首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Late maturity alpha-amylase (LMA) in wheat is a genetic defect that may result in the accumulation of unacceptable levels of high pI alpha-amylase in grain in the absence of germination or weather damage. During germination, gibberellin produced in the embryo triggers expression of alpha-Amy genes, the synthesis of alpha-amylase and, subsequently, cell death in the aleurone. LMA also involves the aleurone and whilst LMA appears to be independent of the embryo there is nevertheless some evidence that gibberellin is involved. The aim of this investigation was to determine whether the increase in alpha-amylase activity in LMA-prone genotypes, like alpha-amylase synthesis by aleurone cells in germinating or GA-challenged grains, is followed by aleurone cell death. Programmed cell death was seen in aleurone layers from developing, ripe and germinated grains using confocal microscopy and fluorescent probes specific for dead or living cells. Small pockets of dying cells were observed distributed at random throughout the aleurone of ripening LMA-affected grains and by harvest-ripeness these cells were clearly dead. The first appearance of dying cells, 35 d post-anthesis, coincided with the later part of the 'window of sensitivity' in grain development in LMA-prone wheat cultivars. No dead or dying cells were present in ripening or fully ripe grains of control cultivars. In germinating grains, dying cells were observed in the aleurone adjacent to the scutellum and, as germination progressed, the number of dead cells increased and the affected area extended further towards the distal end of the grain. Aside from the obvious differences in spatial distribution, dying cells in 20-24 h germinated grains were similar to dying cells in developing LMA-affected grains, consistent with previous measurements of alpha-amylase activity. The increase in high pI alpha-amylase activity in developing grains of LMA-prone cultivars, like alpha-amylase synthesis in germinating grains, is associated with cell death, providing further evidence for the involvement of gibberellin in the LMA response.  相似文献   

2.
Hormonally regulated programmed cell death in barley aleurone cells   总被引:13,自引:0,他引:13  
PC Bethke  JE Lonsdale  A Fath    RL Jones 《The Plant cell》1999,11(6):1033-1046
Cell death was studied in barley (cv Himalaya) aleurone cells treated with abscisic acid and gibberellin. Aleurone protoplasts incubated in abscisic acid remained viable in culture for at least 3 weeks, but exposure to gibberellin initiated a series of events that resulted in death. Between 4 and 8 days after incubation in gibberellin, >70% of all protoplasts died. Death, which occurred after cells became highly vacuolated, was manifest by an abrupt loss of plasma membrane integrity followed by rapid shrinkage of the cell corpse. Hydrolysis of DNA began before death and occurred as protoplasts ceased production of alpha-amylase. DNA degradation did not result in the accumulation of discrete low molecular weight fragments. DNA degradation and cell death were prevented by LY83583, an inhibitor of gibberellin signaling in barley aleurone. We conclude that cell death in aleurone cells is hormonally regulated and is the final step of a developmental program that promotes successful seedling establishment.  相似文献   

3.
Programmed cell death (PCD) is a crucial phenomenon in the life cycle of cereal grains. In germinating grains, the scutellum allows the transport of nutrients from the starchy endosperm to the growing embryo, and therefore it may be the last grain tissue to undergo PCD. Thus, the aim of this work was to analyse whether the scutellum of wheat grains undergoes PCD and to perform a morphological and biochemical analysis of this process. Scutellum cells of grains following germination showed a progressive increase of DNA fragmentation, and the TUNEL assay showed that PCD extended in an apical-to-basal gradient along the scutellum affecting epidermal and parenchymal cells. Electron-transmission microscopy revealed high cytoplasm vacuolation, altered mitochondria, and the presence of double-membrane structures, which might constitute symptoms of vacuolar cell death, whereas the nucleus appeared lobed and had an increased heterochromatin content as the most distinctive features. An acid- and Zn(2+)-dependent nucleolytic activity was identified in nuclear extracts of scutellum cells undergoing PCD. This nuclease was not detected in grains imbibed in the presence of abscisic acid, which inhibited germination. This nucleolytic activity promoted DNA fragmentation in vitro on nuclei isolated from healthy cells, thus suggesting a main role in nucleus dismantling during PCD.  相似文献   

