首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X Li  J Montgomery  W Cheng  JH Noh  DR Hyde  L Li 《PloS one》2012,7(7):e40508
In non-mammalian vertebrates, the pineal gland functions as the central pacemaker that regulates the circadian rhythms of animal behavior and physiology. We generated a transgenic zebrafish line [Tg(Gnat2:gal4-VP16/UAS:nfsB-mCherry)] in which the E. coli nitroreductase is expressed in pineal photoreceptor cells. In developing embryos and young adults, the transgene is expressed in both retinal and pineal photoreceptor cells. During aging, the expression of the transgene in retinal photoreceptor cells gradually diminishes. By 8 months of age, the Gnat2 promoter-driven nitroreductase is no longer expressed in retinal photoreceptor cells, but its expression in pineal photoreceptor cells persists. This provides a tool for selective ablation of pineal photoreceptor cells, i.e., by treatments with metronidazole. In the absence of pineal photoreceptor cells, the behavioral visual sensitivity of the fish remains unchanged; however, the circadian rhythms of rod and cone sensitivity are diminished. Brief light exposures restore the circadian rhythms of behavioral visual sensitivity. Together, the data suggest that retinal photoreceptor cells respond to environmental cues and are capable of entraining the circadian rhythms of visual sensitivity; however, they are insufficient for maintaining the rhythms. Cellular signals from the pineal photoreceptor cells may be required for maintaining the circadian rhythms of visual sensitivity.  相似文献   

2.
The evolution of photoreceptor cells and eyes in Metazoa is far from being resolved, although recent developmental and morphological studies provided strong evidence for a common origin of photoreceptor cells and existence of sister cell types in early metazoans. Photoreceptor cells are of two types, rhabdomeric and ciliary, depending on which part of the cells is involved in photoreception proper. A crucial point in understanding eye evolution is the explanation of the enormous structural diversity of photoreceptor cells and visual systems, given the general tendency for molecular conservation. One example of such diversity occurs in Annelida. In this taxon three types of photoreceptor cells exist: rhabdomeric, ciliary and phaosomous sensory cells. Whether the latter evolved independently or have been derived from one of the former cell types is still unresolved, since cilia and microvilli are found in these cells. These different photoreceptor cells are present in cerebral ocelli and eyes, in various ectopic ocelli and eyes situated in different places as well as in various photoreceptor-like sense organs. Whereas rhabdomeric cells mostly occur in connection with pigmented supportive cells, the other types are usually found with unpigmented supportive cells. Thus for the latter cells clear evidence for photoreception is still lacking in most cases. However, initial molecular-developmental investigations have shown that in fact ciliary photoreceptor cells exist within Annelida. Certain visual systems are only present during the larval phase and either replaced by the adult eyes or completely reduced during postlarval and adult stages. In the present paper the diversity of cerebral and extracerebral photoreceptor cells and ocelli as well as corresponding organs devoid of shading pigment is reviewed in Annelida.  相似文献   

3.
Characterization and analysis of frog photoreceptor membranes   总被引:16,自引:8,他引:8       下载免费PDF全文
Frog photoreceptor membranes contain 54,000 g of protein per mole of visual pigment chromophore, virtually all of it insoluble membrane protein. Acrylamide gel electrophoresis indicates one major polypeptide class, most likely the visual pigment apoprotein. Suspensions of these photoreceptor membranes accumulate calcium ions when ATP is present, a characteristic that may play a part in visual excitation.  相似文献   

4.
Animal photoreceptor cells can be classified into two distinct types, depending on whether the photopigment is borne on the membrane of a modified cilium (ciliary type) or apical microvilli (rhabdomeric type) [1]. Ciliary photoreceptors are well known as vertebrate rods and cones and are also found in several invertebrates. The rhabdomeric photoreceptor, in contrast, is a predominant type of invertebrate visual cell, but morphologically identifiable rhabdomeric photoreceptors have never been found in vertebrates. It is hypothesized that the rhabdomeric photoreceptor cell had evolved to be the photosensitive retinal ganglion cell for the vertebrate circadian photoentrainment [2, 3 and 4] owing to the fact that some molecules involved in cell differentiation are common among them [5]. We focused on the cephalochordate amphioxus because it is the closest living invertebrate to the vertebrates, and interestingly, it has rhabdomeric photoreceptor cells for putative nonvisual functions [6]. Here, we show that the amphioxus homolog of melanopsin [7, 8 and 9], the circadian photopigment in the photosensitive retinal ganglion cells of vertebrates, is expressed in the rhabdomeric photoreceptor cells of the amphioxus and that its biochemical and photochemical properties, not just its primary structure, are considerably similar to those of the visual rhodopsins in the rhabdomeric photoreceptor cells of higher invertebrates. The cephalochordate rhabdomeric photoreceptor represents an evolutionary link between the invertebrate visual photoreceptor and the vertebrate circadian photoreceptor.  相似文献   

