首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The functional centre of haemoproteins is generally formed by an iron porphyrin and amino acid residues of he protein component. Some haemoproteins are able to bind imidazole to the iron of the prosthetic group. The synthesis of imidazole containing matrices is described and the affinity of haemoglobin as a model compound to these matrices has been studied. It was found that the lenght and structure of spacers as well as substituents at the imidazole ring are of critical importance: the adsorption of methaemoglobin shows two different kinds of protein matrix interaction: in case of a space length < 5 Å no interaction occurs for steric reasons; at a length > 5 Å adsorption takes place via complex formation between imidazole and iron of a prosthetic group independent of the linkage in 1- or 4(5)-position of the imidazole ring to the mtrix: the complex formation between imidazole and iron is the decisive step but is not solely responsible for the stability of the ocmplex: a hydroxyl group at the side chain near the imidazole decreases the adsorption drastically: large substituents at the imidazole ring disturb complex formation with the iron, but not the adsorption of haemoglobin; in the presence of a long spacer (> 20 A), hydrophobic interactions are predominantly responsible for the adsorption process and imidazole does not play any role.  相似文献   

2.
The effect of water on the structure and physical properties of amorphous polysaccharide matrices is investigated by combining a thermodynamic approach including pressure- and temperature-dependent dilatometry with a nanoscale analysis of the size of intermolecular voids using positron annihilation lifetime spectroscopy. Amorphous polysaccharides are of interest because of a number of unusual properties which are likely to be related to the extensive hydrogen bonding between the carbohydrate chains. Uptake of water by the carbohydrate matrices leads to a strong increase in the size of the holes between the polymer chains in both the glassy and rubbery states while at the same time leading to an increase in matrix free volume. Thermodynamic clustering theory indicates that, in low-moisture carbohydrate matrices, water molecules are closely associated with the carbohydrate chains. Based on these observations, we propose a novel model of plasticization of carbohydrate polymers by water in which the water dynamically disrupts chains the hydrogen bonding between the carbohydrates, leading to an expansion of the matrix originating at the nanolevel and increasing the number of degrees of freedom of the carbohydrate chains. Consequently, even in the glassy state, the uptake of water leads to increased rates of matrix relaxation and mobility of small permeants. In contrast, low-molecular weight sugars plasticize the carbohydrate matrix without appreciably changing the structure and density of the rubbery state, and their role as plasticizer is most likely related to a reduction of the number of molecular entanglements. The improved molecular packing in glassy matrices containing low molecular weight sugars leads to a higher matrix density, explaining, despite the lower glass transition temperature, the reduced mobility of small permeants in such matrices.  相似文献   

3.
The purpose of this research was to investigate the potential use of anionick-carrageenan and nonionic hydroxypropyl-methylcellulose (HPMC, K4) to improve the matrix integrity of directly compressed chitosan tablets containing naproxen sodium, an anionic drug. The influence of buffer pH and drug:polymer ratio on the water uptake, matrix erosion, and drug release were studied. The rapid release of naproxen sodium was seen from matrices containing 100% chitosan due to loss in the matrix cohesiveness; whereas, it was relatively slow for matrices containing optimum concentration ofk-carrageenan. In-situ interaction between oppositely charged moieties resulted in the formation of polyelectrolyte complexes with stoichiometric charge ratios of unity. Fourier transform in frared (FTIR) spectroscopy and powder x-ray diffraction (PXRD) data confirmed the importance of ionic bonds in polyelectrolyte complexation. The ionic interactions between polymers were absent in matrices containing HPMC and the integrity of tablets was improved owing to the presence of viscous gel barrier. The reasons for retarded release of naproxen sodium from the chitosan matrices at different pH include poor aqueous solubility of drug, the formation of a rate-limiting polymer gel barrier along the periphery of matrices, the interaction of naproxen sodium with protonated amino, groups of chitosan, and the interaction of ionized amino groups of chitosan with ionized sulfate groups ofk-carrageenan. Published: June 15, 2007  相似文献   

