首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Propofol (2,6-diisopropylphenol) is a widely used general anesthetic with anti-oxidant activities. This study aims to investigate protective capacity of propofol against hydrogen peroxide (H2O2)-induced oxidative injury in neural cells and whether the anti-oxidative effects of propofol occur through a mechanism involving the modulation of NADPH oxidase (NOX) in a manner of calcium-dependent. The rat differentiated PC12 cell was subjected to H2O2 exposure for 24 h to mimic a neuronal in vitro model of oxidative injury. Our data demonstrated that pretreatment of PC12 cells with propofol significantly reversed the H2O2-induced decrease in cell viability, prevented H2O2-induced morphological changes, and reduced the ratio of apoptotic cells. We further found that propofol attenuated the accumulation of malondialdehyde (biomarker of oxidative stress), counteracted the overexpression of NOX core subunit gp91phox (NOX2) as well as the NOX activity following H2O2 exposure in PC12 cells. In addition, blocking of L-type Ca2+ channels with nimodipine reduced H2O2-induced overexpression of NOX2 and caspase-3 activation in PC12 cells. Moreover, NOX inhibitor apocynin alone or plus propofol neither induces a significant downregulation of NOX activity nor increases cell viability compared with propofol alone in the PC12 cells exposed to H2O2. These results demonstrate that the protective effects of propofol against oxidative injury in PC12 cells are mediated, at least in part, through inhibition of Ca2+-dependent NADPH oxidase.  相似文献   

2.
Oxidative stress and miRNAs have been confirmed to play an important role in neurological diseases. The study aimed to explore the underlying effect and mechanisms of miR-146a in H2O2-induced injury of PC12 cells. Here, PC12 cells were stimulated with 200 μM of H2O2 to construct oxidative injury model. Cell injury was evaluated on the basis of the changes in cell viability, migration, invasion, apoptosis, and DNA damage. Results revealed that miR-146a expression was up-regulated in H2O2-induced PC12 cells. Functional analysis showed that down-regulation of miR-146a alleviated H2O2-induced cytotoxicity in PC12 cells. Dual-luciferase reporter and western blot assay verified that MCL1 was a direct target gene of miR-146a. Moreover, anti-miR-146a-mediated suppression on cell cytotoxicity was abated following MCL1 knockdown in H2O2-induced PC12 cells. Furthermore, MCL1 activated JAK/STAT signaling pathway and MCL1 overexpression attenuated H2O2-induced cytotoxicity in PC12 cells by JAK/STAT signaling pathway. In conclusion, this study suggested that suppression of miR-146a abated H2O2-induced cytotoxicity in PC12 cells via regulating MCL1/JAK/STAT pathway.  相似文献   

3.
Oxidative stress can induce neuronal apoptosis via the production of superoxide and hydroxyl radicals. This process is as a major pathogenic mechanism in neurodegenerative disorders. In this study, we aimed to clarify whether theaflavins protect PC12 cells from oxidative stress damage induced by H2O2. A cell model of PC12 cells undergoing oxidative stress was created by exposing cells to 200 μM H2O2 in the presence or absence of varying concentrations of theaflavins (5, 10, and 20 μM). Cell viability was monitored using the MTT assay and Hoechst 33258 staining, showing that 10 μM theaflavins enhanced cell survival following 200 μM H2O2 induced toxicity and increased cell viability by approximately 40?%. Additionally, we measured levels of intracellular reactive oxygen species (ROS) and antioxidant enzyme activity. This suggested that the neuroprotective effect of theaflavins against oxidative stress in PC12 cells is derived from suppression of oxidant enzyme activity. Furthermore, Western blot analyses indicated that theaflavins downregulated the ratio of pro-apoptosis/anti-apoptosis proteins Bax/Bcl-2. Theaflavins also downregulated the expression of caspase-3 compared with a H2O2-treated group that had not been treated with theaflavins. Interestingly, this is the first study to report that the four main components of theaflavins found in black tea can protect neural cells (PC12) from apoptosis induced by H2O2. These findings provide the foundations for a new field of using theaflavins or its source, black tea, in the treatment of neurodegenerative diseases caused by oxidative stress.  相似文献   

