首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The fluorescence properties of one chemically and seven biologically produced polyhydroxyalkanoic acids were investigated as film castings and in living cells respectively after staining with Nile red. All these polyesters show a similar fluorescence behaviour, revealing a clear fluorescence maximum at an excitation wavelength between 540 nm and 560 nm and an emission wavelength between 570 nm and 605 nm. This could be shown by the use of two-dimensional fluorescence spectroscopy and flow cytometry. The examination of native poly(3-hydroxybutyric acid), poly(3HB), granules isolated from cells of Ralstonia eutropha H16 showed that the addition of 6.0 μg Nile red is necessary for total staining of 1.0 mg granules. The fluorescence intensity at an excitation wavelength of 550 nm and an emission wavelength of 600 nm showed high correlation to the poly(3HB) concentration of grana suspensions at different grana concentrations. These results and the staining of cell suspensions during cultivation experiments revealed that Nile red has a high potential for the quantitative determination of hydrophobic bacterial polyhydroxyalkanoic acids. Received: 13 November 1998 / Received revision: 4 February 1999 / Accepted: 12 February 1999  相似文献   

2.
An approach for rapid differentiation between short-chain-length (scl) and medium-chain-length (mcl) polyhydroxyalkanoate (PHA) producers was developed. Polyhydroxyalkanoate-accumulated bacterial cells stained with Nile red were suspended in water and subjected to fluorescence spectroscopy at a fixed excitation wavelength of 488 nm. The scl-PHA-accumulated bacteria revealed a maximum emission wavelength at 590 nm, and for mcl-PHA producers were seen at a wavelength of 575 nm. Combining Nile red staining and fluorescence spectroscopy, the accumulated PHA granules could be rapidly differentiated into scl-PHA and mcl-PHA from the intact cells.  相似文献   

3.
We isolated and characterized a green fluorescent protein (GFP) from the sea cactus Cavernularia obesa. This GFP exists as a dimer and has absorption maxima at 388 and 498 nm. Excitation at 388 nm leads to blue fluorescence (456 nm maximum) at pH 5 and below, and green fluorescence (507 nm maximum) at pH 7 and above, and the GFP is remarkably stable at pH 4. Excitation at 498 nm leads to green fluorescence (507 nm maximum) from pH 5 to pH 9. We introduced five amino acid substitutions so that this GFP formed monomers rather than dimers and then used this monomeric form to visualize intracellular pH change during the phagocytosis of living cells by use of fluorescence microscopy. The intracellular pH change is visualized by use of a simple long‐pass emission filter with single‐wavelength excitation, which is technically easier to use than dual‐emission fluorescent proteins that require dual‐wavelength excitation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
The fluorescent dye 4′,6-diamidino-2-phenylindole has its emission maximum at 456 nm. Fluorescence intensity at this wavelength is significantly increased by various negatively-charged polyelectrolytes. Among several polyelectrolytes tested, polyphosphates appeared to be unique in the sense that they shifted the emission maximum from 456 to 526 nm. Addition of Saccharomyces fragilis cells to a diamidinophenylindole solution caused an immediate shift of the emission maximum to 526 nm, followed by a gradual increase of fluorescence at 456 nm. The 526 nm, but not the 456 nm fluorescence was instantly quenched by non-penetrating cations, like UO2+2. These results suggest a momentary interaction of diamidinophenylindole with polyphosphate, localized outside the plasma membrane, followed by a slow penetration of the dye into the cells, yielding increased fluorescence at 456 nm by interaction of the dye with e.g., nucleic acids. This was confirmed by fluorescence microscopy. After addition of diamidinophenylindole the yeast cells exhibited an immediate green-yellow fluorescence of the membrane, that was suppressed by UO2+2. After longer incubation times the cytoplasm and nucleus developed a blue fluorescence.  相似文献   

