首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence for immunoreactive neurotensin in dog intestinal mucosa   总被引:2,自引:0,他引:2  
Discrete cells containing neurotensin, as shown by immunofluorescence, have been observed in the lower portion of the dog ileum. This implies that neurotensin may be synthesized in the small intestine and may be involved in local regulation of intestinal functions. Neurotensin is a peptide characterized originally in the hypothalamus.  相似文献   

2.
Neurotensin, a tridecapeptide appears to be localized in various parts of the brain and gut. A high affinity binding component of neurotensin to brain membranes, synaptosomes and mast cells has been reported. After peripheral administration the peptide exerts a medley of effects which appear directed mainly to glucose metabolism. In addition, complex vascular effects have also been noted including hypotensin, cyanosis, vasodilation and increased permeability. The peptide may also be associated with inflammatory events. Complex effects upon the secretion of anterior pituitary tropic hormones have been observed.After central administration neurotensin exerts several effects all of which appear to be sufficiently explained by the potent hypothermic action. The resolution of the question of which, if any, of the actions of neurotensin are involved in physiological regulation has not been achieved.  相似文献   

3.
Abstract

Membranes prepared from mammalian brain or intestine contain two types of specific binding sites for neurotensin that differ by their affinity and by their sensitivity to sodium ions, GTP, and the antihistamine drug levocabastine. Only the high affinity sites are present in cell cultures and in soluble extracts of CHAPS-treated membranes. These sites represent functional neurotensin receptors coupled to GTP-binding proteins that regulate intracellular levels of cAMP, cGMP and inositol phosphates in neuroblastoma N1E115 cells. The molecular weight of neurotensin receptors in cells and membrane preparations of various origin is about 110,000.  相似文献   

4.
Summary Neurotensin is a 13-amino acid peptide (pGlu-Leu-Tyr-Glu-Asn-Lys-Pro-Arg-Arg-Pro-Tyr-Ile-Leu) originally isolated from hypothalami (Carraway and Leeman, 1973) and later from intestines (Kitabgiet al., 1976) of bovine. The peptide is present throughout the animal kingdom, suggesting its participation to important processes basic to animal life (Carrawayet al., 1982). Neurotensin and its analogue neuromedin-N (Lys-Ile-Pro-Tyr-Ile-Leu) (Minaminoet al., 1984) are synthesized by a common precursor in mammalian brain (Kislauskiset al., 1988) and intestine (Dobneret al., 1987). The central and peripheral distribution and effects of neurotensin have been extensively studied. In the brain, neurotensin is exclusively found in nerve cells, fibers, and terminals (Uhlet al., 1979), whereas the majority of peripheral neurotensin is found in the endocrine N-cells located in the intestinal mucosa (Orciet al., 1976; Helmstaedteret al., 1977). Central or peripheral injections of neurotensin produce completely different pharmacological effects (Table I) indicating that the peptide does not cross the blood-brain barrier. Many of the effects of centrally administered neurotensin are similar to those of neuroleptics or can be antagonized by simultaneous administration of TRH (Table I). The recently discovered nonpeptide antagonist SR 48692 (Gullyet al., 1993) can inhibit several of the central and peripheral effects of neurotensin (Table I).Like many other neuropeptides, neurotensin is a messenger of intracellular communication working as a neurotransmitter or neuromodulator in the brain (Nemeroffet al., 1982) and as a local hormone in the periphery (Hirsch Fernstromet al., 1980). Thus, several pharmacological, morphological, and neurochemical data suggest that one of the functions of neurotensin in the brain is to regulate dopamine neurotransmission along the nigrostriatal and mesolimbic pathways (Quirion, 1983; Kitabgi, 1989). On the other hand, the likely role of neurotensin as a parahormone in the gastrointestinal tract has been well documented (Rosell and Rökaeus, 1981; Kitabgi, 1982).Both central and peripheral modes of action of neurotensin imply as a first step the recognition of the peptide by a specific receptor located on the plasma membrane of the target cell. Formation of the neurotensin-receptor complex is then translated inside the cell by a change in the activity of an intracellular enzyme. This paper describes the binding and structural properties of neurotensin receptors as well as the signal transduction pathways that are activated by the peptide in various target tissues and cells.  相似文献   

