首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 445 毫秒
1.
Summary In three water-culture experiments, the effects of variations in pH, N form, and Si- and P level on the uptake and translocation of Fe and Mn, and on the chlorophyll contents of lowland rice were examined.It was found that Mn uptake increased with increasing pH, that it was not affected by variations in N form (NO3 or NH4), and that Si has a suppressive effect on Mn uptake. With increasing pH, the translocation of Fe to the shoots was reduced. This pH effect might be indirect, in that Fe translocation is hampered by excessive Mn uptake induced by high pH. Variations in N form and in Si level did not influence Fe uptake and- translocation.A combination of high P-and high Mn levels in solution proved to reduce the translocation of Fe to the rice shoots. Precipitation of Mn phosphate on the roots is likely to occur at high concentrations of both Mn and P in the root medium.A negative correlation was found between chlorophyll content and Mn content of the leaves. The chlorophyll content was not related to the iron content of the leaves. It is likely that chlorosis of rice leaves in an early growth stage can be caused by several combinations of the following factors: 1. high Mn supply, 2. NO3 nutrition inducing an increase in solution pH favouring a further increase in Mn uptake, 3. absence of Si which exerts a suppressive effect on Mn uptake, and 4. high P supply. These factors can induce chlorosis, with and without exerting a concomitant influence on the uptake and translocation of Fe.  相似文献   

2.
Effect of silicate on phosphate availability for rice in a P-deficient soil   总被引:8,自引:0,他引:8  
In a pot experiment the effect of silicate on P availability for rice grown in a P-deficient soil with and without flooding was analyzed. Treatments were designed as follows: C (control: Yakuno soil), SS (sodium silicate application, at 0.47 mg Si g-1 soil) and SC (sodium carbonate application). In order to separate pH effect from Si effect, SC was adjusted to the same pH as SS.Soil pH of SS and SC increased by 1.0 unit. Shoot dry weight of SC plants, and more so of SS plants, increased under both nonflooded and flooded conditions. P concentrations in the shoots were not increased under either condition of SS and SC. With SS, Si concentration in the shoots significantly increased, Mn concentration significantly decreased, resulting in a higher P/Mn ratio in the shoot, but not with SC. Both SS and SC increased N concentration in the shoots nearly two times compared with control under both conditions.Adsorption experiments showed that neither SS nor SC decreased P adsorption by soil. SS also could not displace the adsorbed P in soil samples which had previously either received P or not.These results suggest that the beneficial effects of silicate on rice growth do not result from increasing P availability in soil. The Si effect may be attributed to decreasing Mn uptake, thus indirectly improving P utilization in the plant.  相似文献   

3.
Sustainability of soil-plant systems requires, among other things, good development and function of mycorrhizal symbioses. The effects of P and micronutrient levels on development of an arbuscular mycorrhizal fungus (AMF) and uptake of Zn, Cu, Mn and Fe by maize (Zea mays L.) were studied. A pot experiment with maize either inoculated or not with Glomus intraradices was conducted in a sand:soil (3 :1) mix (pH 6.5) in a greenhouse. Our goal was to evaluate the contribution of mycorrhizae to uptake of Cu, Zn, Mn and Fe by maize as influenced by soil P and micronutrient levels. Two levels of P (10 and 40 mg kg−1 soil) and three levels of a micronutrient mixture: 0, 1X and 2X (1X contained, in mg kg−1 soil, 4.2 Fe, 1.2 Mn, 0.24 Zn, 0.06 Cu, 0.78 B and 0.036 Mo), were applied to pots. There were more extraradical hyphae at the low P level than at the high P level when no micronutrients were added to the soil. Root inoculation with mycorrhiza and application of micronutrients increased shoot biomass. Total Zn content in shoots was higher in mycorrhizal than non-mycorrhizal plants grown in soils with low P and low or no micronutrient addition. Total Cu content in shoots was increased by mycorrhizal colonization when no micronutrients were added. Mycorrhizal plants had lower Mn contents than non-mycorrhizal plants only at the highest soil micronutrient level. AMF increased total shoot Fe content when no micronutrients were added, but decreased shoot Fe when plants were grown at the high level of micronutrient addition. The effects of G. intraradices on Zn, Cu, Mn, and Fe uptake varied with micronutrient and P levels added to soil. Accepted: 27 December 1999  相似文献   

