首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Schmitt T  Giessl A  Seitz A 《Heredity》2002,88(1):26-34
The genetic population structure of Polyommatus coridon (Poda 1761) over large regions of France, Italy and Germany was studied by allozyme electrophoresis. The genetic diversity within populations was high for all parameters analysed (number of alleles 2.72; observed and expected heterozygosity 19.6% and 20.3%, respectively; percentage of polymorphic loci: total: 76.4% and, with polymorphism if the frequency of the commonest allele is below 95%: 53.1%), whereas genetic differentiation between populations was comparatively low (FST = 0.021 +/- 0.002). The mean number of alleles declined significantly from southern to northern populations (r = -0.53, P = 0.0005). Similar effects were found also for other parameters of genetic diversity. This is interpreted as a loss of genetic diversity during postglacial expansion. However, samples from France and Italy had similar patterns of genetic diversity indicating no significant loss in this region. Populations from southern Germany were genetically uniform, well differentiated from French populations and showed a significant loss of genetic diversity. Probably, this is due to a bottleneck during passing through the Burgundian Gap, which is a migration corridor from north-eastern France to southern Germany. In contrast to southern German populations, western German populations were not well differentiated from French populations. Nevertheless, they were genetically impoverished, probably as a result from local bottlenecks and post-expansion phenomena.  相似文献   

2.
Genetic diversity and conservation and utilization of plant genetic resources   总被引:17,自引:0,他引:17  
Biodiversity refers to variation within the living world, while genetic diversity represents the heritable variation within and between populations of organisms, and in the context of this paper, among plant species. This pool of genetic variation within an inter-mating population is the basis for selection as well as for plant improvement. Thus, conservation of this plant genetic diversity is essential for present and future human well-being. During recent years, there has been increasing awareness of the importance of adopting a holistic view of biodiversity, including agricultural biodiversity, conservation for sustainable utilization and development. These principles have been enshrined in the Convention on Biological Diversity and the Global Plan of Action of the Food and Agriculture Organization of the United Nations. The emphasis is now to understand the distribution and extent of genetic diversity available to humans in plant species, so that the genetic diversity can be safely conserved and efficiently used. It is generally recognized that plant genetic diversity changes in time and space. The extent and distribution of genetic diversity in a plant species depends on its evolution and breeding system, ecological and geographical factors, past bottlenecks, and often by many human factors. Much of the large amount of diversity of a species may be found within individual populations, or partitioned among a number of different populations.A better understanding of genetic diversity and its distribution is essential for its conservation and use. It will help us in determining what to conserve as well as where to conserve, and will improve our understanding of the taxonomy and origin and evolution of plant species of interest. Knowledge of both these topics is essential for collecting and use of any plant species and its wild relatives. In order to mange conserved germplasm better, there is also a need to understand the genetic diversity that is present in collections. This will help us to rationalize collections and develop and adopt better protocols for regeneration of germplasm seed. Through improved characterization and development of core collections based on genetic diversity information, it will be possible to exploit the available resources in more valuable ways.  相似文献   

3.
Exposure to chronic stress early on during development has important deleterious consequences later in life, reducing important components of individual fitness such as survival and future reproduction. In this study, we evaluate the factors associated with physiological response to stress in fledgling Lesser Kestrels Falco naumanni , paying particular attention to the potential role of individual genetic diversity. For this purpose, we used heterophil/lymphocyte ratios (H/L ratio) as a haematological stress indicator and typed the analysed individuals at 11 highly polymorphic microsatellite loci, which allowed us to estimate their genetic diversity. We found that the H/L ratio decreases with fledgling physical condition, suggesting that this parameter is a good indicator of nutritionally based physiological stress. Physiological response to stress was higher in males than in females and this effect was independent of physical condition, suggesting that the observed pattern is due to inherent sexual differences in the factors influencing H/L ratios. Finally, the H/L ratio was positively associated with the genetic diversity of offspring. Previous experimental studies have found that individuals with higher genetic diversity show increased levels of circulating glucocorticoids, which in turn are directly responsible for increasing H/L ratios. On this basis, we suggest that a positive effect of genetic diversity on corticosterone levels may explain the observed association between H/L ratios and individual heterozygosity. Overall, this study highlights the utility of leucocyte profiles to study stress in wild bird populations and poses an interesting question about the effects of individual genetic diversity on haematological response to stress.  相似文献   

