首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sporocysts from the protozoan parasite, Eimeria tenella, were isolated, preincubated with sodium taurocholate, and treated with various preparations of pancreatic enzymes. Crude trypsin, crude lipase, and purified alpha-chymotrypsin all could break the shells of sporocysts and release sporozoites. Purified trypsin was much less active than crude trypsin and purified lipase showed no activity at all. Specific inhibitors of chymotrypsin, tosyl-L-phenylalanyl chloromethane, diphenylcarbamyl chloride, and chymostatin inhibited the release of sporozoites by all the enzyme samples, whereas tosyl-L-lysyl chloromethane, a specific inhibitor of trypsin, exerted no inhibitory effect. It is thus postulated that chymotrypsin, not trypsin, is an essential enzyme involved in excystation of E. tenella. Purified chymotrypsin is recommended to replace crude trypsin in the vitro excystation of E. tenella as a likely improved procedure.  相似文献   

2.
A trypsin and chymotrypsin inhibitor was partially purified from Bauhenia purpurea seeds and separated from a second inhibitor by Ecteola cellulose chromatography. The factor inhibited bovine trypsin and chymotrypsin as well as pronase trypsin and elastase. It formed a complex with trypsin and with chymotrypsin, but a ternary complex could not be detected. Differences were detected in the effect on trypsin and on chymotrypsin, although one enzyme interfered with the inhibition of the other. The results obtained point to two active centers on the inhibitor for the trypsin and chymotrypsin inhibition such that the one cannot complex with the inhibitor after this inhibitor had complexed with the other.  相似文献   

3.
1. A trypsin and chymotrypsin inhibitor was isolated by extraction of chick-pea meal at pH8.3, followed by (NH4)2SO4 precipitation and successive column chromatography on CM-cellulose and calcium phosphate (hydroxyapatite). 2. The inhibitor was pure by polyacrylamide-gel and cellulose acetate electrophoresis and by isoelectric focusing in polyacrylamide gels. 3. The inhibitor had a molecular weight of approx. 10000 as determined by ultracentrifugation and by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate. A molecular weight of 8300 was resolved from its amino acid composition. 4. The inhibitor formed complexes with trypsin and chymotrypsin at molar ratios of 1:1. 5. Limited proteolysis of the inhibitor with trypsin at pH3.75 resulted in hydrolysis of a single-Lys-X-bond and in consequent loss of 85% of the trypsin inhibitory activity and 60% of the chymotrypsin inhibitory activity. Limited proteolysis of the inhibitor with chymotrypsin at pH3.75 resulted in hydrolysis of a single-Tyr-X-bond and in consequent loss of 70% of the trypsin inhibitory activity and in complete loss of the chymotrypsin inhibitory activity. 6. Cleavage of the inhibitor with CNBr followed by pepsin and consequent separation of the products on a Bio Gel P-10 column, yielded two active fragments, A and B. Fragment A inhibited trypsin but not chymotrypsin, and fragment B inhibited chymotrypsin but not trypsin. The specific trypsin inhibitory activity, on a molar ratio, of fragment A was twice that of the native inhibitor, suggesting the unmasking of another trypsin inhibitory site as a result of the cleavage. On the other hand, the specific chymotrypsin inhibitory activity of fragment B was about one-half of that of the native inhibitor, indicating the occurrence of a possible conformational change.  相似文献   

