首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sb(V) is known to form a complex with adenine ribonucleosides suggesting that ribonucleosides may be involved in the mechanism of action of pentavalent antimonial drugs against the parasitic disease leishmaniasis. In this study, Sb(V) complexes with adenosine and guanosine were prepared and characterized. Two Sb(V)-adenosine complexes were obtained in the solid state with either 1:2 or 1:1 Sb(V):adenosine molar ratios. A thermoreversible Sb(V)-guanosine hydrogel was also obtained using Sb:guanosine molar ratios varying from 0.5 to 1. These complexes were characterized by H1 NMR spectroscopy, high resolution eletrospray ionization mass spectrometry, elemental analysis and circular dichroism. For the adenosine complexes, we propose that Sb(V) is either penta-coordinated by two riboses and one hydroxyl anion or octa-coordinated by two riboses and two hydroxyls or by one ribose and four hydroxyls. The Sb(V)-guanosine hydrogel is shown to be composed of a mixture of 1:1 and 1:2 Sb(V)-guanosine complexes, forming nanoassemblies with two types of interactions: (i) covalent bonds forming Sb(V)-guanosine complexes and (ii) intermolecular interactions between the different Sb(V)-guanosine complexes via base stacking.  相似文献   

2.
Gluthathione (GSH) has been previously shown to promote the reduction of pentavalent antimony (Sb(V)) into the more toxic trivalent antimony (Sb(III)) in the antimonial drug, meglumine antimonate. However, this reaction occurred at acidic pH (pH 5) but not at the pH of the cytosol (pH 7.2) in which GSH is encountered. The aim of the present study was to further characterize the reaction between thiols and antimonial drugs, addressing the following aspects: (i) the reducing activity of cysteine (Cys) and cysteinyl-glycine (Cys-Gly), expected to be the predominant thiols in the acidic compartiments of mammalian cells; (ii) the reducing activity of trypanothione (T(SH)2), the main intracelular thiol in Leishmania parasites; (iii) the influence of the state of complexation of Sb(V) on the rate of Sb(V) reduction. We report here that Cys, Cys-Gly and T(SH)2 did promote the reduction of Sb(V) into Sb(III) at 37 °C. Strikingly, the initial rates of reduction of Sb(V) were much greater in the presence of Cys-Gly, Cys and T(SH)2 than in the presence of GSH. These reactions occurred at both pH 5 and pH 7 but were favored at acidic pH. Moreover, our data shows that Sb(V) is reduced more slowly in the form of meglumine antimonate than in its non-complexed form, indicating that the complexation of Sb(V) tends to slow down the rate of its reduction. In conclusion, our data supports the hypothesis that Sb(V) is reduced in vivo by T(SH)2 within Leishmania parasites and by Cys or Cys-Gly within the acidic compartments of mammalian cells.  相似文献   

3.
It has been shown previously that SbV forms mono- and bis-adducts with adenine and guanine ribonucleosides, suggesting that ribonucleosides may be a target for pentavalent antimonial drugs in the treatment of leishmaniasis. In the present work, the reactions of antimoniate (KSb(OH)6) and meglumine antimoniate (MA) with guanosine 5′-monophosphate (GMP) have been characterized at 37 °C in aqueous solution and two different pH (5 and 6.5), using ESI(−)-MS and 1H NMR. Acid and base species for both 1:1 and 1:2 SbV–GMP complexes were identified by ESI(−)-MS. The 1H NMR anomeric region was explored for determining the concentrations of mono- and bis-adducts. This allows for the determination of stability constants for these complexes (5900 L mol−1 for 1:1 complex and 370 L mol−1 for 1:2 complex, at pD 5 and 37 °C). Kinetic studies at different pH indicated that formation and dissociation of both 1:1 and 1:2 Sb–GMP complexes are slow processes and favored at acidic pH (2150 L mol−1 h−1 for the rate constant of 1:1 complex formation and 0.25 h−1 for the rate constant of 1:1 complex dissociation, at pD 5 and 37 °C). When MA was used, instead of antimoniate, formation of 1:1 Sb–GMP complex occurred, but with a slower rate constant. Assuming that MA consists essentially of a 1:1 Sb–meglumine complex, a stability constant for MA could also be estimated (8600 L mol−1 at pD 5 and 37 °C). Thermodynamic and kinetic data are consistent with the formation of 1:1 Sb–ribonucleoside complexes in vertebrate hosts, following treatment with pentavalent antimonial drugs.  相似文献   