4.
Historical origins and genetic diversity of wine grapes   总被引:3,自引:0,他引:3  
The genomic resources that are available to the grapevine research community have increased enormously during the past five years, in parallel with a renewed interest in grapevine (Vitis vinifera L.) germplasm resources and analysis of genetic diversity in grapes. Genetic variation, either natural or induced, is invaluable for crop improvement and understanding gene function, and the same is true for the grapevine. The history and vineyard cultural practices have largely determined the genetic diversity that exists today in grapevines. In this article, we provide a synopsis of what is known about the origin and genetics of grapes and how molecular genetics is helping us understand more about this plant: its evolution, historical development, genetic diversity and potential for genetic improvement.  相似文献   

5.
Bahr A  Wilson AB 《Gene》2012,497(1):52-57
Gene conversion, the unidirectional exchange of genetic material between homologous sequences, is thought to strongly influence patterns of genetic diversity. The high diversity of major histocompatibility complex (MHC) genes in many species is thought to reflect a long history of gene conversion events both within and among loci. Theoretical work suggests that intra- and interlocus gene conversion leave characteristic signatures of nucleotide diversity, but empirical studies of MHC variation have rarely been able to analyze the effects of conversion events in isolation, due to the presence of multiple gene copies in most species. The potbellied seahorse (Hippocampus abdominalis), a species with a single copy of the MH class II beta-chain gene (MHIIb), provides an ideal system in which to explore predictions on the effects of intralocus gene conversion on patterns of genetic diversity. The genetic diversity of the MHIIb peptide binding region (PBR) is high in the seahorse, similar to other vertebrate species. In contrast, the remainder of the gene shows a total absence of synonymous variation and low levels of intronic sequence diversity, concentrated in 3 short repetitive regions and 1-12 SNPs per intron. The distribution of substitutions across the gene results in a patchwork pattern of shared polymorphism between otherwise divergent sequences. The pattern of nucleotide diversity observed in the seahorse MHIIb gene is congruent with theoretical expectations for intralocus gene conversion, indicating that this evolutionary mechanism has played an important role in MHC gene evolution, contributing to both the high diversity in the PBR and the low diversity outside this region. Neutral variation at this locus may be further reduced due to biases in nucleotide composition and functional constraints.  相似文献   

6.
An extraordinary diversity of epiphytic lichens is found in the boreal rainforest of central Norway, the highest-latitude rainforest in the world. These rainforest relicts are located in ravine systems, and clear cutting has increased the distance between remaining patches. We hypothesized that the relatively small lichen populations in the remaining forest stands have suffered a depletion of genetic diversity through bottlenecks and founder events. To test this hypothesis, we assessed genetic diversity and structure in the populations of the tripartite lichen Lobaria pulmonaria using eight SSR loci. We sampled thalli growing on Picea abies branches and propagules deposited in snow at three localities. Contrary to expectations, we found high genetic diversity in lichen and snow samples, and high effective sizes of the studied populations. Also, limited genetic differentiation between populations, high historical migration rates, and a high proportion of first generation immigrants were estimated, implying high connectivity across distances <30km. Almost all genetic variation was attributed to variation within sites; spatial genetic structures within populations were absent or appeared on small scales (5-10m). The high genetic diversity in the remaining old boreal rainforests shows that even relict forest patches might be suitable for conservation of genetic diversity.  相似文献   

7.
利用磁珠富集法和5’锚定PCR法开发背瘤丽蚌的微卫星标记,将获得的多态性引物用于群体的遗传多态性分析,以期在比较两种开发微卫星标记方法的基础上同时获得一批有用的微卫星引物。从磁珠富集法获得的微卫星序列阳性克隆率为69.2%,重复次数超过10的占总数的70.2%,从设计的28对引物中筛选得到多态性引物11对,开发效率为39.3%。这11对引物用于养殖群体的遗传多样性分析,结果显示,等位基因数范围为4~13,观测杂合度、期望杂合度范围分别为0.205~0.738、0.566~0.839。而5’锚定PCR法获得的微卫星序列阳性克隆率为97.8%,重复次数超过10的占总数的24.7%,从设计的56对引物中筛选得到多态性引物19对,开发效率为30.4%。这19对引物用于养殖群体的遗传多样性分析,结果显示,等位基因数范围为3~10,观测杂合度、期望杂合度范围分别为0.208~0.894、0.431~0.896。实验结果表明,磁珠富集法所获微卫星序列质量高,开发微卫星标记效率较高;而5’锚定PCR法实验操作更简便,所获得的引物遗传多样性指数更高。两种方法开发的引物均可用于背瘤丽蚌和近缘种的野生种质资源遗传多样性研究。  相似文献   