4.
Endotoxin, a major pyrogen of concern to the biological industry, is a lipopolysaccharide containing a highly hydrophobic region, lipid A, in its structure. The effect of hydrophobic interaction on endotoxin adsorption from an aqueous solution was studied by covalently bonding aminoalkyl groups with varying hydrocarbon lengths to a cellulose and acrylic composite matrix. The amount of endotoxin adsorbed on the matrix increased with the increasing length of alkyl groups, demonstrating the contribution of hydrophobic interaction between endotoxin and the solid matrix. Both the hydrophobic and the charge interaction prove to be effective for endotoxin adsorption, and a synergistic effect from the dual chemical forces is achievable under specified conditions. The effect of solvent, pH and salts on endotoxin adsorption provides further evidence for the importance of hydrophobic force as a means of removing endotoxin from aqueous solutions.  相似文献   

5.
Guanidinobenzoatase, a plasma protein with possible application as a ‘tumor marker’, has been fully purified by one-step affinity chromatography. The affinity matrix was prepared by ‘controlled’ immobilization of an enzyme inhibitor (agmatine) onto commercial agarose gels containing carboxyl moieties activated as N-hydroxysuccinimide esters. In this way, agmatine becomes immobilized through an amido bond and preserves an ionized guanidino moiety. Different matrices with different concentration of ligands were prepared in order to evaluate their properties as affinity supports. Interestingly, matrices with a very low concentration of immobilized ligands (2 μmol/ml, corresponding to the modification of only 5% of active groups in the commercial resins) exhibited a low capacity for unspecific adsorption of proteins (as anion-exchange resins) and displayed also a high capacity for specific adsorption of our target protein. On the other hand, when affinity matrices possessed a moderate concentration of agmatine (10 μmol/ml of gel or higher), two undesirable phenomena were observed: (a) the matrix behaves as a very good anionic exchange support able to non-specifically adsorb most of plasma proteins and (b) the specific adsorption of our target protein becomes much lower. The latter phenomenon could be due to steric hindrances promoted by the interaction between each individual immobilized ligand and the corresponding binding pocket in the target protein. These hindrances could also be promoted by the presence of a fairly dense layer of immobilized ligands covering the support surface, thus preventing interactions between immobilized ligands and partially buried protein-binding pockets. In this way, a successful affinity purification (23.5% yield, ×220 purification factor, a unique electrophoretic band) could be achieved by combination of three approaches: (i) the use of affinity matrices possessing a very low density of immobilized ligands, (ii) performing affinity adsorption at high ionic strength and (iii) performing specific desorption with substrates or substrate analogues.  相似文献   

6.
A series of ferric low-spin derivatives of myoglobin containing its natural prosthetic group, iron protoporphyrin IX, and reconstituted with iron heme s (a formyl-substituted porphyrin) and iron methylchlorin have been examined using low-temperature electron paramagnetic resonance (EPR) spectroscopy. Good agreement is observed between the EPR properties of parallel derivatives of natural myoglobin and heme s-myoglobin. Likewise, the EPR properties of parallel adducts of three types of iron chlorins, methylchlorin-myoglobin, sulfyomyoglobin (a myoglobin derivative known to contain a chlorin macrocycle) and synthetic chlorin models are similar to each other. The ferric chlorin systems are shown to exhibit increased tetragonality and decreased rhombicity values relative to protoporphyrin/formylporphyrin systems. Thus, EPR spectroscopy is a very useful technique with which to probe the coordination structure of naturally occurring iron chlorin proteins and the method can be used to distinguish between proteins containing iron formylporphyrins and iron chlorin prosthetic groups.  相似文献   