4.
Tzeng YM  Lee YC  Cheng WT  Shih HN  Wang HC  Rao YK  Lee MJ 《Life sciences》2012,90(7-8):257-266
AimsTo test the effects of andrographolide (AP1) and 14-deoxy-11,12-didehydroandrographolide (AP2) on pheochromocytoma cell line 12 (PC12) cells in an astrocyte-rich environment.Main methodsThe abilities of AP1 and AP2 to reduce the secretion of pro-inflammatory cytokines Interleukin (IL)-1, IL-6, and Tumor necrosis factor (TNF)-α from stimulated astrocytes were tested. In addition, the abilities of AP1 and AP2 to reduce oxidative stress in astrocytes were tested using an oxidative-sensitive fluorescent dye. The reduction of chondroitin sulfate proteoglycan (CSPG) in stimulated astrocytes was tested using the dot blot method. Reduction of H2O2-induced death was tested in PC12 cells. Astrocyte-conditioned medium (ACM) and TNF-α-stimulated astrocyte-conditioned medium (SACM) were used to assess the effects of AP2 on PC12 cells treated with H2O2.Key findingsAP1 and AP2 reduced pro-inflammatory cytokines, reactive oxygen species (ROS), and CSPG in TNF-α stimulated astrocytes. AP1 protected H2O2-treated PC12 cells cultured in ACM. Co-incubation of PC12 cells in H2O2, and ACM collected from AP1 treated astrocytes did not prevent cell death.SignificanceAP1 and AP2 effectively ameliorated astrocytic pro-inflammatory reactions and prevented PC12 cell death with different efficacies. These compounds may be candidates for treatment of spinal-cord injury and neurodegeneration.  相似文献   

5.
Oxidative stress has an important role in neurodegenerative diseases and cerebral ischemic injury. It is reported that d-β-hydroxybutyrate (DβHB), the major component of ketone bodies, is neuroprotective in recent studies. Therefore, in the present work the neuroprotective effects of DβHB on H2O2-induced apoptosis mediated by oxidative stress was investigated. PC12 cells were exposed to H2O2 with different concentrations of H2O2 for different times after DβHB pretreatment. MTT assay, apoptotic rates, intracellular reactive oxygen species (ROS) level, GSH content, mitochondrial membrane potential (MMP) and caspase-3 activity were determined. The results showed that DβHB inhibited the decrease of cell viability induced by H2O2 in PC12 cells. DβHB decreased the apoptotic rates induced by H2O2. The changes of intracellular ROS, GSH, MMP and caspase-3 activity due to H2O2 exposure were partially reversed in PC12 cells. So DβHB inhibited the apoptosis of PC12 cells induced by H2O2 via inhibiting oxidative stress.  相似文献   

6.
Sesaminol is one component of sesame oil and has been widely used as the stabilizer to extend the storage period of food oil in China. In this study, we tried to investigate the antioxidant activity of sesaminol on rat pheochromocytoma (PC12) cells oxidative damaged by H2O2. Cell viability, LDH level and apoptosis of the PC12 cells were assayed after treatment with sesaminol for 3 h and exposure to H2O2. Furthermore, superoxide (SOD), catalase (CAT), glutathione peroxidase (GSH‐Px) and intracellular ROS were assayed after exposure of the PC12 cells to H2O2. The results showed that pre‐treatment with sesaminol prior to H2O2 exposure significantly elevated cell survival rate and SOD, CAT and GSH‐Px activity. Meanwhile, sesaminol declined the secreted LDH level, apoptosis rate and ROS level of H2O2 exposed cells. Thus, sesaminol may protect PC12 against oxidative injury. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
We previously reported that fasudil mesylate (FM) improves neurological deficit and neuronal damage in rats with ischemia following middle cerebral artery occlusion and reperfusion in vivo. In this study, the properties of FM on hydrogen peroxide (H2O2)-induced oxidative stress insult in cultured PC12 cells as well as the underlying mechanisms were investigated in vitro. Pretreatment with FM (5, 10 μM) prior to H2O2 exposure significantly elevated cell viability, reduced cell apoptosis by MTT assay, LDH assay, Hoechst 33258 dye staining, and FM also decreased the accumulation of reactive oxygen species (ROS) by DCFH-DA staining and NBT test. Furthermore, FM also reversed the upregulation of Bax/Bcl-2 ratio, the downstream cascade following ROS. FM protected PC12 cells from oxidative stress insult via down-regulating the Bax/Bcl-2 ratio. These findings indicate that a direct effect of fasudil mesylate on PC12 cells may be partly responsible for its protective effect against oxidative stress injury.  相似文献   