5.
Tight regulation of the visual response is essential for photoreceptor function and survival. Visual response dysregulation often leads to photoreceptor cell degeneration, but the causes of such cell death are not well understood. In this study, we investigated a fatty acid transport protein (fatp) null mutation that caused adult-onset and progressive photoreceptor cell death. Consistent with fatp having a role in the retina, we showed that fatp is expressed in adult photoreceptors and accessory cells and that its re-expression in photoreceptors rescued photoreceptor viability in fatp mutants. The visual response in young fatp-mutant flies was abnormal with elevated electroretinogram amplitudes associated with high levels of Rhodopsin-1 (Rh1). Reducing Rh1 levels in rh1 mutants or depriving flies of vitamin A rescued photoreceptor cell death in fatp mutant flies. Our results indicate that fatp promotes photoreceptor survival by regulating Rh1 abundance.  相似文献   

6.
Cone visual pigments   总被引:1,自引:0,他引:1  
Cone visual pigments are visual opsins that are present in vertebrate cone photoreceptor cells and act as photoreceptor molecules responsible for photopic vision. Like the rod visual pigment rhodopsin, which is responsible for scotopic vision, cone visual pigments contain the chromophore 11-cis-retinal, which undergoes cis–trans isomerization resulting in the induction of conformational changes of the protein moiety to form a G protein-activating state. There are multiple types of cone visual pigments with different absorption maxima, which are the molecular basis of color discrimination in animals. Cone visual pigments form a phylogenetic sister group with non-visual opsin groups such as pinopsin, VA opsin, parapinopsin and parietopsin groups. Cone visual pigments diverged into four groups with different absorption maxima, and the rhodopsin group diverged from one of the four groups of cone visual pigments. The photochemical behavior of cone visual pigments is similar to that of pinopsin but considerably different from those of other non-visual opsins. G protein activation efficiency of cone visual pigments is also comparable to that of pinopsin but higher than that of the other non-visual opsins. Recent measurements with sufficient time-resolution demonstrated that G protein activation efficiency of cone visual pigments is lower than that of rhodopsin, which is one of the molecular bases for the lower amplification of cones compared to rods. In this review, the uniqueness of cone visual pigments is shown by comparison of their molecular properties with those of non-visual opsins and rhodopsin. This article is part of a Special Issue entitled: Retinal Proteins — You can teach an old dog new tricks.  相似文献   

7.
8.
Photoreceptor differentiation requires the coordinated expression of numerous genes. It is unknown whether those genes share common regulatory mechanisms or are independently regulated by distinct mechanisms. To distinguish between these scenarios, we have used in situ hybridization, RT-PCR, and real-time PCR to analyze the expression of visual pigments and other photoreceptor-specific genes during chick embryo retinal development in ovo, as well as in retinal cell cultures treated with molecules that regulate the expression of particular visual pigments. In ovo, onset of gene expression was asynchronous, becoming detectable at the time of photoreceptor generation (ED 5-8) for some photoreceptor genes, but only around the time of outer segment formation (ED 14-16) for others. Treatment of retinal cell cultures with activin, staurosporine, or CNTF selectively induced or down-regulated specific visual pigment genes, but many cognate rod- or cone-specific genes were not affected by the treatments. These results indicate that many photoreceptor genes are independently regulated during development, are consistent with the existence of at least two distinct stages of gene expression during photoreceptor differentiation, suggest that intrinsic, coordinated regulation of a cascade of gene expression triggered by a commitment to the photoreceptor fate is not a general mechanism of photoreceptor differentiation, and imply that using a single photoreceptor-specific "marker" as a proxy to identify photoreceptor cell fate is problematic.  相似文献   

