首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Voltage‐gated calcium channels (VGCCs) serve as a critical link between electrical signaling and diverse cellular processes in neurons. We have exploited recent advances in genetically encoded calcium sensors and in culture techniques to investigate how the VGCC α1 subunit EGL‐19 and α2/δ subunit UNC‐36 affect the functional properties of C. elegans mechanosensory neurons. Using the protein‐based optical indicator cameleon, we recorded calcium transients from cultured mechanosensory neurons in response to transient depolarization. We observed that in these cultured cells, calcium transients induced by extracellular potassium were significantly reduced by a reduction‐of‐function mutation in egl‐19 and significantly reduced by L‐type calcium channel inhibitors; thus, a main source of touch neuron calcium transients appeared to be influx of extracellular calcium through L‐type channels. Transients did not depend directly on intracellular calcium stores, although a store‐independent 2‐APB and gadolinium‐sensitive calcium flux was detected. The transients were also significantly reduced by mutations in unc‐36, which encodes the main neuronal α2/δ subunit in C. elegans. Interestingly, while egl‐19 mutations resulted in similar reductions in calcium influx at all stimulus strengths, unc‐36 mutations preferentially affected responses to smaller depolarizations. These experiments suggest a central role for EGL‐19 and UNC‐36 in excitability and functional activity of the mechanosensory neurons. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

2.
Calcium signaling is known to be important for regulating the guidance of migrating neurons, yet the molecular mechanisms underlying this process are not well understood. We have found that two different voltage-gated calcium channels are important for the accurate guidance of postembryonic neuronal migrations in the nematode Caenorhabditis elegans. In mutants carrying loss-of-function alleles of the calcium channel gene unc-2, the touch receptor neuron AVM and the interneuron SDQR often migrated inappropriately, leading to misplacement of their cell bodies. However, the AVM neurons in unc-2 mutant animals extended axons in a wild-type pattern, suggesting that the UNC-2 calcium channel specifically directs migration of the neuronal cell body and is not required for axonal pathfinding. In contrast, mutations in egl-19, which affect a different voltage-gated calcium channel, affected the migration of the AVM and SDQR bodies, as well as the guidance of the AVM axon. Thus, cell migration and axonal pathfinding in the AVM neurons appear to involve distinct calcium channel subtypes. Mutants defective in the unc-43/CaM kinase gene showed a defect in SDQR and AVM positioning that resembled that of unc-2 mutants; thus, CaM kinase may function as an effector of the UNC-2-mediated calcium influx in guiding cell migration.  相似文献   

3.
Voltage-gated calcium channels, which play key roles in many physiological processes, are composed of a pore-forming α1 subunit associated with up to three auxiliary subunits. In vertebrates, the role of auxiliary subunits has mostly been studied in heterologous systems, mainly because of the severe phenotypes of knock-out animals. The genetic model Caenorhabditis elegans has all main types of voltage-gated calcium channels and strong loss-of-function mutations in all pore-forming and auxiliary subunits; it is therefore a useful model to investigate the roles of auxiliary subunits in their native context. By recording calcium currents from channel and auxiliary subunit mutants, we molecularly dissected the voltage-dependent calcium currents in striated muscle of C. elegans. We show that EGL-19 is the only α1 subunit that carries calcium currents in muscle cells. We then demonstrate that the α2/δ subunit UNC-36 modulates the voltage dependence, the activation kinetics, and the conductance of calcium currents, whereas another α2/δ subunit TAG-180 has no effect. Finally, we characterize mutants of the two β subunits, CCB-1 and CCB-2. CCB-1 is necessary for viability, and voltage-dependent calcium currents are abolished in the absence of CCB-1 whereas CCB-2 does not affect currents. Altogether these results show that EGL-19, UNC-36, and CCB-1 underlie voltage-dependent calcium currents in C. elegans striated muscle.  相似文献   

4.
L R Garcia  P Mehta  P W Sternberg 《Cell》2001,107(6):777-788
We demonstrate through cell ablation, molecular genetic, and pharmacological approaches that during C. elegans male mating behavior, the male inserts his copulatory spicules into the hermaphrodite by regulating periodic and prolonged spicule muscle contractions. Distinct cholinergic neurons use different ACh receptors and calcium channels in the spicule muscles to mediate these contractile behaviors. The PCB and PCC sensory neurons facilitate periodic contraction through muscle-encoded UNC-68 ryanodine receptor calcium channels. The SPC motor neurons trigger prolonged contraction through EGL-19 L-type voltage-gated calcium channels. The male gonad then lengthens the duration of EGL-19-mediated prolonged muscle contraction. This regulation of muscle contraction provides a paradigm to explain how animals initiate, monitor, and maintain a behavioral motor program.  相似文献   