5.
Olivomycin is taken up efficiently by HeLa cells and by rat fibroblast cells at 38.5 °C, but not by BHK cells. On irradiation with light of 425 nm wavelength, the nuclei of living cells that have taken up olivomycin fluoresce. When olivomycin complexes with DNA in solution, the emission spectrum broadens and shifts, the excitation wavelength maximum shifts up 15 nm, and the fluorescence polarization increases. In HeLa and fibroblast cells, the fluorescence characteristics indicate that olivomycin is entirely complexed to DNA, and its rotational mobility indicates that it is complexed to DNA in regions where other components of the chromatin offer no steric hindrance.  相似文献   

6.
The band of cell fluorescence with the maximum of 395-400 nm is registered. This band is exposed on the phone of the tryptophane by wavelength excitation lambdaex=250-260 nm, and in pure scape by lambdaex=310-326 nm. Pyridoxin - substrate of vitamin B6 has identical parameters of spectra excitation and emission of neutral (pH 7) and acid (pH 2) solutions. After temperature damage of cells the intensity of this band increases.  相似文献   

7.
The emission maximum of DPN-linked isocitrate dehydrogenase from bovine heart shifted from 316 nm to 324 nm as the excitation wavelength was varied from 265 nm to 300 nm. This shift was accompanied by a nonproportional change in fluorescence intensity. Comparisons of the emission spectra of model compounds in aqueous buffer at pH 7.07 and n-butanol showed that lowered solvent polarity led to a blue shift of the peak of free tryptophan without significant change of fluorescence intensity, whereas the fluorescence intensity of tyrosine amide increased markedly without change in emission maximum. The emission peak of mixtures of tryptophan and tyrosine amide shifted to shorter wavelengths as the proportion of tyrosine amide increased. The results suggest a major contribution of tyrosine to the overall fluorescence of the dehydrogenase. DPNH caused quenching and a blue shift of the protein fluorescence maximum when excited between 270 nm and 290 nm, indicating that the two tryptophan residues per subunit of enzyme are located in different microenvironments of the protein and that DPNH may interact preferentially with the residue emitting at the longer wavelength.  相似文献   

8.
V.A. Sineshchekov  F.F. Litvin 《BBA》1977,462(2):450-466
Red luminescence of purple membranes from Halobacterium halobium cells in suspension, dry film or freeze-dried preparations was studied and its emission, excitation and polarization spectra are reported. The emission spectra have three bands at 665–670, 720–730 and at 780–790 nm. The position (maximum at 580 nm) and shape of the excitation spectra are close to those of the absorption spectra. The spectra depend on experimental conditions, in particular on pH of the medium. Acidification increases the long wavelength part of the emission spectra and shifts the main excitation maximum 50–60 nm to the longer wavelength side. Low-temperature light-induced changes of the absorption, emission and excitation spectra are presented. Several absorbing and emitting species of bacteriorhodopsin are responsible for the observed spectral changes. The bacteriorhodopsin photoconversion rate constant was estimated to be about 1 · 1011 s?1 at ? 196°C from the quantum yields of the luminescence (1 · 10?3) and photoreaction (1 · 10?1). The temperature dependence of the luminescence quantum yield points to the existence of two or three quenching processes with different activation energies. High degree of luminescence polarization (about 45–47%) throughout the absorption and fluorescence spectra and its temperature independence show that there is no energy transfer between bacteriorhodopsin molecules and no chromophore rotation during the excitation lifetime. In carotenoid-containing membranes, energy migration from the bulk of carotenoids to bacteriorhodopsin was not found either. Bacteriorhodopsin phosphorescence was not observed in the 500–1100 nm region and the emission is believed to be fluorescence by nature.  相似文献   