8.
The role of novel triazine derivatives against oxidative stress exerted by hydrogen peroxide on differentiated rat pheochromocytoma (PC12) cell line was examined and a consistent protection from H2O2-induced cell death, associated with a marked reduction in caspase-3 activation, was observed. Moreover, activation of NF-κB, a known regulator of a host of genes that involves in specific stress and inflammatory responses by H2O2, was greatly impaired by triazine pretreatment in differentiated PC12 cells. Neuroprotective effect of such compounds may represent a promising approach for treatment of neurodegenerative diseases.  相似文献   

9.
Stroke involves numerous pathophysiological processes and oxidative stress is considered as a main cellular event in its pathogenesis. The nuclear factor erythroid-2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway plays a key role in inducing phase II detoxifying enzymes and antioxidant proteins and is now considered as a interesting therapeutic target for the treatment of stroke. The objective of this study is to investigate the protective effect of Gualou Guizhi granule (GLGZG) against oxidative stress and explore the protective mechanism of the Nrf2/ARE pathway. In vivo, administration of GLGZG in a rat model of focal cerebral ischemia significantly suppressed oxidative injury by increasing the activity of superoxide dismutase and glutathione level and decreasing reactive oxygen species and malondialdehyde levels. Western blot analysis showed that GLGZG induced nuclear translocation of Nrf2, and combined with real-time PCR results, which indicated that GLGZG up-regulated the Nrf2/ARE pathway. In addition, in cultured PC12 cells, GLGZG protected against H2O2 induced oxidative injury and activated the Nrf2/ARE pathway. All the results demonstrated that GLGZG in the management of cerebral ischemia and H2O2 induced oxidative injury may be associated with activation of Nrf2/ARE signaling pathway.  相似文献   

10.
11.
Alzheimer’s disease (AD) is a common neurodegenerative disorders, in which oxidative stress plays an important role. The present study investigated the effect of eicosapentaenoic acid-enriched phospholipids (EPA-enriched PL) from the sea cucumber Cucumaria frondosa on oxidative injury in PC12 cells induced by hydrogen peroxide (H2O2) and tert-butylhydroperoxide (t-BHP). We also studied the effect of EPA-enriched PL on learning and memory functions in senescence-accelerated prone mouse strain 8 (SAMP8) in vivo. Pretreatment with EPA-enriched PL resulted in an enhancement of survival in a dose-dependent manner in H2O2 or t-BHP damaged PC12 cells. EPA-enriched PL pretreatment could also reduce the leakage of lactate dehydrogenase (LDH), and increase the intracellular total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) activity compared with the H2O2 or t-BHP group. The down-regulated Bcl-2 mRNA level and up-regulated Bax, Caspase-9, and Caspase-3 mRNA expression induced by H2O2 or t-BHP could be restored by EPA-enriched PL pretreatment. These results demonstrated that EPA-enriched PL exhibited its neuroprotective effects by virtue of its antioxidant activity, which might be achieved by inhibiting the mitochondria-dependent apoptotic pathway. The neuroprotective effect of EPA-enriched PL was also verified in vivo test: the EPA-enriched PL administration prevented the development of learning and memory impairments in SAMP8 mice. Our results indicated that EPA-enriched PL could offer an efficient and novel strategy to explore novel drugs or functional food for neuronprotection and cognitive improvement.  相似文献   

12.
Oxidative stress is a major cause of cellular injury in a variety of human diseases including neurodegenerative disorders. Thus, removal of excessive reactive oxygen species (ROS) or suppression of ROS generation may be effective in preventing oxidative stress‐induced cell death. This study was designed to investigate the effect of icariside II (ICS II), a novel phosphodiesterase 5 inhibitor, on hydrogen peroxide (H2O2)‐induced death of highly differentiated rat neuronal PC12 cells, and to further examine the underlying mechanisms. We found that ICS II pre‐treatment significantly abrogated H2O2‐induced PC12 cell death as demonstrated by the increase of the number of metabolically active cells and decrease of intracellular lactate dehydrogenase (LDH) release. Furthermore, ICS II inhibited H2O2‐induced cell death through attenuating intracellular ROS production, mitochondrial impairment, and activating glycogen synthase kinase‐3β (GSK‐3β) as demonstrated by reduced intracellular and mitochondrial ROS levels, restored mitochondrial membrane potential (MMP), decreased p‐tyr216‐GSK‐3β level and increased p‐ser9‐GSK‐3β level respectively. The GSK‐3β inhibitor SB216763 abrogated H2O2‐induced cell death. Moreover, ICS II significantly inhibited H2O2‐induced autophagy by the reducing autophagosomes number and the LC3‐II/LC3‐I ratio, down‐regulating Beclin‐1 expression, and up‐regulating p62/SQSTM1 and HSP60 expression. The autophagy inhibitor 3‐methyl adenine (3‐MA) blocked H2O2‐induced cell death. Altogether, this study demonstrated that ICS II may alleviate oxidative stress‐induced autophagy in PC12 cells, and the underlying mechanisms are related to its antioxidant activity functioning via ROS/GSK‐3β/mitochondrial signalling pathways.  相似文献   