4.
The chemical structures of the pentavalent antimonial drugs, meglumine antimonate (MA) and sodium stibogluconate (SSG), were re-evaluated using electrospray ionization mass spectrometry (ESI-MS) and osmolarity measurements. Both MA and SSG were found to contain 1:1, 1:2, 2:2 and 2:3 Sb(V)-ligand complexes. ESI-MS analysis of MA showed negatively-charged 1:1 (m/z 364) and 2:2 (m/z 765) Sb(V)-meglumine complexes, supporting the predominance of zwitterionic species in solution. Our data are consistent with a structure for the 1:2 Sb(V)-meglumine, which differs from that previously postulated, with two positively-charged amino groups and one negatively-charged antimonate group. Instead of the commonly hypothesized structure for SSG, in which two Sb atoms are linked by an oxygen, an alternative structure is proposed, based on the ability of Sb(V)-gluconate complexes to polymerize. MA (or SSG) in concentrated aqueous solutions, such as of MA (or SSG) in its commercial form, is expected to consist mainly of a mixture of 2:2, 2:3 and 2:1 Sb(V)-ligand complexes, as suggested by the 2:1 Sb-to-particle ratio found by osmometry. 1:1 Sb(V)-ligand complexes in MA and SSG are expected to play an important pharmacological role, as suggested by the slow increase of osmolarity of MA solution upon dilution at 37 degrees C (half-time of 20min).  相似文献   

5.
Chin TM  Lin SB  Lee SY  Chang ML  Cheng AY  Chang FC  Pasternack L  Huang DH  Kan LS 《Biochemistry》2000,39(40):12457-12464
The formation of a DNA "paper-clip" type triple helix (triplex) with a common sequence 5'-d-(TC)(3)T(a)()(CT)(3)C(b)()(AG)(3) (a and b = 0-4) was studied by UV thermal melting experiments and CD spectra. These DNA oligomers form triplexes and duplexes under slightly acidic and neutral conditions, respectively. The stability of the formed triplexes (at pH 4.5) or duplexes (at pH 7.0 or 8.0) does not vary significantly with the size of the loops (a and b = 1-4). At pH 6.0, the triplex stability is, however, a function of a and b. It is also interesting to note that the oligomer 5'-d-(TC)(3)(CT)(3)(AG)(3) (a and b = 0) forms a stable triplex at pH 4.5 with a slightly lower T(m) value, due to dissociation of a base triad at one end and a distorted base triad at the other, observed by (1)H NMR. Thus, we have here a model system, 5'-d-(TC)(3)T(a)(CT)(3)C(b)(AG)(3), that could form a triplex effectively with (a and b = 1-4) and without (a and b = 0) loops under acidic conditions. In addition, the triplex formation of oligomers with replacement of one, two, or three 2'-deoxycytidine in the Hoogsteen strand by either 2'-deoxypseudoisocytidine (D) or 2'-O-methylpseudoisocytidine (M) was also studied in the sequence 5'-d-(TX)(3)T(2)(CT)(3)C(2)(AG)(3) (where X is C, D, or M). Both CD spectra and UV melting results showed that only D3 [(TX)(3) = (TD)(3)] and M3 [(TX)(3) = (TM)(3)] were able to form the paper-clip structure under both neutral and acidic conditions. This is because the N(3)H of a pseudoisocytosine base can serve as a proton donor without protonation. We hereby proved that the 2'-deoxypseudoisocytidine, similar to 2'-O-methylpseudoisocytidine, could replace 2'-deoxycytidine in the Hoogsteen strand to provide triplex formation at neutral pH.  相似文献   