5.
The present study was conducted to clarify the regional distribution and relative frequency of endocrine cells secreting serotonin, substance P (SP), cholecystokinin-8 (CCK-8), vasoactive intestinal polypeptide (VIP) and neurotensin in the small and large intestine of the mole-rats (Spalax leucodon), by specific immunohistochemical methods. In the small and large intestine of mole-rats (Spalax leucodon), serotonin, SP and VIP were identified with various frequencies, but CCK-8 and neurotensin were not observed. Most of the IR cells in the small and large intestine were located in the intestinal crypt and epithelium however, they were more frequency in the intestinal crypt. Serotonin-IR cells were detected throughout the whole intestinal tract, predominantly in the duodenum and colon. SP-IR cells were demonstrated throughout the whole intestinal tract except for the ileum and rectum with highest frequencies in the cecum. VIP-IR cells were found in all parts of the small intestine except for the large intestine.In conclusion, the general distribution patterns and relative frequency of intestinal endocrine cells of the mole-rats (Spalax leucodon) was similar to those of some rodent species. However, some species-dependent unique distributions and frequencies characteristics of endocrine cells were also observed in the present study.  相似文献   

6.
《Regulatory peptides》1988,22(3):275-284
Because neurotensin may potentiate exocrine pancreatic secretory responses to cholecystokinin and secretin, we examined interactions of neurotensin with caerulein or secretin on growth of pancreas, stomach, small intestine, and colon. Rats were injected with saline, neurotensin (100 μg/kg), caerulein (0.67 μg/kg), secretin (100 μg/kg), or neurotensin plus caerulein or secretin every 8 h for 5 days. Pancreas, stomach, small intestine, and colon were weighed and assayed for DNA, protein, and digestive enzymes. Although neurotensin increased pancreatic weight (P < 0.01), DNA (P < 0.01), and protein content (P < 0.05) by 20–30%, it had less than additive effects on responses to caerulein and secretin. Neurotensin had no effects on pancreatic enzymes or on responses to caerulein or secretin. Neurotensin alone had no effects on growth of the oxyntic gland area or antrum but inhibited increases in antral weight, DNA, and protein caused by secretin. Neurotensin increased small intestine weight (9%, P < 0.05) and protein content (23%, P < 0.01). Secretin also increased weight (22%), DNA (29%), and protein content (48%) of the small intestine (all P < 0.01), but neurotensin and secretin together had less than additive effects. Our results suggest that neurotensin inhibits rather than potentiates certain growth effects of caerulein or secretin on the pancreas and other organs.  相似文献   

7.
Neurotensin, a tridecapeptide localized in the gut to discrete enteroendocrine cells of the small bowel mucosa, is a hormone that plays an important role in gastrointestinal secretion, growth, and motility. Neurotensin has inhibitory and excitatory effects on peristaltic activity and produces contractile and relaxant responses in intestinal smooth muscle. Our objective in this study is to investigate the effects of neurotensin in small intestinal interstitial cells of Cajal (ICC) and elucidate the mechanism. To determine the electrophysiological effects of neurotensin on ICC, whole-cell patch clamp recordings were performed in cultured ICC from the small intestine. Exposure to neurotensin depolarized the membrane of pacemaker cells and produced tonic inward pacemaker currents. Only neurotensin receptor1 was identified when RT-PCR and immunocytochemistry were performed with mRNA isolated from small intestinal ICC and c-Kit positive cells. Neurotensin-induced tonic inward pacemaker currents were blocked by external Na+- free solution and in the presence of flufenamic acid, an inhibitor of non-selective cation channels. Furthermore, neurotensin-induced action is blocked either by treatment with U73122, a phospholipase C inhibitor, or thapsigargin, a Ca2+-ATPase inhibitor in ICC. We found that neurotensin increased spontaneous intracellular Ca2+ oscillations as seen with fluo4/AM recording. These results suggest that neurotensin modulates pacemaker currents via the activation of non-selective cation channels by intracellular Ca2+-release through neurotensin receptor1.  相似文献   

8.
Summary Endocrine cells displaying neurotensin immunoreactivity are found scattered in the jejuno-ileum of all mammals studied, including man. They are rather scarce in rat, guinea pig, rabbit and pig and fairly numerous in cat, dog and man. In most mammals the neurotensin cells predominate on the villi. Only in the dog are they more numerous in the crypts. In the chicken, neurotensin cells occur all along the intestinal tract. They are particularly numerous in the zone that joins the gizzard with the duodenum. The ontogeny of the neurotensin cells in the gut was studied in rats and chickens. In the rat, the cells are first observed in the jejuno-ileum immediately before birth. The adult frequency is reached 4–5 days later. In the chicken, neurotensin cells first appear in the colon in the 18 day old embryo and in the small intestine two days later (i.e. one or two days before hatching). A few days after hatching, the gut has achieved the adult number of neurotensin cells per unit area.  相似文献   

