首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A direct binding of HRC (histidine-rich Ca(2+)-binding protein) to triadin, the main transmembrane protein of the junctional sarcoplasmic reticulum (SR) of skeletal muscle, seems well supported. Opinions are still divided, however, concerning the triadin domain involved, either the cytoplasmic or the lumenal domain, and the exact role played by Ca(2+), in the protein-to-protein interaction. Further support for colocalization of HRC with triadin cytoplasmic domain is provided here by experiments of mild tryptic digestion of tightly sealed TC vesicles. Accordingly, we show that HRC is preferentially phosphorylated by endogenous CaM K II, anchored to SR membrane on the cytoplasmic side, and not by lumenally located casein kinase 2. We demonstrate that HRC can be isolated as a complex with triadin, following equilibrium sucrose-density centrifugation in the presence of mM Ca(2+). Here, we characterized the COOH-terminal portion of rabbit HRC, expressed and purified as a fusion protein (HRC(569-852)), with respect to Ca(2+)-binding properties, and to the interaction with triadin on blots, as a function of the concentration of Ca(2+). Our results identify the polyglutamic stretch near the COOH terminus, as the Ca(2+)-binding site responsible, both for the acceleration in mobility of HRC on SDS-PAGE in the presence of millimolar concentrations of Ca(2+), and for the enhancement by high Ca(2+) of the interaction between HRC and triadin cytoplasmic segment. (c)2001 Elsevier Science.  相似文献   

3.
Villin is an actin-binding protein localized in intestinal and kidney brush borders. In vitro, villin has been demonstrated to bundle and sever F-actin in a Ca(2+)-dependent manner. We generated knockout mice to study the role of villin in vivo. In villin-null mice, no noticeable changes were observed in the ultrastructure of the microvilli or in the localization and expression of the actin-binding and membrane proteins of the intestine. Interestingly, the response to elevated intracellular Ca(2+) differed significantly between mutant and normal mice. In wild-type animals, isolated brush borders were disrupted by the addition of Ca(2+), whereas Ca(2+) had no effect in villin-null isolates. Moreover, increase in intracellular Ca(2+) by serosal carbachol or mucosal Ca(2+) ionophore A23187 application abolished the F-actin labeling only in the brush border of wild-type animals. This F-actin disruption was also observed in physiological fasting/refeeding experiments. Oral administration of dextran sulfate sodium, an agent that causes colonic epithelial injury, induced large mucosal lesions resulting in a higher death probability in mice lacking villin, 36 +/- 9.6%, compared with wild-type mice, 70 +/- 8.8%, at day 13. These results suggest that in vivo, villin is not necessary for the bundling of F-actin microfilaments, whereas it is necessary for the reorganization elicited by various signals. We postulate that this property might be involved in cellular plasticity related to cell injury.  相似文献   

4.
5.
6.
N Ogawa  S Okumura  K Izui 《FEBS letters》1992,302(1):86-88
In C4 plants the activity of phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) is regulated by phosphorylation/dephosphorylation which is mediated by light/dark signals. The study using protein kinase inhibitors showed that the inhibition pattern of maize PEPC-protein kinase (PEPC-PK) is similar to that of myosin light chain kinase, a Ca(2+)-calmodulin-dependent PK. The kinase activity was also inhibited by EGTA and the inhibition was relieved by Ca2+. These results suggest that PEPC-PK is Ca(2+)-dependent in contrast with previous observations by other research groups.  相似文献   

7.
Ca2+ and calmodulin (CaM), a key Ca2+ sensor in all eukaryotes, have been implicated in defense responses in plants. To elucidate the role of Ca2+ and CaM in defense signaling, we used 35S-labeled CaM to screen expression libraries prepared from tissues that were either treated with an elicitor derived from Phytophthora megasperma or infected with Pseudomonas syringae pv. tabaci. Nineteen cDNAs that encode the same protein, pathogen-induced CaM-binding protein (PICBP), were isolated. The PICBP fusion proteins bound 35S-CaM, horseradish peroxidase-labeled CaM and CaM-Sepharose in the presence of Ca2+ whereas EGTA, a Ca2+ chelator, abolished binding, confirming that PICBP binds CaM in a Ca2+-dependent manner. Using a series of bacterially expressed truncated versions of PICBP, four CaM-binding domains, with a potential CaM-binding consensus sequence of WSNLKKVILLKRFVKSL, were identified. The deduced PICBP protein sequence is rich in leucine residues and contains three classes of repeats. The PICBP gene is differentially expressed in tissues with the highest expression in stem. The expression of PICBP in Arabidopsis was induced in response to avirulent Pseudomonas syringae pv. tomato carrying avrRpm1. Furthermore, PICBP is constitutively expressed in the Arabidopsis accelerated cell death2-2 mutant. The expression of PICBP in bean leaves was also induced after inoculation with avirulent and non-pathogenic bacterial strains. In addition, the hrp1 mutant of Pseudomonas syringae pv. tabaci and inducers of plant defense such as salicylic acid, hydrogen peroxide and a fungal elicitor induced PICBP expression in bean. Our data suggest a role for PICBP in Ca2+-mediated defense signaling and cell-death. Furthermore, PICBP is the first identified CBP in eukaryotes with four Ca2+-dependent CaM-binding domains.  相似文献   