9.
Image extraction and visual information processing using bacteriorhodopsin (bR)-based bioelectronic devices is presented. Image extraction was achieved using a photoreceptor consisting of bR and spiropyran films. The undesired signals from the photoreceptor were automatically eliminated from the whole signal by spiropyran films acting as an optical noise filter that increases the target signal to an undesired signal ratio. For the information processing, the photoreceptor consisting of bR and lipid films deposited with different configurations was used and the target signals were processed to achieve the pattern recognition. The pattern recognition was based on not only the response variability of bacteriorhodopsin, induced by different film configurations, but also on the initial learning process. The input patterns were predicted by simple calculation with the known signals through the initial learning process.  相似文献   

10.
The compound eye of the Small White butterfly, Pieris rapae crucivora, has four classes of visual pigments, with peak absorption in the ultraviolet, violet, blue and green, but electrophysiological recordings yielded eight photoreceptors classes: an ultraviolet, violet, blue, double-peaked blue, green, blue-suppressed-green, pale-red and deep-red class. These photoreceptor classes were identified in three types of ommatidia, distinguishable by the different eye shine spectra and fluorescence; the latter only being present in the eyes of males. We present here two slightly different optical models that incorporate the various visual pigments, the light-filtering actions of the fluorescent, pale-red and deep-red screening pigment, located inside or adjacent to the rhabdom, and the reflectance spectrum of the tapetum that abuts the rhabdom proximally. The models serve to explain the photoreceptor spectral sensitivities as well as the eye shine.  相似文献   

11.
Iodoacetic acid(IAA) has been applied to different species to acutely induce photoreceptor degeneration.The purpose of the present study was to use this toxin to thoroughly eliminate photoreceptors and induce complete blindness in the cat.IAA was delivered by single ear vein injection(20 mgkg-1).Six months after the IAA treatment,functional evaluations including pupillary light reflex(PLR),electroretinogram(ERG),visual behavior tests were performed.Morphological examinations were carried out after the functional evaluation.The present result shows that,six months after the IAA application,animals lost visual functions and became completely blind.High dose IAA application via ear vein delivery created an acute and reliable complete photoreceptor degeneration model in the cat.This model can be applied to genetic and cellular therapies for visual function restoration.  相似文献   

12.
To gain insight into the genetic mechanisms of photoreceptor development, we analyzed a collection of zebrafish mutations characterized by early photoreceptor cell loss. The mutant defects impair outer segment formation and are accompanied by an abnormal distribution of visual pigments. Rods and different cone types display defects of similar severity suggesting that genetic pathways common to all photoreceptors are affected. To investigate whether these phenotypes involve cell–cell interaction defects, we analyzed genetically mosaic animals. Interaction of niezerka photoreceptors with wild-type tissues improves the survival of mutant cells and restores their elongated morphology. In contrast, cells carrying mutations in the loci brudas, elipsa, fleer, and oval retain their defective phenotypes in a wild-type environment indicating cell-autonomy. These experiments identify distinct phenotypic categories of photoreceptor mutants and indicate that zebrafish photoreceptor defects involve both cell-autonomous and cell-nonautonomous mechanisms.  相似文献   

13.
During Drosophila visual system development, photoreceptor (R) axons choose their correct paths and targets in a step-wise fashion. R axons with different identities make specific pathfinding decisions at different stages during development. We show here that the transmembrane protein Golden goal (Gogo), which is dynamically expressed in all R neurons and localizes predominantly to growth cones, is required in two distinct steps of R8 photoreceptor axon pathfinding: Gogo regulates axon-axon interactions and axon-target interactions in R8 photoreceptor axons. gogo loss-of-function and gain-of-function phenotypes suggest that Gogo mediates repulsive axon-axon interaction between R8 axons to maintain their proper spacing, and it promotes axon-target recognition at the temporary layer to enable R8 axons to enter their correct target columns in the medulla. From detailed structure-function experiments, we propose that Gogo functions as a receptor that binds an unidentified ligand through its conserved extracellular domain.  相似文献   