6.
DNA oligonucleotides can form multi-stranded structures such as a duplex, triplex, and quadruplex, while the double helical structure is generally considered as the canonical structure of DNA oligonucleotides. Guanine-rich or cytosine-rich oligonucleotides, which are observed in telomere, centromere, and other biologically important sequences in vivo, can form four-stranded G-quadruplex and I-motif structures in vitro. In this study, we have investigated the effects of pH and cation on the structures and their stabilities of d(G4T4G4) and d(C4A4C4). The CD spectra and thermal melting curves of DNAs at various pHs demonstrated that acidic conditions induced a stable I-motif structure of d(C4A4C4), while the pH value did not affect the G-quadruplex structure and stability of d(G4T4G4). The CD spectra of the 1:1 mixture of d(G4T4G4) and d(C4A4C4) indicated that the acidic conditions inhibit the duplex formation between d(G4T4G4) and d(C4A4C4). Isothermal titration calorimetry measurements of the duplex formation at various pHs also quantitatively indicated that the acidic conditions inhibit the duplex formation. On the other hand, the CD spectra and thermal melting curves of DNAs in the absence and presence of Ca2+ indicated that Ca2+ induces a parallel G-quadruplex structure of d(G4T4G4) and then inhibits the duplex formation. These results lead to the conclusion that both the pH and coexisting cation can induce and regulate the structural polymorphisms the oligonucleotides in which they form the G-quadruplex, I-motif, and duplex depending on the conditions. Thus, the results reported here indicate pivotal roles of pH and coexisting cations in biological processes by regulating the conformational switching between the duplex and quadruplexes structures of the guanine-rich or cytosine-rich oligonucleotides in vivo.  相似文献   

7.
The protonation equilibria of alanylglycylhistamine (Ala-Gly-Ha) and the complexation of this ligand with Cu(II) and Ni(II) have been studied by pH-potentiometry, 1H and 14N NMR spectroscopy, electrospray ionization mass spectrometry (ESI-MS), circular dichroism (CD), UV-Vis spectrophotometry and electron paramagnetic resonance (EPR). From pH approximately 2-12, the following complexes: MLH, MLH(-1), MLH(-2) and MLH(-3) are successively formed in aqueous solutions, the ligand under its neutral form being noted L. At physiological pH, the MLH(-2) complex is predominant. The coordination in this complex is assumed by one amino, two deprotonated peptide and one imidazole nitrogen atoms. The ESI-MS study confirmed the formation of the MLH(-1), MLH(-2) and MLH(-3) complexes. The structure of MLH(-2) was determined by single crystal X-ray analysis. CD and UV-Vis techniques allowed us to propose that the imidazole-N3 nitrogen acts as the anchor group for the coordination to the metal(II) ions rather than the amino group. At high pH values, the further deprotonation of the N-H imidazole group, leading to the formation of MLH(-3), occurs, as revealed by 1H NMR spectroscopy.  相似文献   

8.
The recombinant V(L) domain that represents the variable part of the light chain (type kappa) of mouse monoclonal antibody F11 directed against human spleen ferritin was found to form amyloid fibrils at acidic pH as evidenced by electron microscopy, thioflavin T binding, and apple-green birefringence after Congo red staining. This is the first demonstration of amyloid fibril formation of the mouse V(L) domain. To understand the mechanism of acidic pH-induced amyloid fibril formation, conformational changes of the V(L) domain were studied by one-dimensional NMR, differential scanning calorimetry, analytical ultracentrifugation, hydrophobic dye binding, far-UV circular dichroism, and tryptophan fluorescence. The results indicated accumulation of two intermediate states during acid unfolding, which might be responsible for amyloid fibril formation. The more structured intermediate that exhibited maximal accumulation at pH 3 retained the nativelike secondary structure and a hydrophobic core, but exposed hydrophobic surfaces that bind 8-anilino-1-naphthalenesulfonate. Below pH 2, a more disordered intermediate with dequenched tryptophan fluorescence but still retaining the beta-sheet structure accumulated. The optimal pH of amyloid fibril formation (i.e., pH 4) was close to the optimal pH of the accumulation of the nativelike intermediate, suggesting that the amyloid fibrils might be formed through this intermediate.  相似文献   