5.
The junctophilin family of proteins tether together plasma membrane (PM) and endoplasmic reticulum (ER) membranes, and couple PM- and ER-localized calcium channels. Understanding in vivo functions of junctophilins is of great interest for dissecting the physiological roles of ER-PM contact sites. Here, we show that the sole Caenorhabditis elegans junctophilin JPH-1 localizes to discrete membrane contact sites in neurons and muscles and has important tissue-specific functions. jph-1 null mutants display slow growth and development due to weaker contraction of pharyngeal muscles, leading to reduced feeding. In the body wall muscle, JPH-1 colocalizes with the PM-localized EGL-19 voltage-gated calcium channel and ER-localized UNC-68 RyR calcium channel, and is required for animal movement. In neurons, JPH-1 colocalizes with the membrane contact site protein Extended-SYnaptoTagmin 2 (ESYT-2) in the soma, and is present near presynaptic release sites. Interestingly, jph-1 and esyt-2 null mutants display mutual suppression in their response to aldicarb, suggesting that JPH-1 and ESYT-2 have antagonistic roles in neuromuscular synaptic transmission. Additionally, we find an unexpected cell nonautonomous effect of jph-1 in axon regrowth after injury. Genetic double mutant analysis suggests that jph-1 functions in overlapping pathways with two PM-localized voltage-gated calcium channels, egl-19 and unc-2, and with unc-68 for animal health and development. Finally, we show that jph-1 regulates the colocalization of EGL-19 and UNC-68 and that unc-68 is required for JPH-1 localization to ER-PM puncta. Our data demonstrate important roles for junctophilin in cellular physiology, and also provide insights into how junctophilin functions together with other calcium channels in vivo.  相似文献   

6.
The unc-52 gene of Claenorhabditis elegans encodes a homologue of the basement membrane heparan sulfate proteoglycan perlecan. Viable alleles reduce the abundance of UNC-52 in late larval stages and increase the frequency of distal tip cell (DTC) migration defects caused by mutations disrupting the UNC-6/netrin guidance system. These unc-52 alleles do not cause circumferential DTC migration defects in an otherwise wild-type genetic background. The effects of unc-52 mutations on DTC migrations are distinct from effects on myofilament organization and can be partially suppressed by mutations in several genes encoding growth factor-like molecules, including EGL-17/FGF, UNC-129/TGF-beta, DBL-1/TGF-beta, and EGL-20/WNT. We propose that UNC-52 serves dual roles in C. elegans larval development in the maintenance of muscle structure and the regulation of growth factor-like signaling pathways.  相似文献   

7.
Cyclic adenosine monophosphate (cAMP) has been implicated in the execution of diverse rhythmic behaviors, but how cAMP functions in neurons to generate behavioral outputs remains unclear. During the defecation motor program in C. elegans, a peptide released from the pacemaker (the intestine) rhythmically excites the GABAergic neurons that control enteric muscle contractions by activating a G protein-coupled receptor (GPCR) signaling pathway that is dependent on cAMP. Here, we show that the C. elegans PKA catalytic subunit, KIN-1, is the sole cAMP target in this pathway and that PKA is essential for enteric muscle contractions. Genetic analysis using cell-specific expression of dominant negative or constitutively active PKA transgenes reveals that knockdown of PKA activity in the GABAergic neurons blocks enteric muscle contractions, whereas constitutive PKA activation restores enteric muscle contractions to mutants defective in the peptidergic signaling pathway. Using real-time, in vivo calcium imaging, we find that PKA activity in the GABAergic neurons is essential for the generation of synaptic calcium transients that drive GABA release. In addition, constitutively active PKA increases the duration of calcium transients and causes ectopic calcium transients that can trigger out-of-phase enteric muscle contractions. Finally, we show that the voltage-gated calcium channels UNC-2 and EGL-19, but not CCA-1 function downstream of PKA to promote enteric muscle contractions and rhythmic calcium influx in the GABAergic neurons. Thus, our results suggest that PKA activates neurons during a rhythmic behavior by promoting presynaptic calcium influx through specific voltage-gated calcium channels.  相似文献   