9.
The extract of the luminous mushroom Panellus stipticus wasonly slightly chemiluminescent but, when treated with methylamine,it developed a strong capability of chemiluminescence whichcorresponds to the total light emission in 4–5 h fromthe fresh, brightly luminescing specimens before extraction.The chemiluminescent compounds thus formed, as well as the precursorcompounds that yielded the chemiluminescent compounds, werepurified and their properties were investigated. The purifiedchemiluminescent compounds (3 kinds) were orange coloured solids(absorption maxima 210 nm and 488 nm) and showed yellowish fluorescence(emission maximum 520–530 nm) when dissolved in variousorganic solvents or in aqueous buffer solutions containing asurfactant. The precursor compounds (2 kinds) were colourlessoils (absorption maximum 215 nm) and non-fluorescent. The chemiluminescencereaction in aqueous pH 8?0 buffer solutions required the presenceof , O2, and a surfactant. The spectral distributionand intensity of chemiluminescence was significantly affectedby the type of surfactant used, resulting in emission peaksof various intensities in a broad wavelength range of 480 nmto 530 nm. Various lines of evidence suggest that the chemiluminescencereaction studied might be closely related with the bioluminescencereaction of P. stipticus (emission maximum 530 nm). Key words: Superoxide anion, chemiluminescence, bioluminescence, luminous fungi  相似文献   

10.
Summary A new device for the measurement of complete laser induced fluorescence emission spectra (maxima near 690 and 735 nm) of leaves during the induction of the chlorophyll fluorescence is described. In this the excitation light (cw He/Ne laser, 632.8 nm) is switched on by a fast electro-mechanical shutter which provides an opening time of 1 ms. The emitted fluorescence is imaged onto the entrance slit of a multichannel spectrograph through a red cut-off filter (> 645 nm). A charge coupled device (CCD) sensor with 2048 elements simultaneously detects the complete chlorophyll fluorescence emission spectrum in the 650–800 nm wavelength range. Scanning is accomplished electronically and the integration time for a complete fluorescence emission spectrum can be selected from 10 ms up to 260 ms. Shutter, detector system and data acquisition are controlled by an IBM-PC/AT compatible computer. A maximum of 32 spectra can be measured at selected times during the fluorescence induction kinetics with the shortest time resolution of 10 ms. The instrument permits the determination of various fluorescence parameters:a) the rise-time of the fluorescence to the maximum level fm,b) the changes in the shape of the fluorescence emission spectra during the induction kinetics,c) the induction kinetics in the fluorescence ratio F690/F735 as well asd) the fluorescence decrease ratio Rfd at any wavelength between 650 to 800 nm. These fluorescence parameters provide information about the functioning of photosynthesis. The ratio F690/F735 allows the non-destructive determination of the chlorophyll content of leaves. The application of this instrument in ecophysiological research and stress physiology of plants is outlined.  相似文献   

11.
Labelling of surface membrane of living ciliates: Paramecium aurelia and Tetrahymena pyriformis with fluorescent compound--cycloheptaamylose-dansyl chloride complex (CDC) has been achieved. Fluorescence micrographs of the dried samples showed specific localization of CDC on the cell membrane without any intracellular penetration. On the contrary the ciliates which have been dead during labelling revealed a non-specific fluorescence of their whole bodies. Microspectrofluorimetric analysis of labelled Paramecium cells was performed with Leitz microspectrograph. Spectrum of fluorescence emission measured over the cell membrane level had maximum at 450 nm. Strikingly, the emission maximum of the cells dead at the moment of labelling was shifted 10 nm to a longer wavelength. The rate of photofading measured in this case was almost 3-fold higher than for the ciliates labelled as living ones. Fluorescence excitation spectra did not show any difference in the peak position. Thus CDC staining appears to be an useful method of supravital labelling of cell surface enabling also to distinguish--on the basis of spectral characteristics--the ciliates being alive from those dead at the moment of fluorochrome binding.  相似文献   

