首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Supercoiled plasmid molecules sensitive to nicking by RNase or alkali have been shown to accumulate during replication of colicinogenic factor E1 (ColE1) in Escherichia coli in the presence of chloramphenicol. The possibility that this sensitivity is due to the covalent integration of RNA molecules during the synthesis of plasmid DNA is supported by the demonstration that (a) strands of supercoiled ColE1 newly replicated in the presence of chloramphenicol exhibit sensitivity to RNase and alkali treatment, while (b) RNase- and alkali-resistant circular strands of plasmid DNA synthesized either before or after the addition of chloramphenicol remain resistant during subsequent replication of the plasmid in the presence of chloramphenicol. Furthermore, newly made plasmid DNA strands cannot act as templates for further rounds of replication if they possess an RNA segment. The existence of a repair mechanism for the removal of the RNA segment from supercoiled ColE1 DNA molecules was demonstrated by pulse-chase experiments. It was observed that the proportion of RNase-sensitive molecules is considerably higher in pulse-labeled as compared to continuously labeled ColE1 DNA synthesized in the presence of chloramphenicol, and the proportion of pulse-labeled ColE1 DNA that is RNase sensitive is greatly reduced during a chase period. Removal of the RNA segment is also carried out effectively at the restrictive temperature in temperature-sensitive DNA polymerase I mutants. In a survey of other bacterial mutants defective in the repair of damaged DNA, a substantial increase in the rate of accumulation of RNase-and alkali-sensitive supercoiled ColE1 DNA in the presence of chloramphenicol was observed in recBC and uvrA mutants in comparison with the wild-type strains.  相似文献   

2.
Colicinogenic factor E1 (ColE1) is present in Escherichia coli strain JC411 (ColE1) cells to the extent of about 24 copies per cell. This number does not appear to vary in situations which give rise to twofold differences in the amount of chromosomal deoxyribonucleic acid (DNA) present per cell. If cells are grown in the absence of glucose, approximately 80% of the ColE1 molecules can be isolated as strand-specific DNA-protein relaxation complexes. When glucose is present in the medium, only about 30% of the plasmid molecules can be isolated as relaxation complexes. Medium shift experiments in which glucose was removed from the medium indicate that within 15 min after the shift the majority (>60%) of the plasmid can be isolated as relaxation complex. This rapid shift to the complexed state is accompanied by a two- to threefold increase in the rate of plasmid replication. The burst of replication and the shift to the complexed state are both inhibited by the presence of chloramphenicol. Inhibition of protein synthesis in log cultures by the addition of chloramphenicol or amino acid starvation allows ColE1 DNA to continue replicating long after chromosomal replication has ceased. Under these conditions, noncomplexed plasmid DNA accumulates while the amount of DNA that can be isolated in the complexed state remains constant at the level that existed prior to treatment. In the presence of chloramphenicol, there appears to be a random dissociation and association of ColE1 DNA and “relaxation protein” during or between rounds of replication.  相似文献   

3.
The opposite strands of the ColE1 and ColE3 plasmids were isolated as circular single-stranded DNA molecules. These molecules were compared with M13 and phi X174 viral DNA with respect to their capacity to function as templates for in vitro DNA synthesis by a replication enzyme fraction from Escherichia coli. It was found for both ColE plasmids that the conversion of H as well as L strands to duplex DNA molecules closely resembles phi X174 complementary strand synthesis and occurs by a rifampicin-resistant priming mechanism involving the dnaB, dnaC, and dnaG gene products. Restriction analysis of partially double-stranded intermediates indicates that preferred start sites for DNA synthesis are present on both strands of the ColE1 HaeII-C fragment. Inspection of the nucleotide sequence of this region reveals structural similarities with the origin of phi X174 complementary strand synthesis. We propose that the rifampicin-resistant initiation site (rri) in the ColE1 L strand is required for the priming of discontinuous lagging strand synthesis during vegetative replication and that the rri site in the H strand is involved in the initiation of L strand synthesis during conjugative transfer.  相似文献   

4.
The multicopy plasmid ColE1 specifies a small RNA designated RNA1 that has been implicated in copy number control and incompatibility. We have inserted a 148 base-pair ColE1 DNA fragment containing a promoter-less RNA1 gene into a plasmid vector downstream from the tryptophan promoter of Serratia marcesens. The ColE1 RNA1 produced by this plasmid is not functional in vivo due to the presence of 49 nucleotides appended to the 5′-terminus of the wild-type RNA1 sequence. Deletions of these sequences by Bal3I nuclease in vitro and genetic selection for ColE1 incompatibility function in vivo permitted isolation of a plasmid expressing wild-type ColE1 RNA1 initiated properly from the S. marcesens trp promoter. These experiments demonstrate that RNA1 is sufficient to mediate ColE1 incompatibility in vivo. In addition, several plasmids were isolated that contain altered RNA1 genes. These alterations consist of additions or deletions of sequences at the 5′-terminus of RNA1. Analysis of the ability of these altered RNA1 molecules to express incompatibility in vivo suggests that the 5′-terminal region of RNA1 is crucial for its function.  相似文献   