14.
The R7 and R8 photoreceptor cells of the Drosophila retina are thought to mediate color discrimination and polarized light detection. This is based on the patterned expression of different visual pigments, rhodopsins, in different photoreceptor cells. In this report, we examined the developmental timing of retinal patterning. There is genetic evidence that over the majority of the eye, patterned expression of opsin genes is regulated by a signal from one subtype of R7 cells to adjacent R8 cells. We examined the onset of expression of the rhodopsin genes to determine the latest time point by which photoreceptor subtype commitment must have occurred. We found that the onset of rhodopsin expression in all photoreceptors of the compound eye occurs during a narrow window from 79% to 84% of pupal development (approximately 8 h), pupal stages P12-P14. Rhodopsin 1 has the earliest onset, followed by Rhodopsins 3, 4, and 5 at approximately the same time, and finally Rhodopsin 6. This sequence mimics the model for how R7 and R8 photoreceptor cells are specified, and defines the timing of photoreceptor cell fate decisions with respect to other events in eye development.  相似文献   

15.
Green flagellate algae are capable of the active adjustment of their swimming path according to the light direction (phototaxis). This direction is detected by a special photoreceptor apparatus consisting of the photoreceptor membrane and eyespot. Receptor photoexcitation in green flagellates triggers a cascade of rapid electrical events in the cell membrane which plays a crucial role in the signal transduction chain of phototaxis and the photophobic response. The photoreceptor current is the earliest so far detectable process in this cascade. Measurement of the photoreceptor current is at present the most suitable approach to investigation of the photoreceptor pigment in green flagellate algae, since a low receptor concentration in the cell makes application of optical and biochemical methods so far impossible. A set of physiological evidences shows that the phototaxis receptor in green flagellate algae is a unique rhodopsin-type protein. It shares common chromophore properties with retinal proteins from archaea. However, the involvement of photoelectric processes in the signal transduction chain relates it to animal visual rhodopsins. The presence of some enzymatic components of the animal visual cascade in isolated eyespot preparations might also point to this relation. A retinal-binding protein has been identified in such preparations, the amino acid sequence of which shows a certain homology to sequences of animal visual rhodopsins. However, potential function of this protein as the phototaxis receptor has been questioned in recent time.  相似文献   

16.
The neuronal wiring of the Drosophila melanogaster visual system is constructed through an intricate series of cell-cell interactions. Recent studies have identified some of the gene regulatory and cytoskeletal signaling pathways responsible for the layer-specific targeting of Drosophila photoreceptor axons. Target selection decisions of the R1-R6 subset of photoreceptor axons have been found to be influenced by the nuclear factors Brakeless and Runt, and target selection decisions of the R7 subset of axons have been found to require the cell-surface proteins Ptp69d, Lar and N-cadherin. A role for the visual system glia in orienting photoreceptor axon outgrowth and target selection has also been uncovered.  相似文献   

17.
Specifying synaptic partners and regulating synaptic numbers are at least partly activity-dependent processes during visual map formation in all systems investigated to date . In Drosophila, six photoreceptors that view the same point in visual space have to be sorted into synaptic modules called cartridges in order to form a visuotopically correct map . Synapse numbers per photoreceptor terminal and cartridge are both precisely regulated . However, it is unknown whether an activity-dependent mechanism or a genetically encoded developmental program regulates synapse numbers. We performed a large-scale quantitative ultrastructural analysis of photoreceptor synapses in mutants affecting the generation of electrical potentials (norpA, trp;trpl), neurotransmitter release (hdc, syt), vesicle endocytosis (synj), the trafficking of specific guidance molecules during photoreceptor targeting (sec15), a specific guidance receptor required for visual map formation (Dlar), and 57 other novel synaptic mutants affecting 43 genes. Remarkably, in all these mutants, individual photoreceptors form the correct number of synapses per presynaptic terminal independently of cartridge composition. Hence, our data show that each photoreceptor forms a precise and constant number of afferent synapses independently of neuronal activity and partner accuracy. Our data suggest cell-autonomous control of synapse numbers as part of a developmental program of activity-independent steps that lead to a "hard-wired" visual map in the fly brain.  相似文献   