7.
Serum albumin is the most abundant protein in plasma and it has a high capacity to bind many small compounds and macromolecules. In this way, albumin may promote important interferences during affinity chromatography of plasma proteins. Guanidinobenzoatase (GB) is a very relevant plasma protease that seems to be related to tumoral processes. This enzyme may be adsorbed on tailor-made agmatine-amide-agarose (CH-A) supports (e.g., the ones having 2 μmol of guanidino groups per ml of agarose attached to the support, through a 6 C aliphatic chain). Such tailor-made supports containing a very low concentration of ionized groups are hardly able to adsorb any protein by anion-exchange. However, they are able to strongly adsorb albumin. In order to solve this problem new mimetic affinity matrices have been designed: (i) by using the same ligand immobilized through a different chemical linkage [guanidino groups attached via secondary amino bonds, (AEA)] or (ii) by using slightly different ligands (e.g., 1,8-octanediamine containing a primary amino group instead of a guanidino one) also attached to the support via amido bonds (CH-DAO). Albumin adsorbs on the target and on the two mimetic matrices while GB is mainly adsorbed on the target one. Moreover, the adsorption of albumin on the affinity matrix (CH-A) is very strongly inhibited by the presence of low concentrations of soluble ligands (e.g., 1,8-octanediamine containing two ionized primary amino groups). On the contrary, the adsorption of GB on CH-A is hardly inhibited by the presence of such mimetic soluble ligand. In this way, the former offering of crude GB samples to AEA plus the use of mimetic inhibitors during adsorption of the extract on CH-A completely prevent the undesirable adsorption of albumin. In a such way, an extremely selective adsorption of GB can be performed. Such an improved chromatography procedure allows a very easy affinity purification and detection of GB.  相似文献   

8.
The adsorption characteristics of monoclonal anti-(β-galactosidase) immobilised to a number of commercially available pre-activated matrices have been investigated in a series of small scale experiments. Binding characteristics were determined by batch isotherm techniques and estimates were obtained of the rate constants governing adsorption to the immobilised antibodies. The capacity of the different matrices for binding antibody and the specific activity of immunosorbents were measured.There was little effect of support matrix on the dissociation constant, Kd, for the interaction between β-galactosidase and immobilised anti-(β-galactosidase). However, the maximum amounts of antibody that could be immobilised, rates of adsorption and desorption of the enzyme to the immobilised antibody and the specific activity of immunosorbents were affected by the choice of support matrix. The importance of the relative sizes of the antigen and immobilised antibody and the influence of the nature of the support matrix on the properties of the resulting immunosorbent when used in large scale applications are discussed.  相似文献   

9.
W L Mattice  R M Robinson 《Biopolymers》1981,20(7):1421-1434
Conformational properties have been examined for three proteins which are disordered when dissolved in water but become partially ordered in the presence of anionic lipids. The three proteins, which play important roles in the central nervous system, are myelin basic protein, β-endorphin, and β-lipotropin. When evaluated using matrix methods, the helical content of each protein is predicted to be vanishingly small in water, in agreement with experiment. Unperturbed root-mean-square radii of gyration are also evaluated for these proteins in water using generator matrices, which have seen wide application to synthetic polymers. Agreement between computed and measured dimensions is found to be excellent. Having successfully described the conformations of myelin basic protein, β-endorphin, and β-lipotropin in water, attention is then directed to the changes induced upon interaction with anionic lipids or detergents. Computations predict an increase in helical content, with numerical results being in quite good agreement with experimental observations using several anionic lipids. Examination of the helix-propagation-probability profiles reveals an interesting feature of regions where this probability is high. When folded into a α-helix, these regions show one surface where the only side chains are hydrophobic. Charged side chains (with positive charges predominating) are found on the other surface of the helical segment. The arrangement of side chains on these helices is thus well suited to promote favorable interactions with a membrane containing anionic lipids. Examples of the occurrence of these helices are provided by amino acid residues 13–25 and 130–157 in myelin basic protein and residues 17–29 in β-endorphin.  相似文献   