4.
Barley aleurone cells undergo programmed cell death (PCD) when exposed to gibberellic acid (GA), but incubation in abscisic acid (ABA) prevent PCD. We tested the hypothesis that PCD in aleurone cells occurs by apoptosis, and show that the hallmark of apoptosis, namely DNA cleavage into 180 bp fragments, plasma membrane blebbing, and the formation of apoptotic bodies do not occur when aleurone cells die. We show that endogenous barley aleurone nucleases and nucleases present in enzymes used for protoplast preparation degrade aleurone DNA and that DNA degradation by these nucleases is rapid and can result in the formation of 180 bp DNA ladders. Methods are described that prevent DNA degradation during isolation from aleurone layers or protoplasts. Barley aleurone cells contain three nucleases whose activities are regulated by GA and ABA. CA induction and ABA repression of nuclease activities correlate with PCD in aleurone cells. Cells incubated in ABA remain alive and do not degrade their DNA, but living aleurone cells treated with GA accumulate nucleases and hydrolyze their nuclear DNA. We propose that barley nucleases play a role in DNA cleavage during aleurone PCD.  相似文献   

5.
6.
7.
8.
Hydrogen sulfide (H2S) is considered as a cellular signaling intermediate in higher plants, but corresponding molecular mechanisms and signal transduction pathways in plant biology are still limited. In the present study, a combination of pharmacological and biochemical approaches was used to study the effect of H2S on the alleviation of GA-induced programmed cell death (PCD) in wheat aleurone cells. The results showed that in contrast with the responses of ABA, GA brought about a gradual decrease of l-cysteine desulfhydrase (LCD) activity and H2S production, and thereafter PCD occurred. Exogenous H2S donor sodium hydrosulfide (NaHS) not only effectively blocked the decrease of endogenous H2S release, but also alleviated GA-triggered PCD in wheat aleurone cells. These responses were sensitive to hypotaurine (HT), a H2S scavenger, suggesting that this effect of NaHS was in an H2S-dependent fashion. Further experiment confirmed that H2S, rather than other sodium- or sulphur-containing compounds derived from the decomposing of NaHS, was attributed to the rescuing response. Importantly, the reversing effect was associated with glutathione (GSH) because the NaHS triggered increases of endogenous GSH content and the ratio of GSH/oxidized GSH (GSSG) in GA-treated layers, and the NaHS-mediated alleviation of PCD was markedly eliminated by l-buthionine-sulfoximine (BSO, a selective inhibitor of GSH biosynthesis). The inducible effect of NaHS was also ascribed to the modulation of heme oxygenase-1 (HO-1), because the specific inhibitor of HO-1 zinc protoporphyrin IX (ZnPP) significantly suppressed the NaHS-related responses. By contrast, the above inhibitory effects were reversed partially when carbon monoxide (CO) aqueous solution or bilirubin (BR), two of the by-products of HO-1, was added, respectively. NaHS-triggered HO-1 gene expression in GA-treated layers was also confirmed. Together, the above results clearly suggested that the H2S-delayed PCD in GA-treated wheat aleurone cells was associated with the modulation of GSH homeostasis and HO-1 gene expression.  相似文献   

9.
In this report, we describe the involvement of TatD nuclease during programmed cell death (PCD) in the human protozoan parasite Trypanosoma brucei. T. brucei TatD nuclease showed intrinsic DNase activity, was localized in the cytoplasm and translocated to the nucleus when cells were treated with inducers previously demonstrated to cause PCD in T. brucei. Overexpression of TatD nuclease resulted in elevated PCD and conversely, loss of TatD expression by RNAi conferred significant resistance to the induction of PCD in T. brucei. Co‐immunoprecipitation studies revealed that TatD nuclease interacts with endonucleaseG suggesting that these two nucleases could form a DNA degradation complex in the nucleus. Together, biochemical activity, RNAi and subcellular localization results demonstrate the role of TatD nuclease activity in DNA degradation during PCD in these evolutionarily ancient eukaryotic organisms. Further, in conjunction with endonucleaseG, TatD may represent a critical nuclease in a caspase‐independent PCD pathway in trypanosomatid parasites since caspases have not been identified in these organisms.  相似文献   