4.
The effect of silicic acid on rice in a P-deficient soil   总被引:8,自引:0,他引:8  
A pot experiment was conducted to analyze the effect of silicon on the growth of rice grown in a P-deficient soil and on P availability in the soil. Silicic acid was used, rather than a silicate salt, to avoid the complication of changes in soil pH.Shoot dry weight on silicic acid treated soil (0.47 mg Si g–1 soil) increased significantly under both nonflooded and flooded conditions. Shoot Si concentration also increased although P concentration did not. Mn concentration decreased with silicic acid, resulting in a higher P/Mn ratio in shoots.An adsorption and desorption experiment showed that silicic acid did not displace P nor decrease the ability of the soil to adsorb P. In contrast, Si desorption increased with increasing P concentration in the solution, and Si adsorption was reduced when P was applied first.These results suggest that silicic acid does not increase P availability in soil. Increased dry weight may be attributed to a higher P/Mn ratio in the shoot, which may improve P utilization in the plant.  相似文献   

5.
A solution culture experiment was conducted to investigate the effect of silicate on the yield and arsenate uptake by rice. Rice seedlings (Oryza sativaL. cv. Weiyou 77) were cultured in modified Hoagland nutrient solution containing three arsenate levels (0, 0.5 and 1.0 mg L –1 As) and four silicate levels (0, 14, 28 and 56 mg L –1 Si). Addition of Si significantly increased shoot dry weight (P=0.001) but had little effect on root dry weight (P=0.43). Addition of As had no significant effect on shoot dry weight (P=0.43) but significantly increased root dry weight (P=0.01). Silicon concentrations in shoots and roots increased proportionally to increasing amounts of externally supplied Si (P < 0.001). The presence of As in the nutrient solution had little effect on shoot Si concentration (P=0.16) but significantly decreased root Si concentration (P=0.005). Increasing external Si concentration significantly decreased shoot and root As concentrations and total As uptake by rice seedlings (P <0.001). In addition, Si significantly decreased shoot P concentration and shoot P uptake (P <0.001). The data clearly demonstrate a beneficial effect of Si on the growth of rice seedlings. Addition of Si to the growth medium also inhibited the uptake of arsenate and phosphate by the rice seedlings.  相似文献   

6.
Rogers  M. E.  Grieve  C. M.  Shannon  M. C. 《Plant and Soil》2003,253(1):187-194
The combined effect of NaCl and P on the growth of lucerne was studied in two hydroponic greenhouse experiments. NaCl concentrations were identical in each experiment (0, 50 and 100 mM NaCl) while external P concentrations were low (viz. 0.002, 0.02 and 0.2 mM measured as 0.006, 0.026 and 0.2 mM, respectively) in one experiment and higher (0.5 and 5.0 mM) in the second. Plant biomass was reduced more by the low P levels than by high concentrations of NaCl. A significant NaCl*P effect was found where external P concentrations were low (0.006–0.2 mM) but there was no difference in plant production between the two P concentrations of 0.5 and 5.0 mM. Shoot and root concentrations of Na and Cl increased significantly with increasing NaCl concentration in both experiments and there were some differences in the concentrations of these ions at different external P levels. At low P, NaCl had no significant effect on shoot concentrations of P; however, root P concentrations tended to decrease with increasing NaCl level. Increasing external P from 0.006 to 0.2 mM led to significant increases in P concentrations in both roots and shoots. At higher P, concentrations of P in both the shoots and the roots did not differ with external NaCl or P conditions. Our results illustrate the complex relationship that exists between NaCl and P at low P levels. We conclude that high or non-limiting concentrations of P (0.2 – 5.0 mM) do not affect lucerne's response to NaCl.  相似文献   

7.
Growth of salt-sensitive Plantago media L. and salt-tolerant P. coronopus L. and P. maritima L. was followed under saline conditions. Growth was reduced according to the ecological features of these species: P. media was sensitive to 25 mM NaCl, while P, coronopus and P. maritima could grow in 150 mM and 300 mM NaCl, respectively. The three Plantago species accumulated Na+ in the shoot and maintained a relatively low Na+ level in the root. K+. Mg2+ and Ca2+ levels of both shoots and roots decreased with increasing salinity. The results suggest that the difference between salt-resistant and salt-sensitive species is located in the ion secretory system which is involved in the ion translocation from the root to the shoot rather than in the primary uptake process through the plasmalemma of the cortical cells.  相似文献   