10.
Inositol phosphoglycan-like compounds are produced by the hydrolysis of the membrane bound glycosyl phosphoinositides. Besides being short term mediators of insulin action, they inhibit peroxidases and catalase, increasing the concentration of cellular hydrogen peroxide. Although high concentrations of hydrogen peroxide are toxic, moderate increases of its basal level are signals for different metabolic pathways. The inhibitor, localized in the cytosol of the cell, acts on peroxidases and catalase of the same tissue (homologous action) and of other tissues or organisms (heterologous action). The inositol phosphoglycan-like compound inhibits peroxidases with different prosthetic groups, i.e. containing iron such as: thyroid peroxidase, lactoperoxidase, horseradish peroxidase, soy bean peroxidase; and containing selenium such as glutathione peroxidase and 2-cys peroxiredoxin with no prosthetic group. Besides peroxidases, the inositol phosphoglycan-like compound inhibits catalase, another heme enzyme. The inhibition kinetics demonstrates a noncompetitive effect. The site of action is not the prosthetic group, given that the inhibitor does not produce any effect on the peak in the Soret region in the presence or absence of hydrogen peroxide. In conclusion, the inositol phosphoglycan-like compound is the general inhibitor of peroxidases and catalase involved in the modulation of hydrogen peroxide level that acts in different metabolic pathways as a signal transducer.  相似文献   

11.
Iron is released in a desferrioxamine (DFO)-chelatable form when erythrocytes are challenged by an oxidative stress. The release is increased when an accelerated removal of erythrocytes occurs such as in perinatal period, in which iron release is greater in hypoxic than in non-hypoxic newborns. This suggests that an hypoxic environment at birth promotes iron release. To test this possibility, iron release in a model of hypoxia, hypoxia-reoxygenation and normoxia was studied in newborn and adult erythrocytes. In newborn erythrocytes, hypoxia induced a much greater iron release compared to an equal period of normoxia. In adult erythrocytes, hypoxia also induced a greater iron release as compared to normoxia, but it was much lower than that seen with newborn erythrocytes. Methemoglobin (MetHb) formation roughly paralleled iron release. The phenylhydrazine-promoted superoxide anion (O(2)?(-)) production was greater with normoxic but lower with hypoxic erythrocytes from newborns as compared to that from adults. This discrepancy between iron release and O(2)?(-) production may be explained by the shift towards MetHb in hemoglobin autoxidation. Iron diffusion out of the erythrocytes was much higher with hypoxic erythrocytes from newborns as compared to that from adults. Also the binding of autologous IgG to band 3 dimers (AIgGB) is much greater with hypoxic erythrocytes from newborns as compared to that from adults, suggesting that the level of iron release is related to the extent of band 3 clustering and that hypoxia accelerates removal of erythrocytes from bloodstream in in vivo condition.  相似文献   

12.
Cell/adsorbent interactions in expanded bed adsorption of proteins   总被引:6,自引:0,他引:6  
Expanded bed adsorption (EBA) is an integrated technology for the primary recovery of proteins from unclarified feedstock. A method is presented which allows a qualitative and quantitative understanding of the main mechanisms governing the interaction of biomass with fluidised resins. A pulse response technique was used to determine the adsorption of various cell types (yeast, Gram positive and Gram negative bacteria, mammalian cells and yeast homogenate) to a range of commercially available matrices for EBA. Cells and cell debris were found to interact with the ligands of agarose based resins mainly by electrostatic forces. From the adsorbents investigated the anion exchange matrix showed the most severe interactions, while cation exchange and affinity adsorbents appeared to be less affected. Within the range of biologic systems under study E. coli cells had the lowest tendency of binding to all matrices while hybridoma cells attached to all the adsorbents except the protein A affinity matrix. The method presented may be employed for screening of suitable biomass/adsorbent combinations, which yield a robust and reliable initial capture step by expanded bed adsorption from unclarified feedstock.  相似文献   

13.
The reaction of H2O2 with resting metmyoglobin (MetMb), methaemoglobin (MetHb) and cytochrome-c (Cyt-c) was studied in the Soret and visible regions. The differences between the original and the final peak heights of the native haemproteins at 408 nm was found to be directly proportional to the loss of iron from the molecule. The release of iron from haemproteins was studied in a system generating H2O2 continuously at a low rate by an enzymic system, or by addition of large amounts of H2O2. Cytochrome-c, methaemoglobin and metmyoglobin during interaction with H2O2 at a concentration of 200 μM release 40%, 20% and 3%, respectively, of molecular iron after l0min. The inhibition of haem degradation and iron release by enzymatically-generated H2O2 was determined using several hydroxyl radical scavengers, reducing agents and antioxienzymes, such as superoxide dismutase, catalase and caeruloplasmin.  相似文献   