8.
We used whole-cell, voltage-clamp methodology to study the activation and inhibition of cationic currents in neutrophil. Cationic channels involved were impermeable to N-methyl-D-glucamine and to choline, but permeable to Na+, K+, Cs+, tris(hydroxymethyl)amino-ethane, and tetraethylammonium. N-formyl-L-methionyl-L-leucyl-L-phenylalanine, the Ca(2+)-ionophore A23187, and phorbol myristate acetate activated the cationic current. Activated currents showed voltage dependence and outward rectification. The Ca(2+)-chelator 1,2 bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetate markedly inhibited A23187-induced currents, but only partially decreased phorbol ester- or chemoattractant-induced currents. Dibutyryl cAMP diminished only the chemoattractant-induced currents. The adenosine analogs 5'N-ethylcarboxamidoadenosine and N6-cyclohexyladenosine blocked the currents induced by all agents. Thus, we conclude that activation and inhibition of cationic channels in human neutrophils involve both Ca(2+)-dependent and Ca(2+)-independent mechanisms.  相似文献   

9.
Recently we were able to show that calmodulin from vertebrates, plants (spinach) and the mold Neurospora crassa can be covalently conjugated to ubiquitin in a Ca(2+)-dependent manner by ubiquityl-calmodulin synthetase (uCaM-synthetase) from mammalian sources [R. Ziegenhagen and H.P. Jennissen (1990) FEBS Lett. 273, 253-256]. It was therefore of high interest to investigate whether this covalent modification of calmodulin also occurs in one of the simplest eukaryotes, the unicellular Saccharomyces cerevisiae. Yeast calmodulin was therefore purified from bakers yeast. In contrast to calmodulin from spinach and N. crassa it does not activate phosphorylase kinase. Crude yeast uCaM-synthetase conjugated ubiquitin Ca(2+)-dependently to yeast and mammalian (bovine) calmodulin. Yeast calmodulin was also a substrate for mammalian (reticulocyte) uCaM-synthetase. As estimated from autoradiograms the monoubiquitination product (first-order conjugate) of yeast calmodulin has an apparent molecular mass of ca. 23-26 kDa and the second-order conjugate an apparent molecular mass of ca. 28-32 kDa. Two to three ubiquitin molecules can be incorporated per yeast calmodulin. Experiments with methylated ubiquitin in the heterologous reticulocyte system indicate that, as with vertebrate calmodulins, only one lysine residue of yeast calmodulin reacts with ubiquitin so that the incorporation of multiple ubiquitin molecules will lead to a polyubiquitin chain. These results also indicate that the ability of coupling ubiquitin to calmodulin was acquired at a very early stage in evolution.  相似文献   