13.
Neuronal oxidative stress (OS) injury has been proven to be associated with many neurodegenerative diseases, and thus, antioxidation treatment is an effective method for treating these diseases. Saikosaponin-D (SSD) is a sapogenin extracted from Bupleurum falcatum and has been shown to have many pharmacological activities. The main purpose of this study was to investigate whether and how SSD protects PC12 cells from H2O2-induced apoptosis. The non-toxic level of SSD significantly mitigated the H2O2-induced decrease in cell viability, reduced the apoptosis rate, improved the nuclear morphology, and reduced caspase-3 activation and poly ADP-ribose polymerase (PARP) cleavage. Additionally, exogenous H2O2-induced apoptosis by damaging the intracellular antioxidation system. SSD significantly slowed the H2O2-induced release of malonic dialdehyde (MDA) and lactate dehydrogenase and increased the activity of superoxide dismutase (SOD) and the total antioxidant capacity, thereby reducing apoptosis. More importantly, SSD effectively blocked H2O2-induced phosphorylation of extracellular-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38MAPK), and specific inhibitors of ERK, JNK, and p38-reduced OS injury and apoptosis, suggesting that SSD reduces OS injury and apoptosis via MAPK signalling pathways. Finally, we confirmed that SSD significantly reduced H2O2-induced reactive oxygen species (ROS) accumulation, and the ROS inhibitor blocked the apoptosis caused by MAPK activation and cellular oxidative damage. In short, our study confirmed that SSD reduces H2O2-induced PC12 cell apoptosis by removing ROS and blocking MAPK-dependent oxidative damage.  相似文献   

14.
15.
16.
The protective effect of whey protein hydrolysates (WPHs) against H2O2-induced oxidative damage on rat pheochromocytoma line 12 (PC12) cells was studied. Whey protein was hydrolyzed by pepsin and trypsin and purified by macrospore absorption resins. PC12 cells were pretreated with WPHs (from 369 to 1,980?Da) at different concentrations for 2?h, then washed and incubated with 100?μM H2O2 in the presence of WPHs for another 24?h. With 100–400?μg WPH/ml the viable cells increased by 20–30?% when incubated with H2O2 suggesting that they may play a role as antioxidant in foods.  相似文献   

17.
There have been obtained evidences that not only GM1, but also other main brain gangliosides (GD1a, GD1b, and GT1b) increase viability of cells of the neuronal line PC12 under action of H2O2. By the example of GM1 and GD1a, gangliosides have been shown to produce a protective effect on PC12 cells under conditions of oxidative stress both at micro- and nanomolar concentrations that are physiological concentrations of gangliosides in cerebrospinal fluid. For the first time, GM1 at nanomolar concentrations was shown to decrease the H2O2-induced formation of reactive oxygen species (ROS). It was found that in the presence of inhibitor of tyrosine kinase Trk of receptors K-252a, GM1 at concentrations of 10 μM and 10 nM lost its ability to produce such metabolic effects as a decrease of ROS accumulation and of the degree of oxidative inactivation of Na+,K+-ATPase in PC12 cells, as well as ceased to increase viability of these cells under conditions of oxidative stress. The dependence of protective and metabolic effects of gangliosides GM1 in PC12 cells treated with H2O2 on modulation of activity of activity of tyrosine kinase Trk receptors (i.e., from the same signal system) agrees with concept about the essential role of oxidant effect of GM1 in its increase of cell viability.  相似文献   

18.