9.
Epidermal growth factor and transforming growth factor alpha stimulated DNA synthesis in primary cultures of adult rat hepatocytes. Neurotensin amplified epidermal growth factor-stimulated or transforming growth factor alpha-stimulated DNA synthesis by three- to eightfold. Neurotensin by itself did not stimulate DNA synthesis. Amplification of DNA synthesis by neurotensin was observed as low as 10?10 M, and it was increased in a dose-dependent manner with maximal effects at 10–8 M. These results were obtained when hepatocytes were cultured in Williams' medium E, but not in Leibovitz L-15 medium, suggesting that a minor component(s) in the medium is required for hepatocytes to fully respond to neurotensin. Neurotensin effect on DNA synthesis was observed not only in normal rat hepatocytes but also in partially hepatectomized rat hepatocytes, although its effect was stronger in normal hepatocytes. Amplified DNA synthesis was inhibited by transforming growth factor β. Secondary mitogens (co-mitogens) such as insulin, vasopressin, or angiotensin II interacted additively with low concentrations of epidermal growth factor as well as with neurotensin. Neurotensin-related peptides such as kinetensin or neuromedin-N, which was released from blood plasma by pepsin digestion, did not have this amplifying effect on DNA synthesis at any concentrations tested. Neurotensin mRNA was found in several organs including brain and intestine, but not liver. These results suggest that neurotensin can be regarded as a new secondary mitogen and that it may be involved in cell proliferation, including regenerating liver as a gastrointestinal hormone and/or a neurotransmitter. © 1994 Wiley-Liss, Inc.  相似文献   

10.
Using immunocytochemical techniques we have demonstrated that Calbindin D28K (CaBP) is present in the gastrointestinal tract of ovine fetuses early in development (by day 45). At day 45, CaBP was limited to neuronal elements in the developing intestine. By day 100, CaBP immunoreactivity was abundant in both epithelial endocrine cells and nerves of the submucous and myenteric ganglia. The location of CaBP containing cells and fibers was similar in duodenal sections taken from day 100 and term (145 days), as well as those taken from 24-48 h postnatal lambs. CaBP is colocalized in endocrine cells containing gastrin, glucagon, somatostatin and neurotensin, but not glucose dependent insulinotrophic peptide (GIP). Furthermore, it is extensively colocalized in nerve fibers and cells containing neurotensin but not somatostatin or vasoactive intestinal peptide. The colocalization of CaBP within various endocrine and nerve cells does not change in fetal sheep over the last one-third of gestation and there is no difference between fetal and neonatal sheep.  相似文献   

11.
Recombinant DNA clones encoding the neurotensin/neuromedin N precursor protein have been isolated from both bovine hypothalamus cDNA and rat genomic libraries using a heterologous canine cDNA probe. Nucleotide sequence analysis of these clones and comparison with the previously determined canine sequence has revealed that 76% of the amino acid residues are conserved in all three species. The protein precursor sequences predicted from bovine hypothalamus and canine intestine cDNA clones vary at only 9 of 170 amino acid residues suggesting that within a species identical precursors are synthesized in both the central nervous system and intestine. The rat gene spans approximately 10.2 kilobases (kb) and is divided into four exons by three introns. The neurotensin and neuromedin N coding domains are tandemly positioned on exon 4. RNA blot analysis has revealed that the rat gene is transcribed to yield two distinct mRNAs, 1.0 and 1.5 kb in size, in all gastrointestinal and all neural tissues examined except the cerebellum. There is a striking variation in the relative levels of these two mRNAs between brain and intestine. The smaller 1.0-kb mRNA greatly predominates in intestine while both mRNA species are nearly equally abundant in hypothalamus, brain stem, and cortex. Sequence comparisons and RNA blot analysis indicate that these two mRNAs result from the differential utilization of two consensus poly(A) addition signals and differ in the extent of their 3' untranslated regions. The relative combined levels of the mRNAs in various brain and intestine regions correspond roughly with the relative levels of immunologically detectable neurotensin except in the cerebral cortex where mRNA levels are 6 times higher than anticipated.  相似文献   