10.
11.
Recent evidence suggests the expression of a Na(+)/Ca(2+) exchanger (NCX) in vascular endothelial cells. To elucidate the functional role of endothelial NCX, we studied Ca(2+) signaling and Ca(2+)-dependent activation of endothelial nitric-oxide synthase (eNOS) at normal, physiological Na(+) gradients and after loading of endothelial cells with Na(+) ions using the ionophore monensin. Monensin-induced Na(+) loading markedly reduced Ca(2+) entry and, thus, steady-state levels of intracellular free Ca(2+) ([Ca(2+)](i)) in thapsigargin-stimulated endothelial cells due to membrane depolarization. Despite this reduction of overall [Ca(2+)](i), Ca(2+)-dependent activation of eNOS was facilitated as indicated by a pronounced leftward shift of the Ca(2+) concentration response curve in monensin-treated cells. This facilitation of Ca(2+)-dependent activation of eNOS was strictly dependent on the presence of Na(+) ions during treatment of the cells with monensin. Na(+)-induced facilitation of eNOS activation was not due to a direct effect of Na(+) ions on the Ca(2+) sensitivity of the enzyme. Moreover, the effect of Na(+) was not related to Na(+) entry-induced membrane depolarization or suppression of Ca(2+) entry, since neither elevation of extracellular K(+) nor the Ca(2+) entry blocker 1-(beta-[3-(4-methoxyphenyl)-propoxy]-4-methoxyphenethyl)-1H-imidazol e hydrochloride (SK&F 96365) mimicked the effects of Na(+) loading. The effects of monensin were completely blocked by 3', 4'-dichlorobenzamil, a potent and selective inhibitor of NCX, whereas the structural analog amiloride, which barely affects Na(+)/Ca(2+) exchange, was ineffective. Consistent with a pivotal role of Na(+)/Ca(2+) exchange in Ca(2+)-dependent activation of eNOS, an NCX protein was detected in caveolin-rich membrane fractions containing both eNOS and caveolin-1. These results demonstrate for the first time a crucial role of cellular Na(+) gradients in regulation of eNOS activity and suggest that a tight functional interaction between endothelial NCX and eNOS may take place in caveolae.  相似文献   

12.
In vitro protein binding assays identified two distinct calmodulin (CaM) binding sites within the NH(2)-terminal 30-kDa domain of erythrocyte protein 4.1 (4.1R): a Ca(2+)-independent binding site (A(264)KKLWKVCVEHHTFFRL) and a Ca(2+)-dependent binding site (A(181)KKLSMYGVDLHKAKDL). Synthetic peptides corresponding to these sequences bound CaM in vitro; conversely, deletion of these peptides from a 30-kDa construct reduced binding to CaM. Thus, 4.1R is a unique CaM-binding protein in that it has distinct Ca(2+)-dependent and Ca(2+)-independent high affinity CaM binding sites. CaM bound to 4.1R at a stoichiometry of 1:1 both in the presence and absence of Ca(2+), implying that one CaM molecule binds to two distinct sites in the same molecule of 4.1R. Interactions of 4.1R with membrane proteins such as band 3 is regulated by Ca(2+) and CaM. While the intrinsic affinity of the 30-kDa domain for the cytoplasmic tail of erythrocyte membrane band 3 was not altered by elimination of one or both CaM binding sites, the ability of Ca(2+)/CaM to down-regulate 4. 1R-band 3 interaction was abrogated by such deletions. Thus, regulation of protein 4.1 binding to membrane proteins by Ca(2+) and CaM requires binding of CaM to both Ca(2+)-independent and Ca(2+)-dependent sites in protein 4.1.  相似文献   

13.
In an attempt to identify proteins involved in the secretory response, bovine chromaffin cells were modified with N-ethylmaleimide (NEM). NEM concentrations less than 30 microM enhanced norepinephrine secretion evoked by nicotine or by K+ depolarization and increased Ca(2+)-dependent secretion from digitonin-permeabilized cells. Higher concentrations of NEM inhibited secretion. The protein modified by NEM which was responsible for the enhancement of secretory activity appeared to rapidly diffuse out of the digitonin-permeabilized cells. When proteins which diffuse from control digitonin-permeabilized cells were incubated with pertussis toxin and [32P]NAD, several proteins were ADP-ribosylated. However, when proteins from cells preincubated with 30 microM NEM were incubated with pertussis toxin and [32P]NAD, these GTP-binding proteins (G-proteins) were not ADP-ribosylated, which suggests that they were modified in the cell by NEM. Stimulation of norepinephrine secretion by NEM was not additive with that caused by pertussis toxin. Modification of chromaffin cells with pertussis toxin or with 30 microM NEM caused a 40-50% decrease in the amount of cytoskeletal F-actin. This decrease in cytoskeletal F-actin may account for the increase in secretory activity.  相似文献   