8.
Yang  X.  Römheld  V.  Marschner  H. 《Plant and Soil》1993,155(1):441-444
Pot experiments were conducted with a calcareous soil (Inceptisol) to elucidate the effects of bicarbonate (0 and 20 mM) and root zone temperature (15° and 25°C) on the uptake of Zn, Fe, Mn and Cu by "Zn-efficient" and "Zn-inefficient" rice cultivars. Bicarbonate decreased concentrations and total uptake of Zn in shoots of "Zn-inefficient" cultivars, especially of IR 26 at 25°C, but not in Zn-efficient cultivars. Bicarbonate decreased concentrations and uptake of Fe in shoots of Zn inefficient cultivars, particularly in IR 26. Concentrations and total uptake of Mn were lower in bicarbonate treatment in the Zn-inefficient cultivars at 15°C, and in all cultivars at 25°C. However, concentration and uptake of Cu were not affected by bicarbonate in all cultivars. Compared to the 25°C root zone temperature, the concentrations and total uptake of both Zn and Cu in shoots at 15°C were lower in Zn-inefficient than in the Zn-efficient cultivars. The results indicate that Zn-efficiency in rice is causally related to high tolerance of plant to elavated bicarbonate concentrations in soil solution.  相似文献   

9.
Summary The effects of P and Mn on growth response and uptake of Fe, Mn and P by grain sorghum were investigated using nutrient culture. High P and Mn concentrations in solution (greater than 40 and 1 mg/l for P and Mn, respectively) markedly reduced plant height and shoot and root dry weight of 4-week-old sorghum plants. High Mn concentrations in solution increased the concentrations of Mn and P in shoot tissue and uptake of Mn, but depressed the uptake of P. High levels of P enhanced Mn uptake by sorghum and accentuated Mn toxicity at low Mn levels. The tissue Fe and total uptake of Fe were both reduced markedly by the high levels of P and Mn concentrations in solution. The increases of P, Mn and Fe concentrations in root tissue with a concomitant decrease of Fe in shoots suggested that the translocation of Fe from roots to shoots was hindered under high P and Mn conditions. Since coating occurred on root surfaces and intensified with increasing Mn concentrations in the substrate, part of the reduction of Fe in shoots could be attributed to the formation of high valent manganese oxides on the root surfaces which may retain Fe and reduce its absorption by sorghum.Contribution from the Department of Agronomy and Range Sci., University of California, Davis, CA.  相似文献   

10.
Results are reported for tomato (Lycopersicon esculentum L. var. Ailsa craig) and wheat (Triticum aestivum L. cv. Mara) which demonstrate that increasing concentrations of Mg in the plant raises plant tolerance to Mn toxicity.Water culture experiments with tomato show that under conditions of high Mn supply (200 µM, Mn), not only does increasing Mg application (0.75 mM to 15 mM) depress Mn uptake, but the higher Mg concentrations in the shoot counteract the onset of Mn toxicity when the concentrations of Mn in the shoot are also high. The ratio of Mg: Mn in the tissues is a better indicator of the appearance of toxicity symptoms than Mn concentration alone. Toxicity symptoms were observed when the Mg:Mn ratio in the shoot tissue was from 1.13 to a value between 3.53 and 6.54. The corresponding Mg: Mn ratio in the older leaves was from 0.82 to between 2.27 and 3.51.For wheat grown in soil, analyses of leaves revealed that growth could be expressed by the following relationship: Y=A+B exp(-kX), where Y=growth, X=Mg:Mn ratio, A, B and k=constants. Growth was significantly reduced when the Mg:Mn ratio fell below 20:1. From a measurement of this ratio it is therefore possible to predict the appearance of Mn toxicity and its influence on growth.  相似文献   

11.
Silicon (Si, as silicate) is involved in numerous important structure and function roles in a wide range of organisms, including man. Silicate availability influences metal concentrations within various cell and tissue types, but, as yet, clear mechanisms for such an influence have been discovered only within the diatoms and sponges. In this study, the influence of silicate on the intracellular accumulation of metals was investigated in baker's yeast (Saccharomyces cerevisiae). It was found that at concentrations up to 10 mM, silicate did not influence the growth rate of S. cerevisiae within a standard complete medium. However, an 11% growth inhibition was observed when silicate was present at 100 mM. Intracellular metal concentrations were investigated in yeast cultures grown without added silicate (−Si) or with the addition of 10 mM silicate (+Si). Decreased amounts of Co (52%), Mn (35%), and Fe (20%) were found within +Si-grown yeast cultures as compared to −Si-grown ones, whereas increased amounts of Mo (56%) and Mg (38%) were found. The amounts of Zn and K were apparently unaffected by the presence of silicon. +Si enhanced the yeast growth rate for low-Zn2+ medium, but it decreased the growth rate under conditions of a low Mg2+ medium and did not alter the growth rates in high Zn2+ and Co2+ media. +Si doubled the uptake rate of Co2+ but did not influence that of Zn2+. We propose that a possible explanation for these results is that polysilicate formation at the cell wall changes the cell wall binding capacity for metal ions. The toxicity of silicate was compared to germanium (Ge, as GeO2), a member of the same group of elements as Si (group 14). Hence, Si and Ge are chemically similar, but silicate starts to polymerize to oligomers above 5 mM, whereas Ge salts remain as monomers at such concentrations. Ge proved to be far more toxic to yeast than Si and no influence of Si on Ge toxicity was found. We propose that these results relate to differences in cellular uptake.  相似文献   