12.
Preparation of isolated large intestine of the frog was filled with Ringer's solution diluted with distilled water (1:5) and was placed into the glass with normal Ringer's solution. The preparation was weighed within every 30 min and the osmotic permeability was determined for water of the mucous and serous layers of the intestine. Then one of the peptides was added to Ringer's solution and the experiment continued. It is stated that bombesin, neurotensin, encephalins, substance P, somatostatin, pituitrin are able to change liquid absorption from the large intestine cavity when the concentration of Ringer's solution in the cavity and from its serous surface is the same. Bombesin and neurotensin inhibited while encephalins stimulated liquid absorption and these effects depended on the transport of ions. Liquid absorption by the osmotic gradient decreased using bombesin, substance P and increased using somatostatin. More complex peptide-peptide relations are observed if using pituitrin and other peptides. cAMP is shown to participate in bombesin effects.  相似文献   

13.
The mammalian small intestine is both a source and a site of degradation of neurotensin. Metabolites produced by incubation of the peptide with dispersed enterocytes from porcine small intestine were isolated by high-performance liquid chromatography and identified by amino-acid analysis. The principal sites of cleavage were at the Tyr-11-Ile-12 bond, generating neurotensin-(1-11), and at the Pro-10-Tyr-11 bond, generating neurotensin-(1-10). The corresponding COOH-terminal fragments, neurotensin-(11-13) and -(12-13) were metabolized further. Formation of neurotensin-(1-11) and -(1-10) was completely inhibited by phosphoramidon (Ki = 6 nM), an inhibitor of endopeptidase 24.11, but not by captopril, an inhibitor of peptidyl dipeptidase A. Incubation of neurotensin with purified endopeptidase 24.11 from pig stomach also resulted in cleavage of the Tyr-11-Ile-12 and Pro-10-Tyr-11 bonds. A minor pathway of cell-surface-mediated degradation was the phosphoramidon-insensitive cleavage of the Tyr-3-Glu-4 bond, generating neurotensin-(1-3) and neurotensin-(4-13). No evidence for specific binding sites (putative receptors) for neurotensin was found either on the intact enterocyte or on vesicles prepared from the basolateral membranes of the cells. Neurotensin-(1-8), the major circulating metabolite, was not formed when neurotensin(1-13) was incubated with cells, but represented a major metabolite (together with neurotensin-(1-10] when neurotensin-(1-11) was used as substrate. The study has shown that degradation of neurotensin in the epithelial layer of the small intestine is mediated principally through the action of endopeptidase 24.11, but this enzyme is probably not responsible for the production of the neurotensin fragments detected in the circulation.  相似文献   

14.
The effect of intravenous gastrointestinal peptide hormone administration on net fluid transport in the small intestine was assessed in the rat. An increased fluid content was observed during vasoactive intestinal peptide, gastric] inhibitory peptide, and neurotensin infusions, and a decreased content with somatostatin, substance P and pancreatic polypeptide, by comparison with the control series. Motilin had no significant effect on luminal fluid volume. These results suggest that several of the gastrointestinal regulatory peptides may have an influence on the processes of fluid absorption and secretion by the small intestine.  相似文献   

15.
The effects of neuromedin-N on migrating myoelectric complexes in the small intestine of rats were studied. As neuromedin-N and neurotensin are structurally related peptides a comparison with neurotensin was made. Myoelectric activity was recorded by means of three bipolar electrodes implanted into the wall of the small intestine at 5, 15 and 25 cm distal to the pylorus. The peptides were administered as intravenous infusions to fasted conscious rats. Neuromedin-N at doses of 100-800 pmol kg-1 min-1 caused a dose-dependent disruption of the migrating myoelectric complexes and induced irregular spiking activity (n = 7, P less than 0.05). Neurotensin induced a similar response, but at doses of 1.0-8.0 pmol kg-1 min-1 (n = 5, P less than 0.05). Thus, on a molar basis, neuromedin-N appeared to be about 100-times less potent than neurotensin. Hexamethonium (20 mg kg-1 i.v.) inhibited the migrating motor complexes and induced quiescence, but did not block the effect of neuromedin-N at a dose of 800 pmol kg-1 min-1. Atropine (1 mg kg-1 i.v.) and mepyramine (2 mg kg-1 i.v.) did not affect the migrating motor complexes, nor did they block the effect of neuromedin-N. Simultaneous infusion of neuromedin-N and neurotensin in a 1:1 molar ratio at doses of 2 pmol kg-1 min-1 showed inhibition of the response to neurotensin in eight out of ten experiments. In conclusion, neuromedin-N changes the myoelectric activity in the small intestine from a fasting to a fed pattern.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The association of neurotensin to its receptor in differentiated neuroblastoma N1E115 cells led to a fast and transitory increase of the intracellular concentration in inositol triphosphate and inositol biphosphate, followed by a slower and more stable increase inositol monophosphate. The action of inositol 1,4,5-triphosphate on digitonin-permeabilized N1E115 cells resulted in a stimulation of cyclic GMP levels that mimicked that induced by neurotensin. Therefore, the cyclic GMP stimulation is probably a consequence of the initial inositol triphosphate formation triggered by neurotensin. Fluoroaluminate ions and pertussis toxin had the capacity to modulate positively and negatively, respectively, the formation of inositol triphosphate induced by neurotensin, indicating that GTP-binding proteins are involved in the regulation of inositol phosphate levels by neurotensin receptors.  相似文献   