Background

Taurine is a free amino acid present in high concentrations in a variety of organs of mammalians. As an antioxidant, taurine has been found to protect cells against oxidative stress, but the underlying mechanism is still unclear.

Methods

In this report, we present evidence to support the conclusion that taurine exerts a protective function against endoplasmic reticulum (ER) stress induced by H2O2 in PC 12 cells. Oxidative stress was introduced by exposure of PC 12 cells to 250 uM H2O2 for 4 hours.

Results

It was found that the cell viability of PC 12 cells decreased with an increase of H2O2 concentration ranging from approximately 76% cell viability at 100 uM H2O2 down to 18% at 500 uM H2O2. At 250 uM H2O2, cell viability was restored to 80% by taurine at 25 mM. Furthermore, H2O2 treatment also caused a marked reduction in the expression of Bcl-2 while no significant change of Bax was observed. Treatment with taurine restored the reduced expression of Bcl-2 close to the control level without any obvious effect on Bax. Furthermore, taurine was also found to suppress up-regulation of GRP78, GADD153/CHOP and Bim induced by H2O2, suggesting that taurine may also exert a protective function against oxidative stress by reducing the ER stress.

Conclusion

In summary, taurine was shown to protect PC12 cells against oxidative stress induced by H2O2. ER stress was induced by oxidative stress and can be suppressed by taurine.
  相似文献   

19.
Autophagy, a self-eating process, is responsible for degradation of long-lived proteins and damaged cellular proteins/organelles. Double-membrane autophagosomes, formed during the process, engulf proteins/organelles and fuse with lysosomes to degrade the contents. It is important to maintain cell homeostasis and many physiological processes including cellular responses to oxidative stress. Oxidative stress induced by myocardial infarction is a major factor of heart failures. In this study, we examined how propofol modulates hydrogen peroxide (H2O2)-induced autophagic cell death in H9c2 cardiomyocytes. H2O2 dramatically induced cell death, which was similarly reduced in the presence of either propofol or autophagy inhibitors (e.g., wortmannin), suggesting that propofol has a protective effect in H2O2-induced autophagic cell death. Acidic autophagic vacuoles were elevated in H2O2-treated H9c2 cells, but they were largely decreased in the presence of propofol. Furthermore, many autophagy-related proteins such as LC3-II, ATG proteins, p62, AMPK, and JNK were activated in H2O2-treated H9c2 cells and were significantly deactivated in the presence of propofol. These results show that propofol regulates oxidative stress-induced autophagic cell death in cardiomyocytes. We further suggest that propofol can act as a cardioprotectant in heart diseases.  相似文献   

20.
Retinal degeneration diseases (RDDs) are common and devastating eye diseases characterized by the degeneration of photoreceptors, which are highly associated with oxidative stress. Previous studies reported that mitochondrial dysfunction is associated with various neurodegenerative diseases. However, the role of mitochondrial proteostasis mainly regulated by mitophagy and mitochondrial unfolded protein response (mtUPR) in RDDs is unclear. We hypothesized that the mitochondrial proteostasis is neuroprotective against oxidative injury in RDDs. In this study, the data from our hydrogen peroxide (H2O2)-treated mouse retinal cone cell line (661w) model of RDDs showed that nicotinamide riboside (NR)-activated mitophagy increased the expression of LC3B II and PINK1, and promoted the co-localization of LC3 and mitochondria, as well as PINK1 and Parkin in the H2O2-treated 661w cells. However, the NR-induced mitophagy was remarkably reversed by chloroquine (CQ) and cyclosporine A (CsA), mitophagic inhibitors. In addition, doxycycline (DOX), an inducer of mtUPR, up-regulated the expression of HSP60 and CHOP, the key proteins of mtUPR. Activation of both mitophagy and mtUPR increased the cell viability and reduced the level of apoptosis and oxidative damage in the H2O2-treated 661w cells. Furthermore, both mitophagy and mtUPR played a protective effect on mitochondria by increasing mitochondrial membrane potential and maintaining mitochondrial mass. By contrast, the inhibition of mitophagy by CQ or CsA reversed the beneficial effect of mitophagy in the H2O2-treated 661w cells. Together, our study suggests that the mitophagy and mtUPR pathways may serve as new therapeutic targets to delay the progression of RDDs through enhancing mitochondrial proteostasis.Subject terms: Cell death, Diseases  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号