14.
An endpoint of 75% HbO2/25% methemoglobin (MetHb) was approached in red cells incubated with a greater than physiologic concentration of ascorbate (10 mm). The presence of glucose (5 mm) with ascorbate shifted the endpoint to 90% HbO2/10% MetHb while lactate (2 mm) plus pyruvate (0.1 mm) had no effect. These endpoints were approached regardless of the HbO2MetHb ratio at zero time. No hemoglobin degradation was observed. When red cells containing 100% MetHb at zero time were used, analysis of the initial rate of HbO2 formation in the presence of various substrates showed synergistic interaction between ascorbate (10 mm) and glucose, additive activity with ascorbate and lactate, and less than additive activity with glucose and lactate. Incubation of red cells with a phsyiologic concentration of ascorbate (0.1 mm) resulted in no significant HbO2 formation in the absence of other additions. When red cells were incubated with glucose and/or lactate plus pyruvate, an endpoint of about 99% HbO2/1% MetHb was approached regardless of the HbO2/MetHb ratio at zero time or the presence or absence of physiologic ascorbate. Physiologic ascorbate slightly but consistently increased the rate of HbO2 formation in red cells incubated with glucose but not with lactate. HbO2 formation was not increased by ascorbate in red cells which contained more than about 90% HbO2 at zero time. The results indicate that excess ascorbate functions stoichiometrically driving cellular chemistry to a steady state between HbO2 and MetHb formation whereas physiologic ascorbate functions catalytically allowing electron transport from glucose to MetHb via the hexose monophosphate shunt.  相似文献   

15.
Heparan sulphate proteoglycan, labelled with [35S]sulphate, was prepared from rat livers for studies of its interaction with purified rat transferrin. Affinity chromatography of the preparation on columns of immobilized differic transferrin and apotransferrin showed that the proteoglycan possessed affinity for both types of matrices at pH 7.3 and that this affinity significantly increased at pH 5.6. The glycosaminoglycan chains liberated from the proteoglycan by heparan sulphate lyase also bound to apotransferrin, albeit less strongly, whereas the deglycosylated core protein exhibited virtually no interaction with this matrix. In the presence of the proteoglycan at pH 5.6, the release of iron from the N-lobe of transferrin was accelerated. These observations suggest that heparan sulphate proteoglycan from the liver can mimick some of the known functions of bona fide transferrin receptors and, hence, interaction with the proteoglycan may provide an alternative nondegradative pathway for transferrin through hepatic cells.  相似文献   

16.
A versatile affinity matrix in which the ligand of interest is linked to the matrix through a connector arm containing a disulfide bond is described. It can be synthesized from any amino-substituted matrix by successive reaction with 2-imino-thiolane, 5,5'-dithiobis(2-nitrobenzoic acid), and a thiol derivative of the ligand of choice. The repertoire of ligands can be significantly increased by the appropriate use of avidin-biotin bridges. After adsorption of the material to be fractionated, elution can be effected by reducing the disulfide bond in the connector arm with dithiothreitol. Examples of the preparation and use of various affinity matrices based on amino-substituted Sepharose 6MB are given. One involves the immobilization of the Fab' fragment of a monoclonal antibody against Aspergillus oryzae beta-galactosidase and the specific binding of that enzyme to the resulting immunoaffinity matrix. Another involves the immobilization of N-biotinyl-2-thioethylamine followed by complex formation with avidin. The resulting avidin-substituted matrix was used for the selective adsorption and subsequent recovery of mouse hybridoma cells producing anti-avidin antibodies. By further complexing the avidin-substituted matrix with appropriate biotinylated antigens, it should be possible to fractionate cells producing antibodies against a variety of antigens.  相似文献   