5.
Starting from pAO3, a plasmid consisting of a quarter of colicinogenic factor E1 (ColE1) DNA, various small ColE1 derivatives were constructed by in vitro recombination and their ability to achieve autonomous replication was examined. The 436 base pair HaeIII-C fragment of pAO3 contained information for replication when it was recombined with the non-replicating Amp fragment. However, when it was connected to other DNA fragments, the resulting hybrid molecules were not isolated as plasmids. The present results indicate that the additional region of about 240 base pairs next to the HaeIII-C fragment of ColE1 is also essential for the maintenance of a plasmid state. Moreover, using various small ColE1 derivatives, the DNA region responsible for the interference and incompatibility functions of ColE1 DNAs was located. The results indicate that the interference and incompatibility functions are coded by the same ColE1 DNA segment and are not essential for the maintenance of a plasmid state.  相似文献   

6.
Hybrid plasmids were constructed in vitro by linking the Inc P-1 broad host range plasmid RK2 to the colicinogenic plasmid ColE1 at their EcoRI endonuclease cleavage sites. These plasmids were found to be immune to colicin E1, non-colicin-producing, and to exhibit all the characteristics of RK2 including self-transmissibility. These joint replicons have a copy number of 5 to 7 per chromosome which is typical of RK2, but not ColE1. Unlike ColE1, the plasmids will not replicate in the presence of chloramphenicol and are maintained in DNA polymerase I mutants of Escherichia coli. In addition, only RK2 incompatibility is expressed, although functional ColE1 can be rescued from the hybrids by EcoRI cleavage. This suppression of ColE1 copy number and incompatibility was found to be a unique effect of plasmid size on ColE1 properties. However, the inhibition of ColE1 or ColE1-like plasmid replication in chloramphenicol-treated cells is a specific effect of RK2 or segments of RK2 (Cri+ phenotype). This phenomenon is not a function of plasmid size and requires covalent linkage of RK2 DNA to ColE1. A specific region of RK2 (50.4 to 56.4 × 103 base-pairs) cloned in the ColE1-like plasmid pBR313 was shown to carry the genetic determinant(s) for expression of the Cri+ phenotype.  相似文献   

7.
Colicinogenic factors ColE1 and ColE2 are bacterial plasmids that exist in Escherichia coli as supercoiled deoxyribonucleic acid (DNA) and as strand-specific, relaxation complexes of supercoiled DNA and protein. Newly replicated ColE1 DNA becomes complexed with protein after the replication event. This association of DNA and protein can take place under conditions in which DNA or protein synthesis is arrested. The addition of cyclic adenosine monophosphate (c-AMP) to normal cells growing in glucose medium results in a six- to tenfold stimulation in the rate of synthesis of the protein component(s) of the complex and a three- to fivefold stimulation in the rate of ColE1 DNA replication. Employing mutants deficient in catabolite gene activator protein or adenylate cyclase, it was shown that synthesis of both the plasmid-determined protein colicin E1 and the protein component(s) of the ColE1 relaxation complex is mediated through the c-AMP-catabolite gene activator protein system. Addition of c-AMP to ColE2-containing cells results in the stimulation of synthesis of ColE2 DNA and relaxation protein(s) as well as in the production of a protein component of the ColE2 relaxation complex that renders it sensitive to induced relaxation by heat treatment. In the case of ColE2, synthesis of the relaxation protein(s) is not dependent upon catabolite gene activator protein.  相似文献   

8.
O'neill EA  Berlinberg C  Bender RA 《Genetics》1983,103(4):593-604
The RP4 replicon was detected as covalently-closed circular DNA in Caulobacter crescentus strains into which it had been transferred from Escherichia coli. RP4-mediated transfer of ColE1-associated markers into C. crescentus occurred, but only as the result of transposon-mediated events. Both transposition of a ColE1-associated marker onto RP4 and cointegration of ColE1 with RP4 were observed. Chimeric plasmids containing both a ColE1 and an RP4 origin of replication were stably maintained in C. crescentus , but similar plasmids lacking the RP4 origin of replication were not stably maintained in C. crescentus. Thus we show that the ColE1 replicon cannot be maintained in C. crescentus unless it is covalently linked to another replicon, such as RK2, that can be maintained.  相似文献   