12.
Both solution culture and pot experiments were performed to investigate (a) the effects of external Fe (II) concentrations and forms on the formation of iron plaque on the roots of rice (Oryza sativa) and subsequent P adsorption on iron plaque and shoot P concentrations and (b) the effects of soil moisture regimes on the formation of iron plaque and P adsorption on root surfaces and P accumulation in shoots. The results showed that iron plaque was significantly increased with increasing Fe2+ concentrations in the solution culture. The amounts of P adsorbed on the iron plaque were increased significantly with external Fe2+ concentrations. Although shoot P concentration was not significantly affected by Fe2+ treatment after incubation for 2 days, it was significantly increased in the Fe‐treated plants compared with Fe‐deprived ones after incubation for 4 days. Soil culture experiment showed that the formation of iron plaque on root surfaces was promoted by exogenous iron, with greater amount of iron plaque being formed by addition of ferric hydroxide than of ferric oxide. Phosphorus adsorption on iron plaque also increased with the addition of iron oxides, and increasing soil P increased the amounts of P associated with the iron plaque and shoot P concentration. The amounts of iron plaque were almost sixfold higher under flooding condition than under field capacity condition. Plants pretreated under flooding condition generally had higher shoot P concentrations when they were transplanted to solutions with varying P levels, and this was most pronounced in the treatment with highest solution P concentration. The results suggest that iron plaque acts as a nutrient reservoir for phosphorus in the rhizosphere and helps enhance P acquisition by rice.  相似文献   

13.
The absorptive patterns of Mn2+ in excised rice roots, leaf tissues and intact plants, were studied. The rates of absorption of Mn2+ followed different patterns in the roots and the leaf tissues. The uptake from 0.1 and 5 mM MnSO4 was found to be sensitive to metabolic inhibitors. The time course of uptake from 0.1 mM and 5 mM MnSO4 followed a biphasic pattern which represented only the metabolic component of absorption. A secondary biphasic pattern of uptake at 5 mM MnSO4 (one at 20 min and another at 80 min) appears quite anomalous and is probably related to structural virations or cellular compartments. When absorption and transport of Mn2+ were measured in intact rice and wheat plants, it was found that Mn2+ was easily translocated to shoot from roots and the transport of Mn2+ was comparable to that of K+.  相似文献   

14.
Rice cultivar evaluation for phosphorus use efficiency   总被引:12,自引:1,他引:11  
Phosphorus deficiency is one of the most growth-limiting factors in acid soils in various parts of the world. The objective of this study was to screen 25 rice cultivars (Oryza sativa L.) at low, medium, and high levels of soil P. Number of tillers, root length, plant height, root dry weight and shoot dry weight were related to tissue P concentrations, P uptake and P-use efficiency. Shoot weight was found to be the plant parameter most sensitive to P deficiency. Significant cultivar differences in P use efficiency were found. Phosphorus use efficiency was higher in roots than shoots and decreased with increasing levels of soil P. Positive correlations were found among growth parameters such as plant height, tillers, root and shoot weight, and P content of roots and shoots. These results indicate selection of rice cultivars for satisfactory performance under low P availability can be carried out using shoot and root dry weight as criteria.  相似文献   