14.
Ca(2+)-dependent proteolysis in muscle wasting   总被引:6,自引:0,他引:6  
Skeletal muscle wasting is a prominent feature of cachexia, a complex systemic syndrome that frequently complicates chronic diseases such as inflammatory and autoimmune disorders, cancer and AIDS. Muscle wasting may also develop as a manifestation of primary or neurogenic muscular disorders. It is now generally accepted that muscle depletion mainly arises from increased protein catabolism. The ubiquitin-proteasome system is believed to be the major proteolytic machinery in charge of such protein breakdown, yet there is evidence suggesting that Ca(2+)-dependent system, lysosomes and, in some conditions at least, even caspases are involved as well. The role of Ca(2+)-dependent proteolysis in skeletal muscle wasting is reviewed in the present paper. This system relies on the activity of calpains, a family of Ca(2+)-dependent cysteine proteases, whose regulation is complex and not completely elucidated. Modulations of Ca(2+)-dependent proteolysis have been associated with muscle protein depletion in various pathological contexts and particularly with muscle dystrophies. Calpains can only perform a limited proteolysis of their substrates, however they may play a critical role in initiating the breakdown of myofibrillar protein, by releasing molecules that become suitable for further degradation by proteasomes. Some evidence would also support a role for lysosomes and caspases in muscle wasting. Thus it cannot be excluded that different intracellular proteolytic systems may coordinately concur in shifting muscle protein turnover towards excess catabolism. Many different signals have been proposed as potentially involved in triggering the enhanced protein breakdown that underlies muscle wasting. How they are transduced to initiate the hypercatabolic response and to activate the proteolytic pathways remains largely unknown, however.  相似文献   

15.
Ca(2+)-dependent protein kinase (CDPK) was purified 900-fold from the soluble fraction of Dunaliella tertiolecta cells by ammonium sulfate precipitation, DEAE-Toyopearl, phenyl-Sepharose, and hydroxylapatite column chromatography. The CDPK was activated by micromolar concentration of Ca2+ and required neither calmodulin nor phospholipids for its activation. The enzyme phosphorylated casein, myosin light chain, and histone type III-S (histone H-1), but did not phosphorylate protamine and phosvitin. The Km values for ATP and casein were 11 microM and 300 micrograms/ml, respectively. Phosphorylation of casein was inhibited by calmodulin antagonists, calmidazolium, trifluoperazine, and compound 48/80, but not affected by calmodulin. CDPK bound to phenyl-Sepharose in the presence of Ca2+ and was eluted by ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid (EGTA). This suggests that hydrophobicity of the enzyme was increased by Ca2+. CDPK was also bound to the microsomes isolated from Dunaliella cells in the presence of micromolar concentration of Ca2+ and released in the presence of EGTA, suggesting the possibility of in vivo Ca(2+)-dependent association of the enzyme. The enzyme phosphorylated many proteins in the microsomes but few in the cytosol, if at all.  相似文献   

16.
The 18.5-kDa myelin basic protein (MBP), the most abundant isoform in human adult myelin, is a multifunctional, intrinsically disordered protein that maintains compact assembly of the sheath. Solution NMR spectroscopy and a hydrophobic moment analysis of MBP's amino-acid sequence have previously revealed three regions with high propensity to form strongly amphipathic α-helices. These regions, located in the central, N- and C-terminal parts of the protein, have been shown to play a role in the interactions of MBP with cytoskeletal proteins, Src homology 3-domain-containing proteins, Ca(2+)-activated calmodulin (Ca(2+)-CaM), and myelin-mimetic membrane bilayers. Here, we have further characterized the structure-function relationship of these three domains. We constructed three recombinant peptides derived from the 18.5-kDa murine MBP: (A22-K56), (S72-S107), and (S133-S159) (which are denoted α1, α2, and α3, respectively). We used a variety of biophysical methods (circular dichroism spectroscopy, isothermal titration calorimetry, transmission electron microscopy, fluorimetry, and solution NMR spectroscopy and chemical shift index analysis) to characterize the interactions of these peptides with actin and Ca(2+)-CaM. Our results show that all three peptides can adopt α-helical structure inherently even in aqueous solution. Both α1- and α3-peptides showed strong binding with Ca(2+)-CaM, and both adopted an α-helical conformation upon interaction, but the binding of the α3-peptide appeared to be more dynamic. Only the α1-peptide exhibited actin polymerization and bundling activity, and the addition of Ca(2+)-CaM resulted in depolymerization of actin that had been polymerized by α1. The results of this study proved that there is an N-terminal binding domain in MBP for Ca(2+)-CaM (in addition to the primary site located in the C-terminus), and that it is sufficient for CaM-induced actin depolymerization. These three domains of MBP represent molecular recognition fragments with multiple roles in both membrane- and protein-association.  相似文献   