9.
Triplex and duplex formation of two deoxyribohexadecamers d-A-(G-A)-G (a) and d-C-(T-C)-T (b) have been studied by UV, CD, fluorescence, and proton NMR spectroscopy. Optical studies of a and b at dilute concentrations (microM range) yielded results similar to those seen for polymers of the same sequence, indicating that these hexadecamers have properties similar to the polymers in regard to triplex formation. The CD spectra of concentrated NMR samples (mM range) are similar to those observed at optical concentrations at both low and high pH, making possible a correlation between CD and NMR studies. In NMR spectra, two imido NH-N hydrogen bonded resonance envelopes at 12.6 and 13.7 ppm indicate that only the duplex conformation is present at pH greater than 7.7. Four new NH-N hydrogen-bonded resonance envelopes at 12.7, 13.5, 14.2, and 14.9 ppm are observed under acidic conditions (pH 5.6) and the two original NH-N resonances gradually disappear as the pH is lowered. Assignment of these four peaks to Watson-Crick G.C. Hoogsteen T.A Watson-Crick A.T, and Hoogsteen C+.G hydrogen-bonded imidos, respectively, confirm the formation of triple-stranded DNA NMR results also show that triplex is more stable than duplex at the same salt condition and that triplex melts to single strands directly without going through a duplex intermediate. However, in the melting studies, a structural change within the triple-stranded complex is evident at temperatures significantly below the major helix-to-coil transition. These studies demonstrate the feasibility of using NMR spectroscopy and oligonucleotide model compounds a and b for the study of DNA triplex formation.  相似文献   

10.
It has been reported recently that Sb(III) competes with Zn(II) for its binding to the CCHC zinc finger domain of the HIV-1 NCp7 protein, suggesting that zinc finger proteins may be molecular targets for antimony-based drugs. Here, the interaction of Sb(III) with a CCCH zinc finger domain, which is considered to play a crucial role in the biology of kinetoplastid protozoa, has been characterized for the first time. The binding characteristics of Sb(III) were compared between a CCCH-type peptide derived from a kinetoplastid protein and two different CCHC-type zinc finger peptides. The formation of 1 : 1 Zn-peptide and Sb-peptide complexes from the different peptides was demonstrated using circular dichroism, UV absorption, fluorescence spectroscopies and ESI-MS. Titration of the Zn-peptide complexes with SbCl(3) was performed at pH 6 and 7, exploiting the intrinsic fluorescence of the peptides. The differential spectral characteristics of the peptides allowed for competition experiments between the different peptides for binding of Zn(II). The present study establishes that Sb(III) more effectively displaces Zn(II) from the CCCH peptide than CCHC ones, as a result of both the greater stability of the Sb-CCCH complex (compared to Sb-CCHC complexes) and the lower stability of the Zn-CCCH complex (compared to Zn-CCHC complexes). Comparison of the binding characteristics of Sb(III) or Zn(II) between the CCHC-type peptides with different amino acid sequences supports the model that not only the conserved zinc finger motif, but also the sequence of non-conserved amino acids determines the binding affinity of Sb(III) and Zn(II). These data suggest that the interaction of Sb(III) with CCCH-type zinc finger proteins may modulate, or even mediate, the pharmacological action of antimonial drugs.  相似文献   

11.
Formation of complexes between bovine beta-lactoglobulins (BLG) and long-chain fatty acids (FAs), effect of complex formation on protein stability, and effects of pH and ionic strength on both complex formation and protein stability were investigated as a function of pH and ionic strength by electrophoretic techniques and NMR spectroscopy. The stability of BLG against unfolding is sharply affected by the pH of the medium: both A and B BLG variants are maximally stabilized against urea denaturation at acidic pH and against SDS denaturation at alkaline pH. The complexes of BLGB with oleic (OA) and palmitic acid (PA) appear more stable than the apoprotein at neutral pH whereas no differential behavior is observed in acidic and alkaline media. PA forms with BLG more stable complexes than OA. The difference between the denaturant concentration able to bring about protein unfolding in the holo versus the apo forms is larger for urea than for SDS treatment. This evidence disfavors the hypothesis of strong hydrophobic interactions being involved in complex formation. Conversely, a significant contribution to FA binding by ionic interactions is demonstrated by the effect of pH and of chloride ion concentration on the stoichiometry of FA.BLG complexes. At neutral pH in a low ionic strength buffer, one molecule of FA is bound per BLG monomer; this ratio decreases to ca. 0.5 per monomer in the presence of 200 mM NaCl. The polar heads of bound FA appear to be solvent accessible, and carboxyl resonances exhibit an NMR titration curve with an apparent pK(a) of 4.7(1).  相似文献   