12.
Mutation to virulence has been measured in intact bacteriophage lambda 15 infected into host cells pre-treated with UVC (254 nm), UVB (313 nm), UVA (334 nm, 365 nm) or visible (405 nm) radiations. We have confirmed that UVC radiation leads to a large enhancement (maximum enhancement factor of 140 in wild-type) of the background spontaneous mutation frequency (non-targeted mutagenesis) and have further shown that this is at least partially dependent on excision repair (maximum enhancement factor of 14 in uvrA strain). In contrast, UVB (313 nm) radiation enhances the mutation frequency by less than a factor of 2. Longer wavelength UVA radiation (334 nm, 365 nm) actually reduces the mutation frequency to 25% of the background levels presumably by reducing the levels of viral replication occurring in the host cells. A visible wavelength (405 nm) has no effect on mutation frequency over the fluence range employed.  相似文献   

13.
A series of novel fluorescent pyrimidine nucleosides containing 2,1,3-benzoxadiazole or naphtho[1,2,3-cd]indole-6 (2h)-one fragments was designed and synthesized. Introduction of fluorescent fragments into the position 5 of the uridine or cytidine heterocycle was carried out in two ways: by Sonogashira Coupling Reaction and CuI-catalyzed cycloaddition (“click” reaction). The obtained nucleoside derivatives became fluorescent due to the inserted fragments. The excitation wavelength (440–450 nm) was outside the absorption band of many biomolecules and significantly differed from the emission wavelength (560–600 nm). In addition, the intended nucleoside analogs were shown to kill cultured human tumor cells at submicromolar concentrations.  相似文献   

14.
A Lückhoff 《Cell calcium》1986,7(4):233-248
Indo-1 is a new fluorescent indicator of the intracellular free calcium concentration Cai++. Indo-1 may be used in a similar manner as its predecessor quin2 but offers the principal advantage that the Ca++ saturated form of the Ca++ chelator has a emission maximum different in wavelength from that of free indo-1 (400 nm versus 483 nm). Therefore, the ratio of the fluorescence intensity F emitted at 400 nm to that of the fluorescence intensity G emitted at 483 nm (or 500 nm) should be a measure of Cai++ independent of the total amount of intracellular dye. However, when indo-1 is loaded into endothelial cells (grown in culture on quartz coverslips) by incubation with the acetoxymethylester of indo-1 (indo-1/AM), the ester in not completely hydrolysed to indo-1 intracellularly. Fluorescence emitted by uncleaved indo-1/AM at wavelengths 483-500 nm interferes with the fluorescence of indo-1. Ester fluorescence is influenced not only by ester concentration but by the fluorescence emitted at 400 nm by Ca++ bound indo-1 as well. Therefore, the ratio F/G cannot reliably evaluate increases in Cai++ in endothelial cells although F/G would indicate a basal Cai++ constant with time. By contrast, the fluorescence F is a sensitive parameter of the intracellular concentration of Ca++ bound indo-1, in particular when the excitation wavelength is set to 332 nm. F was used to measure resting Cai++ in endothelial cells (132 +/- 22 nM; n = 22) and to demonstrate dose-dependent and reversible increases in Cai++ in response to stimulation with bradykinin.  相似文献   

15.
《BBA》1985,807(2):155-167
The time-resolved fluorescence emission and excitation spectra of Chlorella vulgaris cells have been measured by single-photon timing with picosecond resolution. In a three-exponential analysis the time-resolved excitation spectra recorded at 685 and 706 nm emission wavelength with closed PS II reaction centers show large variations of the preexponential factors of the different decay components as a function of wavelength. At λem = 685 nm the major contribution to the fluorescence decay originates from two components with life-times of 2.1–2.4 and 1.2–1.3 ns. A short-lived component with life-times of 0.1–0.16 ns of relatively small amplitude is also found. When the emission is detected at 706 nm, the short-lived component with a life-time of less than 0.1 ns predominates. Time-resolved emission spectra using λexc = 630 or λexc = 652 nm show a spectral peak of the two longer-lived components at about 680–685 nm, whereas the fast component is red-shifted as compared to the others and shows a maximum at about 690 nm. The emission spectrum observed upon excitation at 696 nm with closed PS II reaction centers shows a large increase in the amplitude of the fast component with a lifetime of 80–100 ps as compared to that at 630 nm excitation. At almost open Photosystem II (PS II) reaction centers (F0), the life-time of the fast component decreased from 150–160 ps at 682 nm to less than 100 ps at 720 nm emission wavelength. We conclude that at least two pigment pools contribute to the fast component. One is attributed to PS II and the other to Photosystem I (PS I). They have life-times of approx. 180 ps and 80 ps, respectively. The 80 ps (PS I) contribution has a spectral maximum slightly below 700 nm, whereas the 180 ps (PS II) spectrum peaks at 680–685 nm. The spectra of the middle decay component τm and its sensitivity to inhibitors of PS II suggest that this component is not preferentially related to LHC II but arises mainly from Chl a pigments probably associated with a second type of PS II centers. The amplitudes of the fast (180 ps, PS II) component and the long-lived decay show an opposite dependence on the state of the PS II centers and confirm our earlier conclusion that the contribution of PS II to the fast component probably disappears at the Fmax state (Haehnel W., Holzwarth, A.R. and Wendler, J. (1983) Photochem. Photobiol. 34, 435–443). Our data are discussed in terms of α,β-heterogeneity in PS II centers.  相似文献   