9.
10.
Construction and characterization of a class of multicopy plasmid cloning vehicles containing the replication system of miniplasmid P15A are described. The constructed plasmids have cleavage sites within antibiotic resistance genes for a variety of commonly employed site-specific endonucleases, permitting convenient use of the insertional inactivation procedure for the selection of clones that contain hybrid DNA molecules. Although the constructed plasmids showed DNA sequence homology with the ColE1 plasmid within the replication region, were amplifiable by chloramphenicol or spectinomycin, required DNA polymerase I for replication, and shared other replication properties with ColE1, they were nevertheless compatible with ColE1. P15A-derived plasmids were not self-transmissible and were mobilized poorly by Hfr strains; however, mobilization was complemented by the presence of a ColE1 plasmid within the same cell.  相似文献   

11.
Characterization of a mini ColE1 cloning vector.   总被引:4,自引:0,他引:4  
H Avni  A Markovitz 《Plasmid》1979,2(2):225-236
Plasmid pHA105 (formerly pAC105), a mini ColE1 plasmid containing one restriction endonuclease EcoRI site, was further characterized using restriction endonuclease analysis thereby revealing its relationship to ColE1. The polypeptides specified by plasmid pHA105 in minicells are of low molecular weight making it a useful plasmid to define cloned polypeptides larger than 16,000 daltons and its use for that purpose was demonstrated. pHA105 was used to clone two different sized fragments of DNA containing the gal operon. pHA105 was also used to reclone a 2 Mdal fragment of DNA that, when expressed, represses the synthesis of capsular polysaccharide. The repression of polysaccharide synthesis was expressed when a plasmid containing one molecule each of pHA105 and the 2 Mdal fragment was prepared (pFM100). In contrast, a plasmid containing two copies of pHA105 and one of the 2 Mdal fragment (pHA138) did not repress polysaccharide synthesis. The results demonstrate that expression of a cloned fragment gene may be prevented in certain arrangements of the vector and cloned fragment. Plasmid pHA105 fails to exhibit relaxation after treatment with sodium dodecyl sulfate in contrast to ColE1 treated in the same way. pHA105 replicates as a dimer form while ColE1 usually does not. A hypothesis that a function of a DNA-protein complex is required for monomeric DNA circle formation is discussed.  相似文献   

12.
13.
An in vitro recombinant ColE1-cos lambda deoxyribonucleic acid (DNA) molecule, pKY96, has 70% of the length of lambda phage DNA. The process of lambda phage-mediated transduction of pKY96 generated a small amount of transducing phage particles containing ColE1-cos lambda DNA molecules of 80 or 101% of the length of lambda phage DNA, in addition to those containing original pKY96 DNA molecules. The newly isolated larger plasmid DNAs were transduced 100 times more efficiently than pKY96 DNA. Their structures were compared with that of a prototype pKY96 DNA, and the mechanism of the formation of these molecules is discussed.  相似文献   

14.
The bacterial toxin ColE7 contains an H-N-H endonuclease domain (nuclease ColE7) that digests cellular DNA or RNA non-specifically in target cells, leading to cell death. In the host cell, protein Im7 forms a complex with ColE7 to inhibit its nuclease activity. Here, we present the crystal structure of the unbound nuclease ColE7 at a resolution of 2.1A. Structural comparison between the unbound and bound nuclease ColE7 in complex with Im7, suggests that Im7 is not an allosteric inhibitor that induces backbone conformational changes in nuclease ColE7, but rather one that inhibits by blocking the substrate-binding site. There were two nuclease ColE7 molecules in the P1 unit cell in crystals and they appeared as a dimer related to each other by a non-crystallographic dyad symmetry. Gel-filtration and cross-linking experiments confirmed that nuclease ColE7 indeed formed dimers in solution and that the dimeric conformation was more favored in the presence of double-stranded DNA. Structural comparison of nuclease ColE7 with the His-Cys box homing endonuclease I-PpoI further demonstrated that H-N-H motifs in dimeric nuclease ColE7 were oriented in a manner very similar to that of the betabetaalpha-fold of the active sites found in dimeric I-PpoI. A mechanism for the binding of double-stranded DNA by dimeric H-N-H nuclease ColE7 is suggested.  相似文献   