17.
Adsorption and structural changes that occur upon interaction between methemoglobin (MetHb) and 5-methyl-aminomethyl-uridine forming enzyme (MnmE) with the surface of a bioactive glass (BG) were investigated by Fourier Transform Infrared (FTIR) spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The effect of glutaraldehyde (GA) as a coupling agent for protein adsorption on BG was also investigated. The comparative analysis of FTIR spectra recorded from lyophilized proteins and from bioactive glass surface after protein adsorption was considered in order to obtain information about the changes in the secondary structure of the proteins. XPS data were used to determine the surface coverage. The unfolding of adsorbed proteins due to interactions between the internal hydrophobic protein domains and the hydrophobic BG surface was evidenced. After adsorption, the amount of α-helix decreases and less ordered structures (turns, random coils and aggregates) are preponderant. These changes are less pronounced on the BG functionalized with GA, suggesting that the treatment with GA preserves significantly larger amounts of α-helices in the structure of both proteins after adsorption.  相似文献   

18.
Graded methemoglobinemia (MetHb) was produced in unanesthetized fetal sheep to determine the effects on brain oxygenation. MetHb was induced by infusing methemoglobin-containing erythrocytes in exchange for fetal blood. During the hour after MetHb was established, fetal methemoglobin concentrations averaged 1.23 +/- 0.12 (mild MetHb), 1.71 +/- 0.13 (moderate MetHb), and 2.27 +/- 0.17 g/dl (severe MetHb). MetHb reduced mean arterial O2 content by approximately 19 (mild MetHb), 29 (moderate MetHb), and 39% (severe MetHb). The average preductal arterial PO2 fell by 1.6 (-7%), 2.8 (-11%), and 4.0 Torr (-16%) for mild, moderate, and severe MetHb, respectively. Fetal heart rate increased significantly during mild and moderate MetHb, and mean arterial pressure fell slightly during moderate and severe MetHb. The incidences of fetal breathing and eye movements were reduced in a dose-dependent manner when the calculated brain end-capillary PO2 was less than 14 Torr. We conclude that: 1) the effective capillary PO2 in the fetal brain can be significantly reduced by increasing the distance between non-methemoglobin-laden erythrocytes in capillaries and 2) hypoxic inhibition of fetal breathing probably arises from discrete areas of the brain having a PO2 less than 3 Torr.  相似文献   

19.
L. Sun  C. Peng  Y. Hu 《Molecular simulation》2013,39(12):989-997
Monte Carlo simulations for the adsorption of polymers including random copolymer, homopolymer, diblock copolymer and two kinds of triblock copolymers, respectively, in nonselective solvent at solid–liquid interface have been performed on a simple lattice model. The effect of polymer structure on adsorption properties was examined. In simulations, all polymeric molecules are modeled as self-avoiding linear chains composed of two segments A and B while A is attractive to the surface and B is non-attractive. It was found that for all polymers, the size distribution of various configurations is determined by the linked sequence of segments and the interaction energy between segment and surface. The results of simulation show that the adsorbed amount always increases with increasing bulk concentration but the adsorption layer thickness is mostly dependent on the adsorption energy at a fixed fraction of segments A. On the other hand, diblock copolymer has always the highest surface coverage and adsorbed amount, while random copolymers and homopolymers give generally the smallest surface coverage and adsorbed amount. It is shown that the sequence of polymer chains, i.e. molecular structure, is the most important factor in affecting adsorption properties at the same composition and interaction between segment and surface. The results also show that the adsorption behavior of random copolymers is remarkably different from that of block copolymers, but acting like homopolymer.  相似文献   

20.
Evidence is presented that reversible non-specific adsorption of proteoglycans (PGs) to surfaces and matrices is an inherent property of the PGs. This adsorption is dependent on the intact PG structure as the glycosaminoglycans (GAGs), which are isolated after papain digestion of the PG show no such non-specific adsorption. The interaction of the PG with surfaces and matrices is also highly dependent on the internal milieu and can be both inhibited and enhanced by such factors as the ionic composition and concentration, pH, detergents and chaotropic reagents such as guanidine hydrochloride (Gdn-HC1). It is suggested that this inherent stickiness of the PGs allows them to function like a reversible fluid adhesant in the connective tissues. This weak binding force thus not only aids in maintaining the integrity of the connective tissues, but its reversible nature may provide for easy movement of other materials through the connective tissue matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号