16.
The release of vasodilating substances from the vascular endothelium has been postulated to depend on a rise in the level of intracellular free calcium (Cai++). We measured Cai++ in intact monolayers of calf endothelial cells, grown in culture, that were loaded with the fluorescent calcium indicator quin 2. Fluorescence (excitation wavelength 340 nm, emission wavelength 492 nm) was calibrated by raising Cai++ to a maximum with the calcium ionophore ionomycin (0.1 microM) and by lowering it to a minimum with ionomycin plus manganese (0.4 mM), which quenches quin 2 fluorescence completely. Loss of fluorescent dye from the cells was calculated from fluorescence at the isosbestic excitation wavelength (365 nm). Resting Cai++ was 71 +/- 3 (SEM) nM. ATP (adenosine-5'-triphosphate) raised Cai++ dose-dependently and reversibly to 458 +/- 60 nM at a concentration of 10 microM, and at 0.1 mM to values close to those that occurred under ionomycin. ADP (A-5'-PP) and AMP (A-5'-P) had smaller effects with a maximal Cai++ of 287 +/- 72 nM at 30 microM ADP and 176 +/- 17 nM at 0.1 mM AMP. At these concentrations, ADP and AMP attenuated significantly the increase of Cai++ under ATP (10 microM). Adenosine (0.1 or 0.3 mM) and acetylcholine (0.1 to 30 microM) enhanced Cai++ inconsistently, by a maximum of 50 nM. These effects were abolished by theophylline and atropine, respectively. In the absence of extracellular calcium, ATP still raised Cai++, although endothelial responsiveness declined after repetitive stimulations. We conclude that activation of purinergic receptors increases intracellular free calcium in endothelial cells, and that this increase is probably an essential trigger for synthesis of prostacyclin and the labile endothelium-derived relaxant factor.  相似文献   

17.
A simple and sensitive high-performance liquid chromatographic (HPLC) method has been developed for the determination of five different quinolones: enrofloxacin, ciprofloxacin, sarafloxacin, oxolinic acid and flumequine in pork and salmon muscle. The method includes one extraction and clean-up step for the five quinolones together which are detected in two separated HPLC runs by means of their fluorescence. The proposed analytical method involves homogenizing of the tissue sample with 0.05 M phosphate buffer, pH 7.4 and clean-up by Discovery DS-18 cartridges. For chromatographic separation a Symmetry C(18) column is used in two different runs: (1) ciprofloxacin, enrofloxacin and sarafloxacin with acetonitrile-0.02 M phosphate buffer pH 3.0 (18:82) as mobile phase and the detector at excitation wavelength: 280 nm and emission wavelength 450 nm; and (2) oxolinic acid and flumequine with acetonitrile-0.02 M phosphate buffer pH 3.0 (34:66) as mobile phase and excitation wavelength: 312 nm and emission wavelength: 366 nm. Detection limit was as low as 5 ng g(-1), except for sarafloxacin which had a limit of 10 ng g(-1). Standard curves using blank muscle tissues spiked at different levels showed a good linear correlation coefficient, r(2) higher than 0.999 for all quinolones.  相似文献   