8.
The Caenorhabditis elegans POU protein UNC-86 specifies the HSN motor neurons, which are required for egg-laying, and six mechanosensory neurons. To investigate how UNC-86 controls neuronal specification, we characterized two unc-86 mutants that do not respond to touch but show wild-type egg-laying behavior. Residues P145 and L195, which are altered by these mutations, are located in the POU-specific domain and abolish the physical interaction of UNC-86 with the LIM homeodomain protein, MEC-3. This results in a failure to maintain mec-3 expression and in loss of expression of the mechanosensory neuron-specific gene, mec-2. unc-86-dependent expression of genes in other neurons is not impaired. We conclude that distinct residues in the POU domain of UNC-86 are involved in modulating UNC-86 activity during its specification of different neurons. A structural model of the UNC-86 POU domain, including base pairs and amino acid residues required for MEC-3 interaction, revealed that P145 and L195 are part of a hydrophobic pocket which is similar to the OCA-B-binding domain of the mammalian POU protein, Oct-1.  相似文献   

9.
LeBoeuf B  Garcia LR 《Genetics》2012,190(3):1025-1041
Variations in K(+) channel composition allow for differences in cell excitability and, at an organismal level, provide flexibility to behavioral regulation. When the function of a K(+) channel is disrupted, the remaining K(+) channels might incompletely compensate, manifesting as abnormal organismal behavior. In this study, we explored how different K(+) channels interact to regulate the neuromuscular circuitry used by Caenorhabditis elegans males to protract their copulatory spicules from their tail and insert them into the hermaphrodite's vulva during mating. We determined that the big current K(+) channel (BK)/SLO-1 genetically interacts with ether-a-go-go (EAG)/EGL-2 and EAG-related gene/UNC-103 K(+) channels to control spicule protraction. Through rescue experiments, we show that specific slo-1 isoforms affect spicule protraction. Gene expression studies show that slo-1 and egl-2 expression can be upregulated in a calcium/calmodulin-dependent protein kinase II-dependent manner to compensate for the loss of unc-103 and conversely, unc-103 can partially compensate for the loss of SLO-1 function. In conclusion, an interaction between BK and EAG family K(+) channels produces the muscle excitability levels that regulate the timing of spicule protraction and the success of male mating behavior.  相似文献   

10.
Ion channels of the DEG/ENaC family can induce neurodegeneration under conditions in which they become hyperactivated. The Caenorhabditis elegans DEG/ENaC channel MEC-4(d) encodes a mutant channel with a substitution in the pore domain that causes swelling and death of the six touch neurons in which it is expressed. Dominant mutations in the C. elegans DEG/ENaC channel subunit UNC-8 result in uncoordinated movement. Here we show that this unc-8 movement defect is correlated with the selective death of cholinergic motor neurons in the ventral nerve cord. Experiments in Xenopus laevis ooctyes confirm that these mutant proteins, UNC-8(G387E) and UNC-8(A586T), encode hyperactivated channels that are strongly inhibited by extracellular calcium and magnesium. Reduction of extracellular divalent cations exacerbates UNC-8(G387E) toxicity in oocytes. We suggest that inhibition by extracellular divalent cations limits UNC-8 toxicity and may contribute to the selective death of neurons that express UNC-8 in vivo.  相似文献   

11.
Mutations in the sdn-1/syndecan gene act as genetic enhancers of the ventral-to-dorsal distal tip cell (DTC) migration defects caused by a weak allele of the netrin receptor gene unc-5. The sdn-1(ev697) allele was identified in a genetic screen for enhancers of unc-5 DTC migration defects, and carried a nonsense mutation predicted to truncate the SDN-1 protein prior to the transmembrane domain. The enhancement of unc-5 caused by an sdn-1 mutation was rescued by expression of wild-type sdn-1 in the hypodermis or nervous system rather than the DTCs, indicating a cell non-autonomous function of sdn-1. The enhancement was also partially reversed by mutations in the egl-17/FGF or egl-20/Wnt genes, suggesting that sdn-1 affects UNC-5 function through a mis-regulation of signaling in growth factor pathways. egl-20 reporter constructs exhibited increased and mis-localized EGL-20 distribution in sdn-1 mutants compared to wild-type animals. Finally, using loss of function mutations, we show that egl-17/Fgf and egl-20/Wnt are partially redundant in regulating the migration pattern of the posterior DTC, as double mutants exhibit significant frequencies of defects in migration phases along both the anteroposterior and dorsoventral axes. Together these results suggest that SDN-1 affects UNC-5 function by regulating the proper extracellular distribution of growth factors.  相似文献   