8.
It has been proposed that long-distance dispersal of mosses to the Hawaiian Islands rarely occurs and that the Hawaiian population of the allopolyploid peat moss Sphagnum palustre probably resulted from a single dispersal event. Here, we used microsatellites to investigate whether the Hawaiian population of the dioicous S. palustre had a single founder and to compare its genetic diversity to that found in populations of S. palustre in other regions. The genetic diversity of the Hawaiian population is comparable to that of larger population systems. Several lines of evidence, including a lack of sporophytes and an apparently restricted natural distribution, suggest that sexual reproduction is absent in the Hawaiian plants. In addition, all samples of Hawaiian S. palustre share a genetic trait rare in other populations. Time to most recent ancestor (TMRCA) analysis indicates that the Hawaiian population was probably founded 49-51 kyr ago. It appears that all Hawaiian plants of S. palustre descend from a single founder via vegetative propagation. The long-term viability of this clonal population coupled with the development of significant genetic diversity suggests that vegetative propagation in a moss does not necessarily preclude evolutionary success in the long term.  相似文献   

9.
酵母是一类包括酿酒酵母和非常规酵母在内的多种单细胞真菌的总称,其中酿酒酵母是应用较多的重要工业微生物,广泛应用于生物医药、食品、轻工和生物燃料生产等不同生物制造领域。近年来,研究者从不同生态环境中分离了大量的酵母菌株,鉴定了多个新种,也发现了抗逆性不同以及具有多种活性产物合成能力的菌株,证明天然酵母资源具有丰富的生物多样性和功能多样性。利用基因组挖掘以及转录组、蛋白组等多组学分析研究,可进一步开发利用酵母遗传多样性,获得酶和调节蛋白的基因以及启动子等遗传元件改造酵母菌株。除了利用酵母的天然遗传多样性,还可通过诱变、驯化、代谢工程改造及合成生物学等技术产生具有多种非天然多样性的菌株。此外,对天然遗传元件也可以进行突变和定向进化,所产生的新遗传元件可用于有效提升菌株的性能。开发利用酵母的生物多样性,对构建高效酵母细胞工厂,生产生物酶、疫苗以及多种活性天然产物等产品具有重要意义。文中对酵母生物多样性的研究现状进行综述,并对未来高效开发利用酵母菌株资源和遗传资源的研究进行了展望。文中所总结的研究方法和思路也可为研究其他工业微生物的多样性及进行高效菌株的选育提供参考。  相似文献   

10.
Bacterial species and evolution: Theoretical and practical perspectives   总被引:2,自引:0,他引:2  
A discussion of the species problem in modern evolutionary biology serves as the point of departure for an exploration of how the basic science aspects of this problem relate to efforts to map bacterial diversity for practical pursuits—for prospecting among the bacteria for useful genes and gene-products. Out of a confusing array of species concepts, the Cohesion Species Concept seems the most appropriate and useful for analyzing bacterial diversity. Techniques of allozyme analysis and DNA fingerprinting can be used to put this concept into practice to map bacterial genetic diversity, though the concept requires minor modification to encompass cases of complete asexuality. Examples from studies of phenetically definedBacillus species provide very partial maps of genetic population structure. A major conclusion is that such maps frequently reveal deep genetic subdivision within the phenetically defined specles; divisions that in some cases are clearly distinct genetic species. Knowledge of such subdivisions is bound to make prospecting within bacterial diversity more effective. Under the general concept of genetic cohesion a hypothetical framework for thinking about the full range of species conditions that might exist among bacteria is developed and the consequences of each such model for species delineation, and species identification are discussed. Modes of bacterial evolution, and a theory of bacterial speciation with and without genetic recombination, are examined. The essay concludes with thoughts about prospects for very extensive mapping of bacterial diversity in the service of future efforts to find useful products. In this context, evolutionary biology becomes the handmaiden of important industrial activities. A few examples of past success in commercializing bacterial gene-products from species ofBacillus and a few other bacteria are reviewed.  相似文献   