4.
The reactive-site sequence of a proteinase inhibitor can be written as . . . -P3-P2-P1-P'1-P'2-P'3- . . . , where-P1-P'1-denotes the reactive site. Three semisynthetic homologues have been synthesized of the bovine trypsin-kallikrein inhibitor (Kunitz) with either arginine, phenylalanine or tryptophan in place of the reactive-site residue P1, lysine-15. These homologues correspond to gene products after mutation of the lysine 15 DNA codon to an arginine, phenylalanine or tryptophan DNA codon. Starting from native (virgin) inhibitor, reactive-site hydrolyzed, still active (modified) inhibitor was prepared by chemical and enzymic reactions. Modified inhibitor was then converted into inactive des-Lys15-inhibitor by reaction with carboxypeptidase B. Inactive des-Lys15-inhibitor was reactivated by enzymic replacement of the P1 residue according to Leary and Laskowski, Jr. The introduction of arginine was catalyzed by an inverse reaction with carboxypeptidase B, while phenylalanine or tryptophan were replaced by carboxypeptidase A. The reactivated semisynthetic inhibitors were trapped by complex formation with either trypsin or chymotrypsin. The enzyme - inhibitor complexes were subjected to kinetic-control dissociation, and the semisynthetic virgin inhibitors were isolated. The inhibitory properties of the semisynthetic inhibitors have been investigated against bovine trypsin and chymotrypsin and against porcine pancreatic kallikrein and plasmin. The homologues with either lysine or arginine in the P1 position are equally good inhibitors of trypsin, plasmin and kallikrein. The Arg-15-homologue is a slightly more effective kallikrein inhibitor than the Lys15-inhibitor. The semisynthetic phenylalanine and tryptophan homologues, however, are weak inhibitors of trypsin and still weaker inhibitors of kallikrein, but are excellent inhibitors of chymotrypsin. Their association constant with chymotrypsin is at least ten times higher than that of native Lys-15-inhibitor. A dramatic specificity change is observed with the phenylalanine and tryptophan homologues, which in contrast to the native inhibitor do not at all inhibit porcine plasmin. Thus, the nature of the P1 residue strongly influences the primary inhibitory specificity of the bovine inhibitor (Kunitz).  相似文献   

5.
1. Acid-inactivated yeast invertase could not be regenerated in the presence of the proteolytic enzymes trypsin, pepsin, and chymotrypsin. 2. Certain foreign proteins of non-enzymatic nature partially inhibited the reactivation of acid-inactivated invertase. 3. Certain proteins as gelatin, lacto-globulin, and carbohydrate-free horse crystalbumin did not prevent the reactivation of invertase at all. 4. Highly purified reactivated invertase was shown to exhibit an effect typical of original native invertase; that is, acceleration of its activity in presence of foreign protein at pH 3.0. 5. Native invertase was not digested by trypsin and chymotrypsin. 6. The addition of trypsin and chymotrypsin to reactivating invertase did not affect the invertase which had already reverted to the active form, but prevented further reactivation of inactive invertase.  相似文献   

6.
Biphasic kinetic data were obtained when trypsin (EC 3.4.21.4) which had previously been complexed with a thiol-containing inhibitor (present in Ehrlich ascites tumour cells) was incubated with incremental additions of periodate. At low concentrations of periodate the trypsin was re-activated whilst at higher concentrations of periodate the trypsin was irreversibly inhibited. This biphasic reactivation followed by inhibition was also demonstrated when trypsin was first inhibited by dithiothreitol and followed by incremental addition of periodate. Similar results were obtained with chymotrypsin (EC 3.4.21.1). Incremental additions of either dithiothreitol or periodate caused inhibition of both these enzymes. The biphasic kinetic data can be explained in terms of reduction and oxidation of a significant disulphide bond in both trypsin and chymotrypsin which can be cleaved by thiols in a disulphide exchange reaction [1]. This bond is thought to maintain the active centres of each of these enzymes in a conformation sterically favourable for enzymic cleavage of specific peptide bonds in the protein substrates (polymeric collagen fibrils and casein) employed in this study.  相似文献   

7.
A Kunitz proteinase inhibitor from Archidendron ellipticum seeds (AeTI) was purified and complexed with bovine trypsin and chymotrypsin. The stoichiometric stability of AeTI with its interacting proteinases was then investigated using spectrophotometric, size exclusion chromatography (HPLC system), Western blotting and circular dichroism (CD) studies. All the methods were remarkably similar in revealing the preference of trypsin over chymotrypsin by AeTI for complex formation. Both Western blotting as well as spectrophotometry based assays for competition experiments indicated that trypsin displaces chymotrypsin from a previously formed AeTI-chymotrypsin complex. Chemical modification of lysine and arginine by TNBS and CHD treatments, respectively, suggested a lysine as the active site residue and also indicated the presence of a single protease-binding site for AeTI. CD of native AeTI showed a sharp minimum at 200 nm and deconvolution of the CD spectra revealed it to be an unordered protein possessing high beta-sheet content. Complex formation of AeTI with trypsin induces a fractional switchover of its unordered structure towards the beta-sheet fraction but lacked any such conversion in the presence of chymotrypsin. Prolonged exposure of excess trypsin generates conformational modifications both in the secondary and the tertiary structures.  相似文献   