10.
Active oxygen and cell death in cereal aleurone cells   总被引:17,自引:0,他引:17  
The cereal aleurone layer is a secretory tissue whose function is regulated by gibberellic acid (GA) and abscisic acid (ABA). Aleurone cells lack functional chloroplasts, thus excluding photosynthesis as a source of active oxygen species (AOS) in cell death. Incubation of barley aleurone layers or protoplasts in GA initiated the cell death programme, but incubation in ABA delays programmed cell death (PCD). Light, especially blue and UV-A light, and H(2)O(2) accelerate PCD of GA-treated aleurone cells, but ABA-treated aleurone cells are refractory to light and H(2)O(2) and are not killed. It was shown that light elevated intracellular H(2)O(2), and that the rise in H(2)O(2) was greater in GA-treated cells compared to cells in ABA. Experiments with antioxidants show that PCD in aleurone is probably regulated by AOS. The sensitivity of GA-treated aleurone to light and H(2)O(2) is a result of lowered amounts of enzymes that metabolize AOS. mRNAs encoding catalase, ascorbate peroxidase and superoxide dismutase are all reduced during 6-18 h of incubation in GA, but these mRNAs were present in higher amounts in cells incubated in ABA. The amounts of protein and enzyme activities encoded by these mRNAs were also dramatically reduced in GA-treated cells. Aleurone cells store and metabolize neutral lipids via the glyoxylate cycle in response to GA, and glyoxysomes are one potential source of AOS in the GA-treated cells. Mitochondria are another potential source of AOS in GA-treated cells. AOS generated by these organelles bring about membrane rupture and cell death.  相似文献   

11.
12.
Programmed cell death is a process defined as genetically regulated self-destruction or cell suicide. It can be activated by different internal and external factors, but few studies have investigated whether this process occurs under cold and freezing temperatures. In this study, a freezing treatment (?8 °C for 6 h) induced cell death with features of programmed cell death in suspension cultures of winter wheat (Triticum aestivum L.). This process occurred for 10 days after cold exposure. The death of cells in culture was slow and prolonged, and was accompanied by protoplast shrinkage, DNA fragmentation, and an increase in the level of reactive oxygen species. Other changes observed after the freezing treatment included an increase in the respiration rate, changes in mitochondrial transmembrane potential ( m ), and the release of cytochrome c from mitochondria into the cytosol. These findings indicated that mitochondria are involved in the cell death process that occurs after a freezing treatment in cells of winter wheat.  相似文献   

13.
Nitric oxide (NO) is a freely diffusible, gaseous free radical and an important signaling molecule in animals. In plants, NO influences aspects of growth and development, and can affect plant responses to stress. In some cases, the effects of NO are the result of its interaction with reactive oxygen species (ROS). These interactions can be cytotoxic or protective. Because gibberellin (GA)-induced programmed cell death (PCD) in barley (Hordeum vulgare cv Himalaya) aleurone layers is mediated by ROS, we examined the effects of NO donors on PCD and ROS-metabolizing enzymes in this system. NO donors delay PCD in layers treated with GA, but do not inhibit metabolism in general, or the GA-induced synthesis and secretion of alpha-amylase. alpha-Amylase secretion is stimulated slightly by NO donors. The effects of NO donors are specific for NO, because they can be blocked completely by the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. The antioxidant butylated hydroxy toluene also slowed PCD, and these data support our hypothesis that NO is a protective antioxidant in aleurone cells. The amounts of CAT and SOD, two enzymes that metabolize ROS, are greatly reduced in aleurone layers treated with GA. Treatment with GA in the presence of NO donors delays the loss of CAT and SOD. We speculate that NO may be an endogenous modulator of PCD in barley aleurone cells.  相似文献   

14.
Through the process known as programmed cell death (PCD), nucelli of Pinus densiflora serve as the transmitting tissue for growth of the pollen tube. We sought to clarify the processes of degradation of nucellar cell components and their transport to the pollen tube during PCD in response to pollen tube penetration of such nucelli. Stimulated by pollination, synthesis of large amounts of starch grains occurred in cells in a wide region of the nucellus, but as the pollen tube penetrated the nucellus, starch grains were degraded in amyloplasts of nucellar cells. In cells undergoing PCD, electron-dense vacuoles with high membrane contrast appeared, assumed a variety of autophagic structures, expanded, and ultimately collapsed and disappeared. Vesicles and electron-dense amorphous materials were released inside the thickened walls of cells undergoing PCD, and those vesicles and materials reaching the pollen tube after passing through the extracellular matrix were taken into the tube by endocytosis. These results show that in PCD of nucellar cells, intracellular materials are degraded in amyloplasts and vacuoles, and some of the degraded material is supplied to the pollen tube by vesicular transport to support tube growth.  相似文献   