18.
Microspectrofluorometric observations were carried out in EL2 ascites cancer cells and dibenzo(a,e)fluoranthene (diB(a,e)F)-grown EL2 cells, following treatment (5 min) with three dibenzocarbazoles (1,2,7,8; 1,2,5,6 and 3,4,5,6). After microinjection of glucose-6-P leading to reduction of NAD(P), a sequence of difference spectra (after substrate minus before) is recorded. In dibenzocarbazole-untreated cells, maximum (NAD(P) reduction (emission maximum at 465-475 nm) is attained within 5 s, followed by a gradual return to initial fluorescence within 20 to 200 s (faster in the diB(a,e)F-grown). In dibenzocarbazole-treated cells there is a rather regular increase in the intensity of the difference spectrum up to approximately 300-500 s. Initially the increase is more predominant in the region around 460-470 nm, but it gains later prominence in the shorter wavelength region (420-430 nm) characteristic of the hydrocarbon (higher and steadier increase in the 3,4,5,6, dibenzocarbazole-treated diB(a,e)F-grown). Subsequently there is a gradual decrease of fluorescence which may or may or not return to initial level. The observed increase spectra require evaluation in terms of possible components (e.g. a mixture of NAD(P)H and hydrocarbon, binding changes, succession of fluorescent metabolites).  相似文献   

19.
The ability of eight soil microfungal species, Alternaria alternata, Clonostachys rosea f. rosea, Exophiala cf. salmonis, Fusarium cf. coeruleum, Fusarium redolens, Paecilomyces lilacinus, Penicillium canescens and Phoma sp., and two known basidiomycete humic acid (HA) degraders, Trametes versicolor and Phanerochaete chrysosporium, to modify fluorescence properties of fulvic acids (FA) and/or HAs was determined. Effects of minerals and/or glucose on the modifications were examined. FA purified on polyvinyl-polypyrrolidone (PVPP) chromatography column was used. Purification of FA on PVPP column removed the low-molar-mass FA-structural components and excess of extractant (NaOH) used during FA preparation. Excitation spectra of FA entering the purification, purified FA and the removal solution indicate that organic compounds rich in carboxylic groups dominate in the removal solution and higher content of phenolic groups is a characteristic of purified FA. Many microfungal species shifted the emission maximum (measured at 470 and 468 nm of excitation wavelength) of FA, and also HA to longer wavelengths. The opposite effect (shift of the HA emission maximum to shorter wavelengths) of microfungi was observed for HA complemented by glucose. Depending on the presence of glucose in the medium, most microfungi changed also the shape of the emission spectra of HA and FA and the excitation spectra of FA. HA excitation spectrum measured at 590 nm of emission wavelength was significantly affected by the presence of glucose. Mineral ions caused a minor shift in the position of excitation maximum (measured at 590 nm of emission wavelength) toward longer wavelengths.  相似文献   

20.
While the binding of biotin by streptavidin does not appear to be cooperative in the traditional sense of altered binding strength, it has been suggested that it may be cooperative in terms of differential structural changes in the protein. In this work we present intrinsic tryptophan fluorescence data as evidence of a cooperative structural change. The technique involves examination of the differences in fluorescence emission corresponding to distinct tryptophan populations accompanying protein-ligand binding. Specifically we note that the 335 nm emission population (i.e. more hydrophobic) saturates prior to the saturation of the 350 nm emission population commonly used in the standard binding activity assay. We also note that the wavelength of maximum emission, total integrated fluorescence emission and full width at half maximum during the titration of ligand into streptavidin also reach saturation before the expected 4:1 stoichiometric end point. This suggests that the binding of the first 3 biotins effect greater structural changes in the protein than the final ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号