11.
Tree species in agroforestry ecosystems contribute to the livelihoods of rural communities and play an important role in the conservation of biodiversity. Unless agroforestry landscapes are productive, however, farmers will not maintain or enhance the range and quality of tree species in them, and both income opportunities and biodiversity will be lost. Productivity depends on both tree species diversity and genetic (intra-specific) variation, but research on the latter has until recently not received the recognition it deserves. Worse, when knowledge on tree genetic variation in agroforestry systems has become available, it has not generally been linked in any systematic way with management, indicating a disjunction between research and field-level practice. In this essay, we attempt to bridge this gap by considering three questions: why is genetic diversity important in tree species? What is our current state of knowledge about intra-specific variation in trees in agroforestry systems? And, finally, what practical interventions are possible to support the conservation of this diversity in agricultural landscapes, while enhancing farmers’ livelihoods? A wide genetic base in agroforestry trees is essential to prevent inbreeding depression and allow adaptation to changing environmental conditions and to altering markets for tree products. Recent evidence shows, however, that many species are subject to poor germplasm collection practice, occur at low densities in farmland, and are found in highly aggregated distributions, all of which observations raise concerns about productivity and sustainability. A range of germplasm-access based interventions is necessary to improve current management, including the enhancement of community seed- and seedling-exchange networks, and the development of locally based tree domestication activities. Equally necessary, but more difficult to address, is the development of markets that support genetic diversity in tropical tree species; we discuss approaches by which this may be undertaken.  相似文献   

12.
Tuber melanosporum is a truffle native to Europe and is cultivated in countries such as Australia for the gastronomic market, where production yields are often lower than expected. We assessed the genetic diversity of T. melanosporum with six microsatellite loci to assess the effect of genetic drift on truffle yield in Australia. Genetic diversity as assessed on 210 ascocarps revealed a higher allelic diversity compared to previous studies from Europe, suggesting a possible genetic expansion and/or multiple and diverse source populations for inoculum. The results also suggest that the single sequence repeat diversity of locus ME2 is adaptive and that, for example, the probability of replication errors is increased for this locus. Loss of genetic diversity in Australian populations is therefore not a likely factor in limiting ascocarp production. A survey of nursery seedlings and trees inoculated with T. melanosporum revealed that <70% of seedlings and host trees were colonized with T. melanosporum and that some trees had been contaminated by Tuber brumale, presumably during the inoculation process. Mating type (MAT1-1-1 and MAT1-2-1) analyses on seedling and four- to ten-year-old host trees found that 100% of seedlings but only approximately half of host trees had both mating types present. Furthermore, MAT1-1-1 was detected significantly more commonly than MAT1-2-1 in established trees, suggesting a competitive advantage for MAT1-1-1 strains. This study clearly shows that there are more factors involved in ascocarp production than just the presence of both mating types on host trees.  相似文献   

13.
Sexual reproduction and recombination are essential for the survival of most eukaryotic populations. Until recently, the impact of these processes on the structure of bacterial populations has been largely overlooked. The advent of large-scale whole-genome sequencing and the concomitant development of molecular tools, such as microarray technology, facilitate the sensitive detection of recombination events in bacteria. These techniques are revealing that bacterial populations are comprised of isolates that show a surprisingly wide spectrum of genetic diversity at the DNA level. Our new awareness of this genetic diversity is increasing our understanding of population structures and of how these affect host pathogen relationships.  相似文献   

