. The in vitro data indicate that the basic FGF-SAP is a receptor specific and potent suicide antagonist of basic FGF. Its potential as an anti-FGF for therapeutic and research uses in vivo is discussed.  相似文献   

7.
Fibroblast growth factors (FGFs) are potent mitogens, morphogens, and inducers of angiogenesis, and FGF signaling governs the genesis of diverse tissues and organs from the earliest stages. With such fundamental embryonic and homeostatic roles, it follows that aberrant FGF signaling underlies a variety of diseases. Pathological modifications to FGF expression are known to cause salivary gland aplasia and autosomal dominant hypophosphatemic rickets, while mutations in FGF receptors (FGFRs) result in a range of skeletal dysplasias. Anomalous FGF signaling is also associated with cancer development and progression. Examples include the overexpression of FGF2 and FGF6 in prostate cancer, and FGF8 overexpression in breast and prostate cancers. Alterations in FGF signaling regulators also impact tumorigenesis, which is exemplified by the down-regulation of Sprouty 1, a negative regulator of FGF signaling, in prostate cancer. In addition, several FGFRs are mutated in human cancers (including FGFR2 in gastric cancer and FGFR3 in bladder cancer). We recently identified intriguing alterations in the FGF pathway in a novel model of bladder carcinoma that consists of a parental cell line (TSU-Pr1/T24) and two sublines with increasing metastatic potential (TSU-Pr1-B1 and TSU-Pr1-B2), which were derived successively through in vivo cycling. It was found that the increasingly metastatic sublines (TSU-Pr1-B1 and TSU-Pr1-B2) had undergone a mesenchymal to epithelial transition. FGFR2IIIc expression, which is normally expressed in mesenchymal cells, was increased in the epithelial-like TSU-Pr1-B1 and TSU-Pr1-B2 sublines and FGFR2 knock-down was associated with the reversion of cells from an epithelial to a mesenchymal phenotype. These observations suggest that modified FGF pathway signaling should be considered when studying other cancer types.  相似文献   

8.
Activation of the fibroblast growth factor (FGF) receptor 3 (FGFR3) has been linked to the development of human cancers by mechanisms that are not well understood. The MUC1 oncoprotein is aberrantly overexpressed by certain hematologic malignancies and most human carcinomas. The present studies show that MUC1 associates with FGFR3. Stimulation of cells with FGF1 increased the interaction between MUC1 and FGFR3. FGF1 stimulation also induced c-Src-dependent tyrosine phosphorylation of the MUC1 cytoplasmic domain on a YEKV motif. FGF1-induced tyrosine phosphorylation of MUC1 was associated with increased binding of MUC1 to beta-catenin and targeting of MUC1 and beta-catenin to the nucleus. FGF1 also induced binding of MUC1 to the heat shock protein 90 (HSP90) chaperone by a mechanism dependent on phosphorylation of the YEKV motif. Notably, beta-catenin and HSP90 compete for binding to the MUC1 cytoplasmic domain, indicating that MUC1 forms mutually exclusive complexes with these proteins. The results also show that inhibition of HSP90 with geldanamycin or 17-(allylamino)-17-demethoxygeldanamycin attenuates FGF1-induced binding of MUC1 to HSP90 and targeting of MUC1 to the mitochondrial outer membrane. These findings indicate that FGF1 induces phosphorylation of MUC1 on YEKV and thereby activates two distinct pathways: (a) nuclear localization of MUC1 and beta-catenin and (b) delivery of MUC1 to mitochondria by HSP90.  相似文献   

9.
Basic fibroblast growth factor (bFGF) plays an important role in angiogenesis. However, the underlying mechanisms are not clear. Mg2+ is the most abundant intracellular divalent cation in the body and plays critical roles in many cell functions. We investigated the effect of bFGF on the intracellular Mg2+ concentration ([Mg2+]i) in human umbilical vein endothelial cells (HUVECs). bFGF increased [Mg2+]i in a dose-dependent manner, independent of extracellular Mg2+. This bFGF-induced [Mg2+]i increase was blocked by tyrosine kinase inhibitors (tyrphostin A-23 and genistein), phosphatidylinositol 3-kinase (PI3K) inhibitors (wortmannin and LY294002) and a phospholipase Cγ (PLCγ) inhibitor (U73122). In contrast, mitogen-activated protein kinase inhibitors (SB202190 and PD98059) did not affect the bFGF-induced [Mg2+]i increase. These results suggest that bFGF increases the [Mg2+]i from the intracellular Mg2+ stores through the tyrosine kinase/PI3K/PLCγ-dependent signaling pathways.  相似文献   

10.