12.
The anthelmintic drug levamisole causes hypercontraction of body wall muscles and lethality in nematode worms. In the nematode Caenorhabditis elegans, a genetic screen for levamisole resistance has identified 12 genes, three of which (unc-38, unc-29, and lev-1) encode nicotinic acetylcholine receptor (nAChR) subunits. Here we describe the molecular and functional characterization of another levamisole-resistant gene, unc-63, encoding a nAChR alpha subunit with a predicted amino acid sequence most similar to that of UNC-38. Like UNC-38 and UNC-29, UNC-63 is expressed in body wall muscles. In addition, UNC-63 is expressed in vulval muscles and neurons. We also show that LEV-1 is expressed in body wall muscle, thus overlapping the cellular localization of UNC-63, UNC-38, and UNC-29 and suggesting possible association in vivo. This is supported by electrophysiological studies on body wall muscle, which demonstrate that a levamisole-sensitive nAChR present at the C. elegans neuromuscular junction requires both UNC-63 and LEV-1 subunits. Thus, at least four subunits, two alpha types (UNC-38 and UNC-63) and two non-alpha types (UNC-29 and LEV-1), can contribute to levamisole-sensitive muscle nAChRs in nematodes.  相似文献   

13.
Hawasli AH  Saifee O  Liu C  Nonet ML  Crowder CM 《Genetics》2004,168(2):831-843
The molecular mechanisms whereby volatile general anesthetics (VAs) disrupt behavior remain undefined. In Caenorhabditis elegans mutations in the gene unc-64, which encodes the presynaptic protein syntaxin 1A, produce large allele-specific differences in VA sensitivity. UNC-64 syntaxin normally functions to mediate fusion of neurotransmitter vesicles with the presynaptic membrane. The precise role of syntaxin in the VA mechanism is as yet unclear, but a variety of results suggests that a protein interacting with syntaxin to regulate neurotransmitter release is essential for VA action in C. elegans. To identify additional proteins that function with syntaxin to control neurotransmitter release and VA action, we screened for suppressors of the phenotypes produced by unc-64 reduction of function. Loss-of-function mutations in slo-1, which encodes a Ca(2+)-activated K+ channel, and in unc-43, which encodes CaM-kinase II, and a gain-of-function mutation in egl-30, which encodes Gqalpha, were isolated as syntaxin suppressors. The slo-1 and egl-30 mutations conferred resistance to VAs, but unc-43 mutations did not. The effects of slo-1 and egl-30 on VA sensitivity can be explained by their actions upstream or parallel to syntaxin to increase the level of excitatory neurotransmitter release. These results strengthen the link between transmitter release and VA action.  相似文献   

14.
UNC-119 function is necessary for the correct development of the Caenorhabditis elegans nervous system. Worms mutant for unc-119 exhibit nervous system structural defects, including supernumerary axon branches, defasciculated nerve fibers, and choice point errors. Axons of both mechanosensory (ALM) and chemo- sensory (ASI) neurons have elongation defects within the nerve ring. Expressing unc-119 cDNA in mechanosensory neurons rescues the elongation defect of ALM axons, but expression in ASI neurons does not rescue ASI axon elongation defects. Neither gross movement nor dauer larva formation defects are rescued in either case. However, expressing a construct including introns under the control of the same promoters results in substantial rescue of phenotypic defects. In these cases reporter expression expands to tissues outside those specified by the promoter, notably into head muscles. Surprisingly, expressing an unc-119 cDNA construct under the control of a muscle-specific promoter fully rescues the dauer formation defect and substantially rescues movement. Thus, although UNC-119 normally acts in a cell-autonomous fashion, the cell-nonautonomous rescue of neural function suggests that it either acts at the cell surface or that it can be transported into the cell from the extracellular environment and play its normal role.  相似文献   