15.
OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice   总被引:1,自引:0,他引:1  
Rice is a major dietary source of the toxic metal, cadmium (Cd). Previous studies reported that the rice transporter, OsNRAMP1, (Natural resistance-associated macrophage protein 1) could transport iron (Fe), Cd and arsenic (As) in heterologous yeast assays. However, the in planta function of OsNRAMP1 remains unknown. Here, we showed that OsNRAMP1 was able to transport Cd and manganese (Mn) when expressed in yeast, but did not transport Fe or As. OsNRAMP1 was mainly expressed in roots and leaves and encoded a plasma membrane-localized protein. OsNRAMP1 expression was induced by Cd treatment and Fe deficiency. Immunostaining showed that OsNRAMP1 was localized in all root cells, except the central vasculature, and in leaf mesophyll cells. The knockout of OsNRAMP1 resulted in significant decreases in root uptake of Cd and Mn and their accumulation in rice shoots and grains, and increased sensitivity to Mn deficiency. The knockout of OsNRAMP1 had smaller effects on Cd and Mn uptake than knockout of OsNRAMP5, while knockout of both genes resulted in large decreases in the uptake of the two metals. Taken together, OsNRAMP1 contributes significantly to the uptake of Mn and Cd in rice, and the functions of OsNRAMP1 and OsNRAMP5 are similar but not redundant.  相似文献   

16.
Excess manganese (Mn) in soil is toxic to crops, but in some situations arbuscular mycorrhizal fungi (AMF) alleviate the toxic effects of Mn. Besides the increased phosphorus (P) uptake, mycorrhiza may affect the balance between Mn-reducing and Mn-oxidizing microorganisms in the mycorrhizosphere and affect the level of extractable Mn in soil. The aim of this work was to compare mycorrhizal and non-mycorrhizal plants that received extra P in relation to alleviation of Mn toxicity and the balance between Mn-oxidizing and Mn-reducing bacteria in the mycorrhizosphere. A clayey soil containing 508 mg kg−1 of extractable Mn was fertilized with 30 mg kg−1 (P1) or 45 mg kg−1 (P2) of soluble P. Soybean (Glycine max L. Merrill, cv. IAC 8-2) plants at P1 level were non-inoculated (CP1) or inoculated with either Glomus etunicatum (GeP1) or G. macrocarpum (GmP1), while plants at P2 level were left non-inoculated (CP2). Plants were grown in a greenhouse and harvested after 80 days. In the mycorrhizosphere of the GmP1 and GeP1 plants a shift from Mn-oxidizing to Mn-reducing bacteria coincided with higher soil extractability of Mn and Fe. However, the occurrence of Mn-oxidizing/reducing bacteria in the (mycor)rhizosphere was unrelated to Mn toxicity in plants. Using 16S rDNA sequence homologies, the Mn-reducing isolates were consistent with the genus Streptomyces. The Mn-oxidizers were homologous with the genera Arthrobacter, Variovorax and Ralstonia. While CP1 plants showed Mn toxicity throughout the whole growth period, CP2 plants never did, in spite of having Fe and Mn shoot concentrations as high as in CP1 plants. Mycorrhizal plants showed Mn toxicity symptoms early in the growth period that were no longer visible in later growth stages. The shoot P concentration was almost twice as high in mycorrhizal plants compared with CP1 and CP2 plants. The shoot Mn and Fe concentrations and contents were lower in GmP1 and GeP1 plants compared with the CP2 treatment, even though levels of extractable metals increased in the soil when plants were mycorrhizal. This suggests that mycorrhiza protected its host plant from excessive uptake of Mn and Fe. In addition, higher tissue P concentrations may have facilitated internal detoxification of Mn in mycorrhizal plants. The exact mechanisms acting on alleviation of Mn toxicity in mycorrhizal plants should be further investigated.  相似文献   

17.
Schjørring, J. K. and Jensén, P. 1984. Phosphorus nutrition of barley, buckwheat and rape seedlings. I. Influence of seed-borne P and external P levels on growth, P content and 32P/31P-fractionation in shoots and roots. Seedlings of barly (Hordeum vulgare L. cvs Salka and Zita), buckwheat (Fagopyrum esculentum Moench) and rape (Brassica napus L. ssp. napus ev. Line) were grown at 8 or 10 different external P levels in the range 0-2000 μM. Apart from P, the nutrient solutions were complete. In some experiments with barley and rape, 32P-labelled phosphate was used. Root fresh weights of buckwheat and rape decreased when the external P supply exceeded the level required for maximal root development. In all three species, the roots constituted a decreasing proportion of the total plant fresh weight as the external P level increased. The shoot/root fresh weight ratio increased linearly with the P concentration of the roots. The ratio between the P concentration in shoots and roots increased with the P status of the seedlings grown at low to intermediate external P levels, but decreased at higher P levels. The proportion of total seedling-P held in roots consequently reached a minimum value and thereafter increased as the P status of the seedlings increased. This indicates that some control mechanism counteracted the accumulation of harmful P levels in the shoots. 32P-Phosphate uptake by seedlings of barley and rape grown in solutions with 2 μM P overestimated the actual net phosphorus uptake by a factor of 6 to 7, indicating a marked fractionation of 32P and 31P. For seedlings grown in solutions with 25 μM P (barley) or 50 μM (rape) no fractionation occurred. The relative excess of 32P in high P seedlings accumulated in the roots. It is suggested that the fracionation was caused by efflux of low specific activity phosphorus and by diffusion of free phosphate ions across the plasmalemma of the root cells in response to a difference in the concentration gradient between the two P isotopes.  相似文献   