OBJECTIVE:

The Objective of this study was to identify the association of mutation of fibroblast growth factor receptor 1 (FGFR1), FGFR2 genes with syndromic as well as non-syndromic craniosynostosis in Indian population.

MATERIALS AND METHODS:

Retrospective analysis of our records from January 2008 to December 2012 was done. A total of 41 cases satisfying the inclusion criteria and 51 controls were taken for the study. A total volume of 3 ml blood from the patient as well as parents was taken. Deoxyribonucleic acid extracted using phenol chloroform extraction method followed by polymerase chain reaction-restriction fragment length polymorphism method.

RESULTS:

There were 33 (80.4%) non-syndromic cases of craniosynostosis while 8 (19.5%) were syndromic. Out of these 8 syndromic cases, 4 were Apert syndrome, 3 were Crouzon syndrome and 1 Pfeiffer syndrome. Phenotypically the most common non-syndromic craniosynostosis was scaphocephaly (19, 57.7%) followed by plagiocephaly in (14, 42.3%). FGFR1 mutation (Pro252Arg) was seen in 1 (2.4%) case of non-syndromic craniosynostosis while no association was noted either with FGFR1 or with FGFR2 mutation in syndromic cases. None of the control group showed any mutation.

CONCLUSION:

Our study proposed that FGFR1, FGFR2 mutation, which confers predisposition to craniosynostosis does not exist in Indian population when compared to the western world.  相似文献   

11.
Although fibroblast growth factor 2 (FGF2) and fibroblast growth factor receptor 3 (FGFR3) both inhibit longitudinal bone growth, little is known about the relationship between FGF2 and FGFR3. Accordingly, the current study examined the expression of FGFR3 mRNA after the administration of FGF2 using cultured chondrocytes from day 17 chick embryos to evaluate the relationship between FGF2 and FGFR3. The chondrocytes were isolated from the caudal one-third portion (LS) of sterna, peripheral regions (USP) and central core regions (USC) of the cephalic portion of the sterna, and lower portion of the proximal tibial growth plate (Ti) of day 17 chick embryo. The expression of FGFR1, FGFR3, and type II and X collagen mRNA in the chondrocytes from the LS, USP, USC, and Ti was determined. FGFR1 was not expressed in the LS and USP chondrocytes, yet strongly expressed in the USC and Ti chondrocytes. With a treatment of FGF2, the expression of FGFR1 slightly increased in the USC chondrocytes and was not related with the concentration of FGF2 in the Ti chondrocytes. FGFR3 was expressed in all the chondrocyte types, yet strongly increased in the LS, USC, USP, and Ti in that order according to the concentration of FGF2. For the LS and USP chondrocytes, the expression of FGFR3 with FGF2 increased in a 4-day culture, yet decreased in a 6-day culture, whereas for the USC chondrocytes, the expression of FGFR3 mRNA with FGF2 increased in a 2-day culture, yet decreased in a 4-day culture, suggesting that the hypertrophic chondrocytes were more numerous and sensitive compared to the proliferative chondrocytes. For all the chondrocyte types, FGF2 appeared to be up-regulated to FGFR3, as the expression of FGFR3 mRNA increased with a higher concentration of FGF2 until a peak level. In conclusion, FGF2 was found to up-regulate to FGFR3 until the peak level of FGFR3 mRNA expression, while in hypertrophic chondrocytes, FGFR3 appeared to cause the differentiaton of chondrocytes, resulting in the inhibition of longitudinal bone growth after the peak level of FGFR3 mRNA expression.  相似文献   