14.
Despite recurrent episodes of range expansion and contraction, forest trees often harbour high genetic diversity. Studies of temperate forest trees suggest that prolonged juvenile phase and high pollen flow are the main factors limiting founder effects. Here, we studied the local colonization process of a pioneer rainforest tree in central Africa, Aucoumea klaineana. We identified 87% of parents among trees up to 20-25 years old and could thus compare direct parentage structure data with classical population genetics estimators. In this species, genetic diversity was maintained during colonization. The absence of founder effects was explained by (i) local random mating and (ii) local recruitment, as we showed that 75% of the trees in the close neighbourhood participated in the recruitment of new saplings. Long-distance pollen flow contributed little to genetic diversity: pollen and seed dispersal was mainly within stand (128 and 118 m, respectively). Spatial genetic structure was explained by aggregated seed dispersal rather than by mother-offspring proximity as assumed in classical isolation-by-distance models. Hence, A. klaineana presents a genetic diversity pattern typical of forest trees but does not follow the classical rules by which this diversity is generally achieved. We suggest that while high local genetic variability is of general importance to forest tree survival, the proximate mechanisms by which it is achieved may follow very different scenarios.  相似文献   

15.
To evaluate the conservation status of a species or population it is necessary to gain insight into its ecological requirements, reproduction, genetic population structure, and overall genetic diversity. In our study we examined the genetic diversity of Rhinopithecus brelichi by analyzing microsatellite data and compared them with already existing data derived from mitochondrial DNA, which revealed that R. brelichi exhibits the lowest mitochondrial diversity of all so far studied Rhinopithecus species. In contrast, the genetic diversity of nuclear DNA is high and comparable to other Rhinopithecus species, i.e. the examined microsatellite loci are similarly highly polymorphic as in other species of the genus. An explanation for these differences in mitochondrial and nuclear genetic diversity could be a male biased dispersal. Females most likely stay within their natal band and males migrate between bands, thus mitochondrial DNA will not be exchanged between bands but nuclear DNA via males. A Bayesian Skyline Plot based on mitochondrial DNA sequences shows a strong decrease of the female effective population size (Nef) starting about 3,500 to 4,000 years ago, which concurs with the increasing human population in the area and respective expansion of agriculture. Given that we found no indication for a loss of nuclear DNA diversity in R. brelichi it seems that this factor does not represent the most prominent conservation threat for the long-term survival of the species. Conservation efforts should therefore focus more on immediate threats such as development of tourism and habitat destruction.  相似文献   

16.
The total genetic diversity of the Amerindian population is as high as that observed for other continental human populations because a large contribution from variation among tribes makes up for the low variation within tribes. This is attributed mainly to genetic drift acting on small isolated populations. However, a small founder population with a low genetic diversity is another factor that may contribute to the low intratribal diversity. Small founder populations seem to be a frequent event in the formation of new tribes among the Amerindians, but this event is usually not well recorded. In this paper, we analyze the genetic diversity of the Arara of Laranjal village and the Arara of Iriri village, with respect to seven tandem repeat autosomic segments (D1S80, ApoB, D4S43, vW1, vW2, F13A1 and D12S67), two Y-chromosome-specific polymorphisms (DYS19 and DYS199), and mitochondrial DNA (mtDNA) markers (restriction fragment length polymorphisms and sequencing of a segment of the D loop region). The occurrence of a single Y chromosome and mtDNA haplotype, and only 1-4 alleles of the autosomic loci investigated, corroborates historic and demographic records that the Arara of Iriri were founded by a single couple of siblings who came from the Arara of Laranjal, the largest group. Notwithstanding this fact, the genetic distance and the molecular variance between the two Arara villages were greater than those observed between them and other Amazonian tribes, suggesting that the microevolutionary process among Brazilian Amerindians may be misinterpreted if historic demographic data are not considered.  相似文献   

17.
Understanding effects of habitat and landscape features on genetic variation is a prerequisite for the development of habitat and landscape management strategies aimed at conserving genetic diversity. While there has been considerable research on the effects of landscape structure on the genetics of populations, a recent review identified key biases in this body of work. The majority of landscape genetic studies investigate the intervening matrix’s influence on differentiation and gene flow among populations. Although characteristics of local habitat patches may be important determinants of genetic diversity, fewer studies have examined these relationships. Here we use node- and neighbourhood-based approaches to analyze correlates of genetic diversity in the bog copper (Lycaena epixanthe), a specialist butterfly endemic to temperate Nearctic peatlands that is threatened in parts of its range. Based on 190 repeatable and polymorphic amplified fragment length polymorphism loci, we found that genetic diversity was higher in habitat patches that were smaller and surrounded by more open water. Our results indicate that valuing small peatlands and preserving the surrounding water table may be important for conservation of genetic diversity in this highly specialized species. Our study highlights the importance of variables affecting habitat quality for conservation genetics.  相似文献   