15.
The site-specific recombination system used by multicopy plasmids of the ColE1 family uses two identical plasmid-encoded recombination sites and four bacterial proteins to catalyze the recombination reaction. In the case of the Escherichia coli plasmid ColE1, the recombination site, cer, is a 280 by DNA sequence which is acted on by the products of the argR, pepA, xerC and xerD genes. We have constructed a model system to study this recombination system, using tandemly repeated recombination sites from the plasmids ColE1 and NTP16. These plasmids have allowed us precisely to define the region of strand exchange during site-specific recombination, and to derive a model for cer intramolecular site-specific recombination.  相似文献   

16.
The action of the dimer-specific endonuclease V of bacteriophage T4 was studied on UV-irradiated, covalently-closed circular DNa. Form I ColE1 DNA preparations containing average dimer frequencies ranging from 2.5 to 35 pyrimidine dimers per molecule were treated with T4 endonuclease V and analysed by agarose gel electrophoresis. At all dimer frequencies examined, the production of form III DNA was linear with time and the double-strand scissions were made randomly on the ColE1 DNA genome. Since the observed fraction of form III DNA increased with increasing dimer frequency but the initial rate of loss of form I decreased with increasing dimer frequency, it was postulated that multiple single-strand scissions could be produced in a subset of the DNA population while some DNA molecules contained no scissions. When DNA containing an average of 25 dimers per circle was incubated with limiting enzyme concentrations, scissions appeared at most if not all dimmer sites in some molecules before additional strand scissions were produced in other DNA molecules. The results support a processive model for the interaction of T4 endonuclease V with UV-irradiated DNA.  相似文献   

17.
18.
Differential scanning calorimetry (DSC) was carried out to analyze the transition of helix to coil state of DNA, using ColE1 DNA molecules digested with EcoRI. The DSC curves showed multimodal transition, consisting of nine to 11 peaks over a temperature range, depending on the ionic strength of the DNA solution. These DSC curves were essentially in good agreement with the optical melting curves of ColE1 DNA. The theoretical melting profiles of ColE1 DNA were predicted from calculations based on the helix-coil transition theory and the nucleotide sequence of the DNA. These profiles resembled the DSC curves and made it possible to assign the peaks seen in the DSC curves to the helix-coil transition of particular regions of the nucleotide sequence of ColE1. The helix-coil transition of each of the small genes gave rise to a single peak in the DSC curve, while the helix-coil transition of large genes contributed to two or more peaks in the DSC curve. This multimodal transition within a single coding region might correspond to the melting of individual segments encoding the different domains of the proteins. The helix-coil transition at the specific sites including ori, the origin of replication of ColE1, was also found to occur in a particular temperature range. DSC, a simple method, is thus useful for analyzing the multimodal helix-coil transition of DNA, and for providing information on the genetic organization of DNA.  相似文献   

19.
Duché D 《Journal of bacteriology》2007,189(11):4217-4222
Colicins reach their targets in susceptible Escherichia coli strains through two envelope protein systems: the Tol system is used by group A colicins and the TonB system by group B colicins. Colicin E2 (ColE2) is a cytotoxic protein that recognizes the outer membrane receptor BtuB. After gaining access to the cytoplasmic membrane of sensitive Escherichia coli cells, ColE2 enters the cytoplasm to cleave DNA. After binding to BtuB, ColE2 interacts with the Tol system to reach its target. However, it is not known if the entire colicin or only the nuclease domain of ColE2 enters the cell. Here I show that preincubation of ColE2 with Escherichia coli cells prevents binding and translocation of pore-forming colicins of group A but not of group B. This inhibition persisted even when cells were incubated with ColE2 for 30 min before the addition of pore-forming colicins, indicating that ColE2 releases neither its receptor nor its translocation machinery when its nuclease domain enters the cells. These competition experiments enabled me to estimate the time required for ColE2 binding to its receptor and translocation.  相似文献   

20.
The dependence of the crusiciform structure formation on superhelical density was studied by means of high resolution gel-electrophoresis. A short pAO3 DNA plasmid (1683 b. p.) which is a quarter of the ColE1 DNA plasmid and contains the main palindrome of ColE1 DNA was used. The excellent resolution of all topoisomers of pAO3 DNA in gel-electrophoresis made it possible to observe a sharp abruption in the pattern of pAO3 DNA topoisomers separation. The two-dimensional gel-electrophoresis data showed that observed abruption is caused by a sharp decrease of writhing in the molecules with superhelical density--sigma approximately equal to 0,05. An analysis of S1-nuclease digestion products of DNA with different superhelical density was accomplished and these data showed that a sharp structural transition in supercoiled DNA pAO3 is caused by formation of a cruciform structure in the main palindrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号