12.
Conformational transitions of human calcitonin (hCT) during fibril formation in the acidic and neutral conditions were investigated by high-resolution solid-state 13C NMR spectroscopy. In aqueous acetic acid solution (pH 3.3), a local alpha-helical form is present around Gly10 whereas a random coil form is dominant as viewed from Phe22, Ala26, and Ala31 in the monomer form on the basis of the 13C chemical shifts. On the other hand, a local beta-sheet form as viewed from Gly10 and Phe22, and both beta-sheet and random coil as viewed from Ala26 and Ala31 were detected in the fibril at pH 3.3. The results indicate that conformational transitions from alpha-helix to beta-sheet, and from random coil to beta-sheet forms occurred in the central and C-terminus regions, respectively, during the fibril formation. The increased 13C resonance intensities of fibrils after a certain delay time suggests that the fibrillation can be explained by a two-step reaction mechanism in which the first step is a homogeneous association to form a nucleus, and the second step is an autocatalytic heterogeneous fibrillation. In contrast to the fibril at pH 3.3, the fibril at pH 7.5 formed a local beta-sheet conformation at the central region and exhibited a random coil at the C-terminus region. Not only a hydrophobic interaction among the amphiphilic alpha-helices, but also an electrostatic interaction between charged side chains can play an important role for the fibril formation at pH 7.5 and 3.3 acting as electrostatically favorable and unfavorable interactions, respectively. These results suggest that hCT fibrils are formed by stacking antiparallel beta-sheets at pH 7.5 and a mixture of antiparallel and parallel beta-sheets at pH 3.3.  相似文献   

13.
Despite the clinical use of pentavalent antimonials for more than half a century, their metabolism in mammals and mechanisms of action and toxicity remain poorly understood. It has been proposed that the more active and toxic trivalent antimony form Sb(III) plays a critical role in their antileishmanial activity and toxicity. The aim of this work was to investigate the role of residual Sb(III) both in the antileishmanial/antitumoral activities of the pentavalent meglumine antimoniate and in the MRP1 (multidrug resistance-associated protein 1)-mediated resistance to this drug. Samples of meglumine antimoniate differing in their amount of residual Sb(III) (meglumine antimoniate synthesized either from SbCl5 or from KSb(OH)6 as well as commercially-available meglumine antimoniate) were evaluated in vitro and in vivo on Leishmania amazonensis infections, as well as for their cytotoxicity to normal and MRP1-overexpressing GLC4 cell lines. Although in vitro the two most effective drugs contained the highest levels of Sb(III), no correlation was found in vivo between the antileishmanial activity of meglumine antimoniate and its residual Sb(III) content, suggesting that residual Sb(III) contributes only marginally to the drug antileishmanial activity. On the other hand, the GLC4 cells growth inhibition data strongly suggests a marked contribution of residual Sb(III). Additionally, the potassium salt of antimoniate (non-complexed form of Sb(V)) was found to be more cytotoxic than meglumine antimoniate. Although MRP1-overexpressing GLC4 cells showed a marked resistance to trivalent antimonials, cross-resistance to meglumine antimoniate was observed only for the products that contained relatively high levels of Sb(III) (at least 0.03% by weight), suggesting that MRP1 mediates resistance to Sb(III) but not to Sb(V). In conclusion, our data strongly suggest that residual Sb(III) in pentavalent antimonial drugs does not contribute significantly to their antileishmanial activity, but is responsible for their cytotoxic activity against mammalian cells and the MRP1-mediated resistance to these drugs.  相似文献   