15.
Induction of the TRPM-2 gene in cells undergoing programmed death.   总被引:26,自引:3,他引:23       下载免费PDF全文
RNA and protein products encoded by the testosterone-repressed prostate message-2 gene (TRPM-2) are induced to high levels, coordinate with the onset of cell death, in numerous rodent models of inducible tissue damage. These models include cell death initiated by hormonal stimuli (prostate regression), pressure insult (renal atrophy after ureteral obstruction), developmental stimuli (necrosis of interdigital tissue), and cytotoxic injury (chemotherapeutic regression of a tumor). Sequence analysis of cDNA encoding TRPM-2 revealed its close homology with a product referred to as SGP-2 or clusterin expressed constitutively by Sertoli cells; however, the immunologically related polypeptides expressed in regressing tissues differ in molecular mass from the forms secreted by the testis. Although the function(s) of the products encoded by the TRPM-2 gene remains unclear, their presence provides a remarkable and early indicator of programmed cell death in many types of mammalian cells.  相似文献   

16.
Programmed cell death in cereal aleurone   总被引:21,自引:0,他引:21  
Progress in understanding programmed cell death (PCD) in the cereal aleurone is described. Cereal aleurone cells are specialized endosperm cells that function to synthesize and secrete hydrolytic enzymes that break down reserves in the starchy endosperm. Unlike the cells of the starchy endosperm, aleurone cells are viable in mature grain but undergo PCD when germination is triggered or when isolated aleurone layers or protoplasts are incubated in gibberellic acid (GA). Abscisic acid (ABA) slows down the process of aleurone cell death and isolated aleurone protoplasts can be kept alive in media containing ABA for up to 6 months. Cell death in barley aleurone occurs only after cells become highly vacuolated and is manifested in an abrupt loss of plasma membrane integrity. Aleurone cell death does not follow the apoptotic pathway found in many animal cells. The hallmarks of apoptosis, including internucleosomal DNA cleavage, plasma membrane and nuclear blebbing and formation of apoptotic bodies, are not observed in dying aleurone cells. PCD in barley aleurone cells is accompanied by the accumulation of a spectrum of nuclease and protease activities and the loss of organelles as a result of cellular autolysis.  相似文献   

17.
BACKGROUND: Phosphatidylserine (PS) appears on the outer membrane leaflet of cells undergoing programmed cell death and marks those cells for clearance by macrophages. Macrophages secrete lactadherin, a PS-binding protein, which tethers apoptotic cells to macrophage integrins. METHODS: We utilized fluorescein-labeled lactadherin together with the benchmark PS Probe, annexin V, to detect PS exposure by flow cytometry and confocal microscopy. Immortalized leukemia cells were treated with etoposide, and the kinetics and topology of PS exposure were followed over the course of apoptosis. RESULTS: Costaining etoposide-treated leukemoid cells with lactadherin and annexin V indicated progressive PS exposure with dim, intermediate, and bright staining. Confocal microscopy revealed localized plasma membrane staining, then diffuse dim staining by lactadherin prior to bright generalized staining with both proteins. Annexin V was primarily localized to internal cell bodies at early stages but stained the plasma membrane at the late stage. Calibration studies suggested a PS content less, less than or approximately equal to 2.5%-8% for the membrane domains that stained with lactadherin but not annexin V. CONCLUSIONS: Macrophages may utilize lactadherin to detect PS exposure prior to exposure of sufficient PS to bind annexin V. The methodology enables detection of PS exposure at earlier stages than established methodology.  相似文献   

18.
19.
20.
Oligochitosan has been proved to trigger plant cell death. To gain some insights into the mechanisms of oligochitosan-induced cell death, the nature of oligochitosan-induced cell death and the role of calcium (Ca2+), nitric oxide (NO) and hydrogen peroxide (H2O2) were studied in tobacco suspension cells. Oligochitosan-induced cell death occurred in cytoplasmic shrinkage, phosphatidylserine externalization, chromatin condensation, TUNEL-positive nuclei, cytochrome c release and induction of programmed cell death (PCD)-related gene hsr203J, suggesting the activation of PCD pathway. Pretreatment cells with cyclosporin A, resulted in reducing oligochitosan-induced cytochrome c release and cell death, indicating oligochitosan-induced PCD was mediated by cytochrome c. In the early stage, cells undergoing PCD showed an immediate burst in free cytosolic Ca2+ ([Ca2+]cyt) elevation, NO and H2O2 production. Further study showed that these three signals were involved in oligochitosan-induced PCD, while Ca2+ and NO played a negative role in this process by modulating cytochrome c release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号