8.
The trypsin inhibitor fraction from cowpea (Vigna unguiculata) has been purified and characterized. Although the total trypsin inhibitor as purified by affinity chromatography on immobilised trypsin was shown to be heterogeneous by gel electrophoresis and isoelectric focusing as well as by function, it was relatively homogeneous in MW (ca 17 000) on gel filtration. The total trypsin inhibitor was divided into inhibitors active against trypsin only and active against trypsin and chymotrypsin by affinity chromatography on immobilised chymotrypsin. The ‘trypsin-only’ inhibitor was the major component of the total trypsin inhibitor. It was shown by isoelectric focusing and gel electrophoresis to contain several isoinhibitors. Determination of the combining weight of this inhibitor and investigation of the complexes formed with trypsin by gel filtration indicated the presence of two protease binding sites per inhibitor molecule. The chymotrypsin/trypsin inhibitor was also shown to be composed of several isoinhibitors. On the basis of gel electrophoresis and gel filtration in dissociating and non-dissociating media both inhibitors were considered to be dimeric molecules with the subunits linked by disulphide bonds; this implies that the ‘trypsin-only’ inhibitor has one binding site per subunit.  相似文献   

9.
1. The results of this study indicates that the binding of insulin to brain plasma membranes activates a membrane protease which, by a trypsin like mechanism, produces a soluble factor that modulates the PDH behaviour when added to brain mitochondria. 2. The supernatant from brain plasma membranes incubated with 0.5 mg/ml trypsin added to mitochondria increases PDH activity levels and cancels PDH inhibition by NaF, as has already been seen when the plasma membranes are incubated with 25 microU/ml insulin. No such effects are obtained when the incubation is run out with 0.5 mg/ml chymotrypsin. 3. The supernatants from insulin or trypsin treated plasma membranes retain their activating properties on mitochondrial PDH also after dansylation; from these preparations a dansylated active on PDH material was separated by monodimensional chromatography on HPTLC silica Gel plates, using chloroform/1-butanol (93:7 v/v) as a solvent. 4. Insulin incubation of plasma membranes pretreated with protease inhibitors (leupeptin, phenylmethylsulfonylfluoride) or with exogenous trypsin, but not chymotrypsin substrates (esters of arginine and tyrosine) yields an inactive supernatant on PDH. 5. Insulin treated plasma membrane supernatants lose all stimulating properties on PDH after incubation for 1 hr with 2 mg/ml trypsin or chymotrypsin.  相似文献   

10.
1. p-Nitrophenyl N(2)-acetyl-N(1)-benzylcarbazate (NPABC) was synthesized and shown to acylate alpha-chymotrypsin stoicheiometrically; reaction at 25 degrees occurs almost instantaneously at pH7.04 and within 2min. at pH5.04 and there is no observable turnover during 10min. 2. The absolute molarity of solutions of alpha-chymotrypsin can be determined by spectrophotometric measurement of the p-nitrophenol liberated during the acylation step; the results obtained at pH5.04 and pH7.04 agree with one another and with those determined by the method of Erlanger & Edel (1964). 3. Trypsin reacts stoicheiometrically, but more slowly than alpha-chymotrypsin, with NPABC, and it, like chymotrypsin, can be spectrophotometrically titrated at pH7.04. At pH5.04, however, reaction between trypsin and NPABC is sufficiently slow for the reagent to be nearly specific for alpha-chymotrypsin. Specificity for one or other enzyme can be ensured by using soya-bean trypsin inhibitor or the chymotrypsin inhibitor l-1-chloro-3-toluene-p-sulphonamido-4-phenylbutan-2-one. Bovine thrombin does not react with NPABC. 4. Evidence is presented that indicates that acylation of alpha-chymotrypsin and trypsin by NPABC occurs at the active centres of the enzymes. 5. Evidence was obtained that indicates that one or more tryptophan residues move into a more hydrophobic environment when alpha-chymotrypsin and trypsin are acylated by NPABC.  相似文献   