14.
In spite of the extensive use of pentavalent antimony chemotherapy, the mechanism of its anti-leishmania action is still not clear. Here, we report the interactions of Sb(V), including the clinically used drug stibogluconate, with guanosine 5'-monophosphate (5'-GMP) and guanosine 5'-diphospho-d-mannose (5'-GDP-mannose) in aqueous solution. The deprotonated hydroxyl groups (-OH) of the ribose ring are shown to be the binding site for Sb(V), probably via chelation. Both mono- and bis-adducts were formed as determined by NMR, high performance liquid chromatography (HPLC) and electrospray ionization mass spectrometry (ESI-MS), and both of them are stable in the pH range of 4 to around 9.5. The formation of the mono-adduct (k(1)=1.67x10(-3) and 3.43x10(-3) mM(-1) min(-1) for Sb(5'-GMP) and Sb(5'-GDP-mannose), respectively, at 298 K) was 10-fold faster than that of the bis-adduct (k(2)=0.16x10(-3) and 0.21x10(-3) mM(-1) min(-1), for Sb(5'-GMP)(2) and Sb(5'-GDP-mannose)(2), respectively), and the mono-adduct was the major species in solution with the [bis-adduct]/[mono-adduct]<0.5. The reactions of stibogluconate with 5'-GMP and 5'-GDP-mannose were slower than that of antimonate under similar conditions.  相似文献   

15.
Misfolding and amyloid formation of transthyretin (TTR) is implicated in numerous degenerative diseases. TTR misfolding is greatly accelerated under acidic conditions, and thus most of the mechanistic studies of TTR amyloid formation have been conducted at various acidic pH values (2–5). In this study, we report the effect of pH on TTR misfolding pathways and amyloid structures. Our combined solution and solid-state NMR studies revealed that TTR amyloid formation can proceed via at least two distinct misfolding pathways depending on the acidic conditions. Under mildly acidic conditions (pH 4.4), tetrameric native TTR appears to dissociate to monomers that maintain most of the native-like β-sheet structures. The amyloidogenic protein undergoes a conformational transition to largely unfolded states at more acidic conditions (pH 2.4), leading to amyloid with distinct molecular structures. Aggregation kinetics is also highly dependent upon the acidic conditions. TTR quickly forms moderately ordered amyloids at pH 4.4, while the aggregation kinetics is dramatically reduced at a lower pH of 2.4. The effect of the pathogenic mutations on aggregation kinetics is also markedly different under the two different acidic conditions. Pathogenic TTR variants (V30M and L55P) aggregate more aggressively than WT TTR at pH 4.4. In contrast, the single-point mutations do not affect the aggregation kinetics at the more acidic condition of pH 2.4. Given that the pathogenic mutations lead to more aggressive forms of TTR amyloidoses, the mildly acidic condition might be more suitable for mechanistic studies of TTR misfolding and aggregation.  相似文献   

16.
Yuan C  Byeon IJ  Poi MJ  Tsai MD 《Biochemistry》1999,38(10):2919-2929
Previous NMR studies have shown that many phospholipase A2 (PLA2, from bovine pancreas, overexpressed in Escherichia coli) mutants display some properties reminiscent of a molten globule state. Further NMR analyses for some of the mutants indicated that formation of the "molten globule-like state" is a pH-dependent phenomenon. The mutants I9Y and I9F showed perturbed NMR properties throughout the pH range studied, while the mutants H48A and C44A/C105A displayed native-like spectra at neutral pH but molten globule-like ones under acidic conditions, with a "transition pH" around 4. On the other hand, wild-type PLA2 exhibits exceptional pH stability and turns into a similar molten globule-like state only under highly acidic conditions such as 1 M HCl. The H48A mutant was used to rigorously establish the property of the molten globule-like state of PLA2 mutants. The results of far-UV CD, near-UV CD, and ANS-binding fluorescence suggest that H48A retains native-like secondary structures but loses tertiary structure during the conformational transition. However, the tertiary structure is not completely lost, as evidenced by the retention of some long-range NOEs in two-dimensional NOESY spectra. The conclusion was further substantiated by three-dimensional NOESY-HSQC experiments on a 15N-labeled H48A sample. It was revealed that the molten globule-like state at mildly acidic pH retained some rigid tertiary structure, which consisted of partial alpha-helix II (Y52-L58), alpha-helix III (D59-V63), beta-wing (S74-S85) and partial alpha-helix IV (A90-N97). These residual tertiary structures grouped in half of the protein could be attributed to stabilization by some of the disulfide bonds. The extreme sensitivity of the PLA2 structure to site-directed mutagenesis is unprecedented. It is interesting to note that most of the functional residues (the active site, the hydrophobic channel, the interfacial binding site, and the calcium-binding loop) are located in the remainder of the protein, which is well disrupted in tertiary interactions.  相似文献   