18.
Intratumor heterogeneity inherent in the majority of human cancers is a major obstacle for a highly efficient diagnosis and successful prognosis and treatment of these diseases. Being a result of clonal diversity within the same tumor, intratumor heterogeneity can be manifested in variability of genetic and epigenetic status, gene and protein expression, morphological structure, and other features of the tumor. It is most likely that the appearance of this diversity is a source for the adaptation of the tumor to changes in microenvironmental conditions and/or a tool for changing its malignant potential. In any case, both processes result in the appearance of cell clones with different undetermined sets of hallmarks. In this review, we describe the heterogeneity of molecular disorders in various human tumors and consider modern viewpoints of its development including genetic and non-genetic factors of heterogeneity origin and the role of cancer stem cells and clonal evolution. We also systematize data on the contribution of tumor diversity to progression of various tumors and the efficiency of their treatment. The main problems are indicated in the diagnosis and therapy of malignant tumors caused by intratumor heterogeneity and possible pathways for their solution. Moreover, we also suggest the key goals whose achievement promises to minimize the problem of intratumor heterogeneity and to identify new prognostic, predictive, and target markers for adequate and effective treatment of cancer.  相似文献   

19.

Background

Fusarium oxysporum f. sp. ciceris (Foc), the causal agent of Fusarium wilt of chickpea is highly variable and frequent recurrence of virulent forms have affected chickpea production and exhausted valuable genetic resources. The severity and yield losses of Fusarium wilt differ from place to place owing to existence of physiological races among isolates. Diversity study of fungal population associated with a disease plays a major role in understanding and devising better disease control strategies. The advantages of using molecular markers to understand the distribution of genetic diversity in Foc populations is well understood. The recent development of Diversity Arrays Technology (DArT) offers new possibilities to study the diversity in pathogen population. In this study, we developed DArT markers for Foc population, analysed the genetic diversity existing within and among Foc isolates, compared the genotypic and phenotypic diversity and infer the race scenario of Foc in India.

Results

We report the successful development of DArT markers for Foc and their utility in genotyping of Foc collections representing five chickpea growing agro-ecological zones of India. The DArT arrays revealed a total 1,813 polymorphic markers with an average genotyping call rate of 91.16% and a scoring reproducibility of 100%. Cluster analysis, principal coordinate analysis and population structure indicated that the different isolates of Foc were partially classified based on geographical source. Diversity in Foc population was compared with the phenotypic variability and it was found that DArT markers were able to group the isolates consistent with its virulence group. A number of race-specific unique and rare alleles were also detected.

Conclusion

The present study generated significant information in terms of pathogenic and genetic diversity of Foc which could be used further for development and deployment of region-specific resistant cultivars of chickpea. The DArT markers were proved to be a powerful diagnostic tool to study the genotypic diversity in Foc. The high number of DArT markers allowed a greater resolution of genetic differences among isolates and enabled us to examine the extent of diversity in the Foc population present in India, as well as provided support to know the changing race scenario in Foc population.

Electronic supplementary material

The online version of this article (doi: 10.1186/1471-2164-15-454) contains supplementary material, which is available to authorized users.  相似文献   

20.
How does genetic diversity within populations of plants develop during primary succession on alpine glacier forelands? Theory predicts that pioneer populations are characterized by low genetic diversity due to founder effects and that genetic diversity increases within populations as they mature and recurrent gene flow occurs. However, few genetic studies have so far been carried out on plants on glacier forelands. In this study, we analysed the development of genetic diversity with time for populations of Trifolium pallescens along successional series (chronosequences) on three parallel glacier forelands in the European Alps, using neutral amplified fragment length polymorphism. No general trend in the development of genetic diversity was observed with increasing population age: even pioneer populations harboured substantial genetic diversity. Assignment tests showed that the latter consist of a genetic sub-sample from several source areas, and not just from other populations on the glacier forelands. We also detected some long distances-that is, inter-valley gene flow events. However, gene flow was not spatially unrestricted, as shown by a weak isolation by distance pattern within glacier valleys. The actual patterns of genetic diversity along the chronosequences are a result of the combination of factors, such as gene flow and growth rate, influenced by site- and species-specific attributes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号