12.
13.
Cellular signaling by fibroblast growth factor receptors   总被引:20,自引:0,他引:20  
The 22 members of the fibroblast growth factor (FGF) family of growth factors mediate their cellular responses by binding to and activating the different isoforms encoded by the four receptor tyrosine kinases (RTKs) designated FGFR1, FGFR2, FGFR3 and FGFR4. Unlike other growth factors, FGFs act in concert with heparin or heparan sulfate proteoglycan (HSPG) to activate FGFRs and to induce the pleiotropic responses that lead to the variety of cellular responses induced by this large family of growth factors. A variety of human skeletal dysplasias have been linked to specific point mutations in FGFR1, FGFR2 and FGFR3 leading to severe impairment in cranial, digital and skeletal development. Gain of function mutations in FGFRs were also identified in a variety of human cancers such as myeloproliferative syndromes, lymphomas, prostate and breast cancers as well as other malignant diseases. The binding of FGF and HSPG to the extracellular ligand domain of FGFR induces receptor dimerization, activation and autophosphorylation of multiple tyrosine residues in the cytoplasmic domain of the receptor molecule. A variety of signaling proteins are phosphorylated in response to FGF stimulation including Shc, phospholipase-Cgamma, STAT1, Gab1 and FRS2alpha leading to stimulation of intracellular signaling pathways that control cell proliferation, cell differentiation, cell migration, cell survival and cell shape. The docking proteins FRS2alpha and FRS2beta are major mediators of the Ras/MAPK and PI-3 kinase/Akt signaling pathways as well as negative feedback mechanisms that fine-tune the signal that is initiated at the cell surface following FGFR stimulation.  相似文献   

14.
Brain-derived neurotrophic factor (BDNF) promotes neuronal survival. Gaining an understanding of how BDNF, via the tropomyosin-related kinase B (TRKB) receptor, elicits specific cellular responses is of contemporary interest. Expression of mutant TrkB in fibroblasts, where tyrosine 484 was changed to phenylalanine, abrogated Shc association with TrkB, but only attenuated and did not block BDNF-induced phosphorylation of mitogen-activated protein kinase (MAPK). This suggests there is another BDNF-induced signaling mechanism for activating MAPK, which compelled a search for other TrkB substrates. BDNF induces phosphorylation of fibroblast growth factor receptor substrate 2 (FRS2) in both fibroblasts engineered to express TrkB and human neuroblastoma (NB) cells that naturally express TrkB. Additionally, BDNF induces phosphorylation of FRS2 in primary cultures of cortical neurons, thus showing that FRS2 is a physiologically relevant substrate of TrkB. Data are presented demonstrating that BDNF induces association of FRS2 with growth factor receptor-binding protein 2 (GRB2) in cortical neurons, fibroblasts, and NB cells, which in turn could activate the RAS/MAPK pathway. This is not dependent on Shc, since BDNF does not induce association of Shc and FRS2. Finally, the experiments suggest that FRS2 and suc-associated neurotrophic factor-induced tyrosine-phosphorylated target are the same protein.  相似文献   

15.
16.
Treatment of Swiss 3T3 fibroblasts with basic fibroblast growth factor (bFGF) lead to a rapid reduction in epidermal growth factor (EGF) binding and a slower inhibition of EGF receptor autophosphorylation. The reduction in binding was due to a complete loss of the highest affinity EGF binding sites and a reduction in the lower affinity binding sites. Neither the inhibition of EGF binding nor the inhibition of EGF receptor autophosphorylation required protein kinase C. Treatment of cells with bFGF stimulated the phosphorylation of the EGF receptor, which persisted for several hours. The inhibition of EGF receptor autophosphorylation by bFGF was reduced in the presence of cycloheximide. However, cycloheximide had no effect on the reduction of EGF binding by bFGF. In contrast to these results with Swiss 3T3 fibroblasts, treatment of PC12 cells with bFGF lead to a reduction in EGF binding but no inhibition of EGF receptor autophosphorylation. Thus inhibited of EGF receptor autophosphorylation and inhibition of EGF binding can be uncoupled. © 1993 Wiley-Liss, Inc.  相似文献   

17.
Syndecan-4 is one of the principal heparan sulfate-carrying proteins on the cell surface. Unlike other members of syndecan family, syndecan-4 mediates phosphatidylinositol 4,5-bisphosphate 2 (PIP(2))-dependent PKC-alpha activation, and overexpression of syndecan-4 in vitro results in enhanced FGF2 signaling. The present study was designed to test the functional effect of increased syndecan-4 expression in endothelial cells in transgenic mice. Several transgenic mice lines expressing syndecan-4 cDNA under control of human endothelial nitric oxide (NO) synthase (eNOS) promoter were generated. Exogenous syndecan-4 was mainly expressed in the heart, brain, and lungs. In particular, the heart demonstrated the greatest increase in the ratio of transgenic-to-native syndecan-4 gene expression. Vessels from the eNOS-syndecan-4 mice demonstrated more pronounced vasodilation to FGF2 but not to VEGF-A(165), sodium nitroprusside, and A 23187 compared with wild-type mice. To elucidate the mechanism of this effect, we measured NO release from primary cardiac endothelial cells isolated from transgenic or wild-type adult mice. Cells from the eNOS-syndecan-4 transgenic mice had a significant increase in FGF2- and VEGF-A(165)-induced NO release compared with endothelial cells from the wild-type mice. However, the absolute magnitude of this increase was higher for FGF2 than VEGF-A(165). In conclusion, enhanced syndecan-4 expression in mouse cardiac endothelial cells results in preferential augmentation of FGF2 but not VEGF-A(165)-induced NO release.  相似文献   