17.
pH-Dependent structural changes for Escherichia coli O157:H7 EspA were characterized by CD, 8-anilino-2-naphthyl sulfonic acid (ANS) fluorescence, and sedimentation equilibrium ultracentrifugation. Far- and near-UV CD spectra, recorded between pH 2.0 and 7.0, indicate that the protein has significant amounts of secondary and tertiary structures. An increase in ANS fluorescence intensity (in the presence of EspA) was observed at acidic pH; whereas, no increased ANS fluorescence was observed at pH 7.0. These results suggest the presence of a partially unfolded state. Interestingly, urea-induced unfolding transitions, monitored by far-UV CD spectroscopy, showed that the protein is destabilized at pH 2.0 as compared with EspA at neutral pH. Although increased ANS fluorescence was observed at pH 3.0, the urea-induced unfolding curve is similar to that found at pH 7.0. This result suggests the presence, at pH 3.0, of an ordered, but partially unfolded state, which differs from typical molten globule. The results of analytical ultracentrifugation and infrared spectroscopy indicate that EspA molecules associate at pH 7.0, suggesting the formation of short filamentous oligomers containing alpha-helical structures, whereas the protein tend to form nonspecific aggregates containing intermolecular beta-sheets at pH 2.0. Our experiments indicate that EspA has the potential to spontaneously form filamentous oligomers at neutral pH; whereas the protein is partially unfolded, assuming different conformations, at acidic pH.  相似文献   

18.
Adenosine nucleosidase (adenosine ribohydrolase, EC 3.2.2.7) which catalyzes the deribosylation of N6-(Δ2-isopentenyl)adenosine and adenosine to form the corresponding bases was partially purified from wheat germ. This enzyme (molecular weight 59,000 ± 3,000) deribosylates the ribonucleosides at an optimum pH of 4.7 Km values for the cytokinin nucleoside and adenosine are 2.38 and 1.43 micromolar, respectively, in 50 millimolar Tris-citrate buffer (pH 4.7) at 30 C. The presence of adenosine and other cytokinin nucleosides inhibited the hydrolysis of N6-(Δ2-isopentenyl)adenosine but this reaction was insensitive to guanosine, uridine, or 3′-deoxyadenosine. It is hypothesized that an adequate level of “active cytokinin” in plant cells may be provided through the deribosylation of cytokinin riboside in concert with other cytokinin metabolic enzymes.  相似文献   

19.
CO complex of cyt b(5) generated at acidic pH is investigated by absorption, resonance Raman (RR), and far UV CD measurements. The Soret maximum wavelength blue-shifted to 420 nm with other absorption bands observed around 540 and 570 nm for reduced cyt b(5) upon interaction with CO at acidic pH (pH 3.1-3.5). Under this condition, the iron-carbon stretching RR band was observed at 529 cm(-1) (520 cm(-1) for C(18)O), which indicated formation of a heme&bond;CO adduct with a histidine as an axial ligand. Heme dissociated from the reduced cyt b(5) protein at pH approximately 3.5, whereas its rate decreased under CO atmosphere compared with N(2) atmosphere, due to formation of a heme&bond;CO adduct with a histidine as an axial ligand.  相似文献   

20.
The heme iron coordination of unfolded ferric and ferrous cytochrome c in the presence of 7-9 M urea at different pH values has been probed by several spectroscopic techniques including magnetic and natural circular dichroism (CD), electrochemistry, UV-visible (UV-vis) absorption and resonance Raman (RR). In 7-9 M urea at neutral pH, ferric cytochrome c is found to be predominantly a low spin bis-His-ligated heme center. In acidic 9 M urea solutions the UV-vis and near-infrared (NIR) magnetic circular dichroism (MCD) measurements have for the first time revealed the formation of a high spin His/H(2)O complex. The pK(a) for the neutral to acidic conversion is 5.2. In 9 M urea, ferrous cytochrome c is shown to retain its native ligation structure at pH 7. Formation of a five-coordinate high spin complex in equilibrium with the native form of ferrous cytochrome c takes place below the pK(a) 4.8. The formal redox potential of the His/H(2)O complex of cytochrome c in 9 M urea at pH 3 was estimated to be -0.13 V, ca. 100 mV more positive than E degrees ' estimated for the bis-His complex of cytochrome c in urea solution at pH 7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号