18.
In the fly Drosophila melanogaster, neuronal plasticity of synaptic terminals in the first optic neuropil, or lamina, depends on early visual experience within a critical period after eclosion [1]. The current study revealed two additional and parallel mechanisms involved in this type of synaptic terminal plasticity. First, an endogenous circadian rhythm causes daily oscillations in the volume of photoreceptor cell terminals. Second, daily visual experience precisely modulates the circadian time course and amplitude of the volume oscillations that the photoreceptor-cell terminals undergo. Both mechanisms are separable in their molecular basis. We suggest that the described neuronal plasticity in Drosophila ensures continuous optimal performance of the visual system over the course of a 24 h-day. Moreover, the sensory system of Drosophila cannot only account for predictable, but also for acute, environmental changes. The volumetric changes in the synaptic terminals of photoreceptor cells are accompanied by circadian and light-induced changes of presynaptic ribbons as well as extensions of epithelial glial cells into the photoreceptor terminals, suggesting that the architecture of the lamina is altered by both visual exposure and the circadian clock. Clock-mutant analysis and the rescue of PER protein rhythmicity exclusively in all R1-6 cells revealed that photoreceptor-cell plasticity is autonomous and sufficient to control visual behavior. The strength of a visually guided behavior, the optomotor turning response, co-varies with synaptic-terminal volume oscillations of photoreceptor cells when elicited at low light levels. Our results show that behaviorally relevant adaptive processing of visual information is performed, in part, at the level of visual input level.  相似文献   

19.
Skorupski P  Chittka L 《PloS one》2011,6(10):e25989
Colour vision depends on comparison of signals from photoreceptors with different spectral sensitivities. However, response properties of photoreceptor cells may differ in ways other than spectral tuning. In insects, for example, broadband photoreceptors, with a major sensitivity peak in the green region of the spectrum (>500 nm), drive fast visual processes, which are largely blind to chromatic signals from more narrowly-tuned photoreceptors with peak sensitivities in the blue and UV regions of the spectrum. In addition, electrophysiological properties of the photoreceptor membrane may result in differences in response dynamics of photoreceptors of similar spectral class between species, and different spectral classes within a species. We used intracellular electrophysiological techniques to investigate response dynamics of the three spectral classes of photoreceptor underlying trichromatic colour vision in the bumblebee, Bombus impatiens, and we compare these with previously published data from a related species, Bombus terrestris. In both species, we found significantly faster responses in green, compared with blue- or UV-sensitive photoreceptors, although all 3 photoreceptor types are slower in B. impatiens than in B. terrestris. Integration times for light-adapted B. impatiens photoreceptors (estimated from impulse response half-width) were 11.3 ± 1.6 ms for green photoreceptors compared with 18.6 ± 4.4 ms and 15.6 ± 4.4 for blue and UV, respectively. We also measured photoreceptor input resistance in dark- and light-adapted conditions. All photoreceptors showed a decrease in input resistance during light adaptation, but this decrease was considerably larger (declining to about 22% of the dark value) in green photoreceptors, compared to blue and UV (41% and 49%, respectively). Our results suggest that the conductances associated with light adaptation are largest in green photoreceptors, contributing to their greater temporal processing speed. We suggest that the faster temporal processing of green photoreceptors is related to their role in driving fast achromatic visual processes.  相似文献   

20.
Immunohistochemical evidence for multiple photosystems in box jellyfish   总被引:1,自引:0,他引:1  
Cubomedusae (box jellyfish) possess a remarkable visual system with 24 eyes distributed in four sensory structures termed rhopalia. Each rhopalium is equipped with six eyes: two pairs of pigment cup eyes and two unpaired lens eyes. Each eye type probably captures specific features of the visual environment. To investigate whether multiple types of photoreceptor cells are present in the rhopalium, and whether the different eye types possess different types of photoreceptors, we have used immunohistochemistry with a range of vertebrate opsin antibodies to label the photoreceptors, and electroretinograms (ERG) to determine their spectral sensitivity. All photoreceptor cells of the two lens eyes of the box jellyfish Tripedalia cystophora and Carybdea marsupialis displayed immunoreactivity for an antibody directed against the zebrafish ultraviolet (UV) opsin, but not against any of eight other rhodopsin or cone opsin antibodies tested. In neither of the two species were the pigment cup eyes immunoreactive for any of the opsin antibodies. ERG analysis of the Carybdea lower lens eyes demonstrated a single spectral sensitivity maximum at 485 nm suggesting the presence of a single opsin type. Our data demonstrate that the lens eyes of box jellyfish utilize a single opsin and are thus color-blind, and that there is probably a different photopigment in the pigment cup eyes. The results support our hypothesis that the lens eyes and the pigment cup eyes of box jellyfish are involved in different and specific visual tasks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号