18.
The Id proteins play an important role in proliferation, differentiation, and tumor development. We report here that Id gene expression can be regulated by the insulin-like growth factor I receptor (IGF-IR), a receptor that also participates in the regulation of cellular proliferation and differentiation. Specifically, we found that the IGF-IR activated by its ligand was a strong inducer of Id2 gene expression in 32D murine hemopoietic cells. This activation was not simply the result of cellular proliferation, as Id2 gene expression was higher in 32D cells stimulated by IGF-I than in cells exponentially growing in interleukin-3. The up-regulation of Id2 gene expression was largely dependent on the presence of insulin receptor substrate-1, a major substrate of the IGF-IR and a potent activator of the phosphatidylinositol 3-kinase (PI3K) pathway. The role of PI3K activity in the up-regulation of Id2 gene expression by the IGF-IR was confirmed by different methods and in different cell types. In 32D cells, the up-regulation of Id2 gene expression by the PI3K pathway correlated with interleukin-3 independence and inhibition of differentiation.  相似文献   

19.
Expression of the cysteine-rich fibroblast growth factor (FGF) receptor (CFR) in COS-1 cells strongly inhibits the secretion of co-expressed FGF3. By using a column retention assay and affinity chromatography, we demonstrate that at physiological salt concentrations FGF3 binds with strong affinity to CFR in vivo and in vitro. Furthermore, to show that FGF3 binds to CFR in vivo, truncation mutants of CFR with changed subcellular distributions were shown to cause a similar redistribution of FGF3. Although CFR is a 150-kDa integral membrane glycoprotein that is primarily located in the Golgi apparatus, we show here that in COS-1 cells a substantial proportion of CFR is secreted. This is due to a carboxyl-terminal proteolytic cleavage that releases the intraluminal portion of the protein for secretion. However, the apparent size of the integral membrane and secreted CFR appears similar, since the loss of protein mass is balanced by a gain of complex carbohydrates. The released CFR is associated with the extracellular matrix through its affinity for glycosaminoglycans. These findings show that CFR can modulate the secretion of FGF3 and may control its biological activity by regulating its secretion.  相似文献   

20.
Interaction of von Willebrand Factor with glycoprotein Ib-IX-V induces platelet activation through a still poorly defined mechanism. Previous studies have suggested a possible role for the low affinity receptor for immunoglobulin, Fc gamma RIIA, in GPIb-IX-V signaling. Here we show that binding of vWF to platelets induces the tyrosine phosphorylation of Fc gamma RIIA by a Src kinase. Treatment of platelets with the anti-Fc gamma RIIA monoclonal antibody IV.3 specifically inhibits vWF-induced but not thrombin-induced pleckstrin phosphorylation and serotonin secretion. Moreover, vWF fails to induce pleckstrin phosphorylation in mouse platelets, lacking Fc gamma RIIA, and serotonin secretion is impaired. Pleckstrin phosphorylation and serotonin secretion in human platelets stimulated with vWF are blocked by the cyclooxygenase inhibitor acetylsalicylic acid. However, release of arachidonic acid and synthesis of TxA(2) induced by vWF are not affected by the anti-Fc gamma RIIA monoclonal antibody IV.3. Similarly, vWF-induced tyrosine phosphorylation of Fc gamma RIIA, as well as of Syk and PLC gamma 2, occurs normally in aspirinized platelets. Inhibition of the tyrosine kinase Syk by piceatannol does not affect vWF-induced tyrosine phosphorylation of Fc gamma RIIA but prevents phosphorylation of PLC gamma 2. Pleckstrin phosphorylation and platelet secretion induced by vWF, but not by thrombin, are also inhibited by piceatannol. Pleckstrin phosphorylation is also sensitive to the phosphatidylinositol 3-kinase inhibitor wortmannin. These results indicate that PLC gamma 2 plays a central role in platelet activation by vWF and that the stimulation of this enzyme requires coordinated signals through endogenous TxA(2) and Fc gamma RIIA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号