18.
Rice seedlings were grown in hydroponic culture to determine the effects of external Zn and P supply on plant uptake of Cd in the presence or absence of iron plaque on the root surfaces. Iron plaque was induced by supplying 50 mg l−1 Fe2+ in the nutrient solution for 2 day. Then 43-day-old seedlings were exposed to 10 μmol l−1 Cd together with 10 μmol l−1 Zn or without Zn (Zn–Cd experiment), or to 10 μmol l−1 Cd with 1.0 mmol l−1 P or without P (P–Cd experiment) for another 2 day. The seedlings were then harvested and the concentrations of Fe, Zn, P and Cd in dithionite–citrate–bicarbonate (DCB) extracts and in roots and shoots were determined. The dry weights of roots and shoots of seedlings treated with 50 mg l−1 Fe were significantly lower than when no Fe was supplied. Adsorption of Cd, Zn and P on the iron plaque increased when Fe was supplied but Cd concentrations in DCB extracts were unaffected by external Zn or P supply levels. Cd concentrations in shoots and roots were lower when Fe was supplied. Zn additions decreased Cd concentrations in roots but increased Cd concentrations in shoots, whereas P additions significantly increased shoot and root Cd concentrations and this effect diminished when Fe was supplied. The percentage of Cd in DCB extracts was significantly lower than in roots or shoots, accounting for up to 1.8–3.8% of the plant total Cd, while root and shoot Cd were within the ranges 57–76% and 21–40% respectively in the two experiments. Thus, the main barrier to Cd uptake seemed to be the root tissue and the contribution of iron plaque on root surfaces to plant Cd uptake was minor. The changes in plant Cd uptake were not due to Zn or P additions altering Cd adsorption on iron plaque, but more likely because Zn or P interfered with Cd uptake by the roots and translocation to the shoots.  相似文献   

19.
Effect of lanthanum on ion absorption in cucumber seedling leaves   总被引:3,自引:0,他引:3  
Scanning electron microscope and energy-dispersive X-ray analysis were used to study the tissular distributions of elements Na, Mg, Cl, K, Ca, Mn, and Fe in leaves of cucumber seedlings in the absence or presence of La3+. The results showed that the atomic percentages of Na, Mg, Cl, K, and Ca were basically reduced and those of Mn and Fe were increased in the presence of La3+; in addition, at 0.02 mM La3+, the reduced or increased degrees were higher than those at 2.0 mM La3+. The effects of La3+ on ion absorption were similar to those of Ca2+, suggesting that the rare earth element lanthanum affects the plant physiological mechanism by regulating the Ca2+ level in plant cell.  相似文献   

20.
This paper concerns tolerance to 50–200 mM NaCl of submerged rice (Oryza sativa cv. Amaroo) during germination and the first 138–186 h of development in aerated solution. Rice was able to germinate and the seedlings even tolerated exposure to 200 mM NaCl, albeit with severe growth restrictions. After return to 0.3 mM NaCl, growth increased, indicating that even at 200 mM NaCl there was no irreparable injury. Osmotic adjustment was achieved by using Na+ and Cl as the major osmotica. At 200 mM NaCl commenced at sowing, the shoot Na+ and Cl concentrations between 50–110 h were about 210 and 260 mM, respectively, i.e. above the external concentration. Thus, there was a high tissue tolerance to NaCl. The internal concentrations declined subsequently, concurrent with a decline in growth. At 50–200 mM NaCl, the contributions from ions to πsap were 81–92% in roots and 62–74% in shoots. The assessed turgor pressures at 200 mM NaCl were 0.33 MPa in shoots and 0.15 MPa in roots, compared to 0.62 and 0.43 MPa at 0.3 mM NaCl. In the General Discussion section, we compare the different responses of submerged seedlings to the responses of transpiring rice plants, reported in the literature, and suggest that the submerged system is useful to evaluate effects of NaCl on turgor pressure and particularly to establish whether there are specific effects of Na+ and Cl in tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号