17.
Murine neuroblastoma cells (clone N1E-115) possess neurotensin receptors that mediate cyclic GMP synthesis. Because of the hypothesized relationship between phospholipid metabolism, intracellular Ca2+, and cyclic GMP synthesis, we determined with these cells the effects of neurotensin on 32P labeling of phospholipids, release of inositol phosphates, and intracellular Ca2+ (as determined with the use of Quin-2, a fluorescent probe sensitive to free Ca2+ levels). Neurotensin stimulated incorporation of 32P into phospholipids, especially phosphatidylinositol and phosphatidate. Neurotensin also stimulated the release of [3H]inositol phosphates with an EC50 of about 1 nM. Mean basal Ca2+ concentration in these cells was 134 nM and this level was increased in a rapid and dose-dependent manner by neurotensin, with an EC50 of 4 nM. Since the EC50 for neurotensin in stimulating cyclic GMP synthesis is 1.5 nM and the KD for binding of [3H]neurotensin at 0 degrees C is 11 nM, all these different effects appear to be shared proximal consequences of neurotensin receptor activation.  相似文献   

18.
Although many neuropeptides have been implicated in the pathophysiology of psychostimulant abuse, the tridecapeptide neurotensin holds a prominent position in this field due to the compelling literature on this peptide and psychostimulants. These data strongly support the hypothesis that a neurotensin agonist will be clinically useful to treat the abuse of psychostimulants, including nicotine. This paper reviews the evidence for a role for neurotensin in stimulant abuse and for a neurotensin agonist for its treatment.  相似文献   

19.
A novel bioactive form of neurotensin post-translationally modified at a Glu residue was isolated from porcine intestine. Purification of the peptide was guided by detection of intracellular Ca2+ release in SK-N-SH neuroblastoma cells. Using high resolution accurate mass analysis on an ion trap Fourier transform mass spectrometer, the post-translational modification was identified as arginine linked to the gamma-carboxyl of Glu via an isopeptide bond, and we named the newly identified peptide "arginylated neurotensin" (R-NT, N-(neurotensin-C5-4-yl)arginine). Although arginylation is a known modification of N-terminal amino groups in proteins, its presence at a Glu side chain is unique. The finding places neurotensin among the few physiologically active peptides that occur both in post-translationally modified and unmodified forms. Pharmacologically, we characterized R-NT for its ligand activity on three known neurotensin receptors, NTR1, -2, and -3, and found that R-NT has similar pharmacological properties to those of neurotensin, however, with a slightly higher affinity to all three receptors. We expressed the intracellular receptor NTR3 as a soluble protein secreted into the cell culture medium, which allowed characterization of its R-NT and neurotensin binding properties. The creation of soluble NTR3 also provides a potential tool for neutralizing neurotensin action in vivo and in vitro. We have shown that SK-N-SH neuroblastoma cells express NTR1 and NTR3 but not NTR2, suggesting that the Ca2+ mobilization elicited by R-NT is via NTR1.  相似文献   

20.
Many previous reports suggested that relatively high concentrations of neurotensin were required to exert its effects on neurotransmitter secretion. The neurotensin binding sites, which recognize high concentrations of neurotensin, were characterized in rat pheochromocytoma (PC12) cells. When PC12 cells were treated with neurotensin, [3H]norepinephrine secretion and elevation of cytosolic calcium were evoked at EC(50) values of 59+/-4 and 37+/-7 microM, respectively. Both calcium release and inositol 1,4,5-trisphosphate (IP(3)) production induced by neurotensin suggested involvement of phospholipase C. Experiments with simultaneous or sequential treatment with neurotensin and bradykinin suggested that neurotensin and bradykinin act on the same binding sites. Furthermore, both inhibition of bradykinin- and neurotensin-induced calcium rises by bradykinin receptor antagonists with similar IC(50) values and receptor binding analysis using [3H]bradykinin confirmed that neurotensin directly binds to B2 bradykinin receptors. The data suggest that neurotensin binds and activates the B2 bradykinin receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号