15.
16.
Migraine is an episodic pain disorder whose pathophysiology is related to deficiency of serotonin signaling and abnormal function of the P/Q-type calcium channel, CACNA1A. Because the relationship of the CACNA1A channel to serotonin signaling is unknown and potentially of therapeutic interest we have used genetic analysis of the Caenorhabditis elegans ortholog of this calcium channel, UNC-2, to help identify candidate downstream effectors of the human channel. By genetic dissection of the lethargic mutant phenotype of unc-2, we have established an epistasis pathway showing that UNC-2 function antagonizes a transforming growth factor (TGF)-beta pathway influencing movement rate. This same UNC-2/TGF-beta pathway is required for accumulation of normal serotonin levels and stress-induced modulation of tryptophan hydroxylase (tph) expression in the serotonergic chemosensory ADF neurons, but not the NSM neurons. We also show that transgenic expression of the migraine-associated Ca2+ channel, CACNA1A, in unc-2 animals can functionally substitute for UNC-2 in stress-activated regulation of tph expression. The demonstration that these evolutionarily related channels share a conserved ability to modulate tph expression through their effects on TGF-beta signaling provides the first specific example of how CACNA1A function may influence levels of the critical migraine neurotransmitter serotonin.  相似文献   

17.
Published work has shown that endothelin-1-induced contractility of bovine retinal pericytes is reduced after culture in high concentrations of glucose. The purpose of the present study was to establish the profile of endothelin-1-induced calcium transients in pericytes and to identify changes occurring after culture in high concentrations of glucose. Glucose had no effect on basal levels of cytosolic calcium or on endothelin-1-induced calcium release from intracellular stores. However, influx of calcium from the extracellular medium after endothelin-1 stimulation was reduced in pericytes that had been cultured in 25 mM D-glucose. L-type Ca(2+) currents were identified by patch clamping. The L-type Ca(2+) channel agonist, (-)-Bay K8644, caused less influx of calcium from the extracellular medium in pericytes that had been cultured in 25 mM D-glucose than in those cultured with 5 mM D-glucose. However, 3-O-methylglucose, a nonmetabolizable analogue of glucose which can cause glycation, had similar effects to those of high concentrations of glucose. The results suggest that reduced function of the L-type Ca(2+) channel that occurs in bovine retinal pericytes after culture in high concentrations of D-glucose is probably due to glycation of a channel protein.  相似文献   

18.
R Y Lee  L Lobel  M Hengartner  H R Horvitz    L Avery 《The EMBO journal》1997,16(20):6066-6076
The control of excitable cell action potentials is central to animal behavior. We show that the egl-19 gene plays a pivotal role in regulating muscle excitation and contraction in the nematode Caenorhabditis elegans and encodes the alphal subunit of a homologue of vertebrate L-type voltage-activated Ca2+ channels. Semi-dominant, gain-of-function mutations in egl-19 cause myotonia: mutant muscle action potentials are prolonged and the relaxation delayed. Partial loss-of-function mutations cause slow muscle depolarization and feeble contraction. The most severe loss-of-function mutants lack muscle contraction and die as embryos. We localized two myotonic mutations in the sixth membrane-spanning domain of the first repeat (IS6) region, which has been shown to be responsible for voltage-dependent inactivation. A third myotonic mutation implicates IIIS4, a region involved in sensing plasma-membrane voltage change, in the inactivation process.  相似文献   

19.
20.
Zhang W  Segura BJ  Mulholland MW 《Peptides》2002,23(10):1793-1801
The responsiveness of cultured myenteric neurons to cholecystokinin (CCK-8) was examined using fura-2-based digital microfluorimetric measurement of intracellular calcium ([Ca(2+)](i)). CCK-8 (10(-10)-10(-6)M) evoked concentration-dependent increases in percentage of neurons responding (8-52%) and delta[Ca(2+)](i) (76-169 nM). Gastrin (1 microM) also induced an increase in [Ca(2+)](i) in 29+/-6% of neurons (delta[Ca(2+)](i): 71+/-3 nM). L-364,718, an antagonist for the CCK-A receptor, blocked [Ca(2+)](i) response to CCK-8. Removal of extracellular calcium eliminated CCK-induced [Ca(2+)](i) increments, as did the addition of the calcium channel inhibitors nickel (1mM) and lanthanum (5mM). Nifedipine (1-50 microM) dose-dependently attenuated CCK-caused [Ca(2+)](i) responses. CCK evokes [Ca(2+)](i) signaling in myenteric neurons by the influx of extracellular calcium, likely through L-type calcium channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号