17.
Severin is a protein from Dictyostelium that severs actin filaments in a Ca2+-dependent manner and remains bound to the filament fragments (Brown, S. S., K. Yamamoto, and J. A. Spudich , 1982, J. Cell Biol., 93:205-210; Yamamoto, K., J. D. Pardee , J. Reidler , L. Stryer , and J. A. Spudich , 1982, J. Cell Biol. 95:711-719). Further characterization of the interaction of severin with actin suggests that it remains bound to the preferred assembly end of the fragmented actin filaments. Addition of severin in molar excess to actin causes total disassembly of the filaments and the formation of a high-affinity complex containing one severin and one actin. This severin -actin complex does not sever actin filaments. The binding of severin to actin, measured directly by fluorescence energy transfer, requires micromolar Ca2+, as does the severing and depolymerizing activity reported previously. Once bound to actin in the presence of greater than 1 microM Ca2+, severin is not released from the actin when the Ca2+ is lowered to less than 0.1 microM by addition of EGTA. Tropomyosin, DNase I, phalloidin, and cytochalasin B have no effect on the ability of severin to bind to or sever actin filaments. Subfragment 1 of myosin, however, significantly inhibits severin activity. Severin binds not only to actin filaments, but also directly to G-actin, as well as to other conformational species of actin.  相似文献   

18.
19.
Overexpression of frequenin and its orthologue neuronal Ca(2+) sensor 1 (NCS-1) has been shown to increase evoked exocytosis in neurons and neuroendocrine cells. The site of action of NCS-1 and its biochemical targets that affect exocytosis are unknown. To allow further investigation of NCS-1 function, we have demonstrated that NCS-1 is a substrate for N-myristoyltransferase and generated recombinant myristoylated NCS-1. The bacterially expressed NCS-1 shows Ca(2+)-induced conformational changes. The possibility that NCS-1 directly interacts with the exocytotic machinery to enhance exocytosis was tested using digitonin-permeabilized chromaffin cells. Exogenous NCS-1 was retained in permeabilized cells but had no effect on Ca(2+)-dependent release of catecholamine. In addition, exogenous NCS-1 did not regulate cyclic nucleotide levels in this system. These data suggest that the effects of NCS-1 seen in intact cells are likely to be due to an action on the early steps of stimulus-secretion coupling or on Ca(2+) homeostasis. Myristoylated NCS-1 bound to membranes in the absence of Ca(2+) and endogenous NCS-1 was tightly membrane-associated. Using biotinylated NCS-1, a series of specific binding proteins were detected in cytosol, chromaffin granule membrane, and microsome fractions of adrenal medulla. These included proteins distinct from those detected by biotinylated calmodulin, demonstrating the presence of multiple specific Ca(2+)-independent and Ca(2+)-dependent binding proteins as putative targets for NCS-1 action. A model for NCS-1 function, from these data, indicates a constitutive membrane association independent of Ca(2+). This differs from the Ca(2+) myristoyl switch model for the closely related recoverin and suggests a possible action in rapid Ca(2+) signal transduction in response to local Ca(2+) signals.  相似文献   

20.
Previously, we reported the identification of a gibberellin (GA)-binding protein in rice using ligand binding assay that was homologous to RuBisCO activase (Komatsu et al., FEBS Lett. 384, 167-171, 1996). Here, we provide an evidence for the involvement of protein kinases components downstream to the GA-binding phosphoprotein, RuBisCO activase in rice. Ca(2+)-dependent protein kinase activity was studied in subcellular fractions of leaf sheath from transgenic rice containing sense and antisense constructs of RuBisCO activase. In-gel kinase assay using histone III-S as a substrate showed constitutive induction of a 46- and 48-kDa Ca(2+)-dependent protein kinase activity in the sense transgenic plants. Kinase activities of these proteins were significantly reduced in the presence of uniconazole, a potent GA biosynthesis inhibitor, but one of them was strongly promoted by GA(3) treatment in transgenic plants carrying a smaller subunit of RuBisCO activase (OsrcaA1) compared to the larger subunit OsrcaA2. Also, in vitro phosphorylation studies using two-dimensional polyacrylamide gel showed changes in the degree of phosphorylation of several proteins in OsrcaA1- and OsrcaA2-sense transgenic rice. These studies suggest the presence of two independent cytosolic Ca(2+)-dependent protein kinase signaling components downstream to the GA-binding protein in rice suggesting their role in GA signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号