11.
The endocannabinoid system regulates a wide range of physiological processes including pain, inflammation, and cognitive/emotional states. URB597 is one of the best characterized covalent inhibitors of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH). Here, we report the structure of the FAAH-URB597 complex at 2.3 Å resolution. The structure provides insights into mechanistic details of enzyme inactivation and experimental evidence of a previously uncharacterized active site water molecule that likely is involved in substrate deacylation. This water molecule is part of an extensive hydrogen-bonding network and is coordinated indirectly to residues lining the cytosolic port of the enzyme. In order to corroborate our hypothesis concerning the role of this water molecule in FAAH's catalytic mechanism, we determined the structure of FAAH conjugated to a urea-based inhibitor, PF-3845, to a higher resolution (2.4 Å) than previously reported. The higher-resolution structure confirms the presence of the water molecule in a virtually identical location in the active site. Examination of the structures of serine hydrolases that are non-homologous to FAAH, such as elastase, trypsin, or chymotrypsin, shows a similarly positioned hydrolytic water molecule and suggests a functional convergence between the amidase signature enzymes and serine proteases.  相似文献   

12.
Serine protease inhibitors in extracts from three North American leeches, Nephelopsis obscura, Erpobdella punctata and Hemopis marmorata have been separated by anion exchange chromatography and the activity pattern against human granulocyte elastase and porcine chymotrypsin and trypsin determined. All three leech species contained a major peak with anti-trypsin activity, but Hemopis was unique in that the trypsin inhibitor was equally active against chymotrypsin. Nephelopsis was rich in anti-elastase activity of two types, one which was also active against chymotrypsin, and one which was a specific elastase inhibitor. Erpobdella contained inhibitors against elastase and chymotrypsin but with major activity against the latter.  相似文献   

13.
5-Dimethylaminonaphthalene-1-sulfonyl fluoride was evaluated as a reagent for the selective labeling of proteins. In a comparative study with Dns-chloride a greatly increased selectivity of the fluoride was found with a number of proteins. The reaction of Dns-fluoride with alpha-chymotrypsin, subtilisin Carlsberg and trypsin was found to be highly specific, resulting in a stoichiometric incorporation of the Dns label with concomitant loss of enzymatic activity. The reaction of Dns-chloride with the same proteinases is unspecific. Evidence was obtained to indicate that reaction of the serine esterases with Dns-fluoride occurs exclusively at the active serine residue. The stability of Dns-fluoride labeled chymotrypsin was investigated. The conjugate was found to be fairly stable in the pH range from 3 to 9 at 25 degrees C and is therefore suitable for fluorescence investigations of the chymotrypsin active-site. Molar extinction coefficients for Dns-labeled serine proteinases were determined using radiocative label.  相似文献   

14.
Arginine residues (5.5 out of 6) of the trypsin-kallikrein inhibitor from bovine organs (Kunitz inhibitor) were selectively modified by reaction with 1, 2-cyclohexanedione in sodium borate buffer, pH 9.0. The modified inhibitor is still highly active in inhibiting trypsin and chymotrypsin at 1:1 inhibitor: enzyme molar ratio and full inhibition was achieved at slightly higher molar ratio. The extent of correct refolding, upon reoxidation, of the reduced, arginine-modified inhibitor is diminished and regeneration of two arginines occurred under the reduction conditions. The stability constants and the standard-free energies of binding of the complexes between trypsin, or chymotrypsin, and the native, the arginine-modified and the reduced and reoxidized arginine-modified inhibitor have been determined from inhibitory assays.  相似文献   

15.
Equilibrium measurements of the binding of reactive-site-cleaved (modified) bovine trypsin-kallikrein inhibitor (Kunitz) to alpha-chymotrypsin and beta-trypsin show a stoichiometric 1:1 association with high binding constants. At least in the case of chymotrypsin much evidence is presented that the reaction with modified inhibitor leads to the same complex as the reaction with virgin inhibitor does. The association rate constant of modified inhibitor with chymotrypsin at pH 7, 22.5 degrees C is 15.8 M-1 S-1. This is about 2 x 10(4) times slower than the binding of virgin inhibitor to that enzyme. In the analogous reaction of modified inhibitor with beta-trypsin, however, the association rate constant (1.2 x 10(4) M-1 s-1 at pH 6.9, 22.5 degrees C) is of about the same order of magnitude as it is in the reaction of virgin inhibitor and trypsin. These and analogous phenomena observed in the reactions of virgin and modified soybean trypsin inhibitor (Kunitz) with alpha-chymotrypsin and beta-trypsin suggest that the specificity of both inhibitors to trypsin is strongly reflected in the association rate constants of the modified forms. The dissociation rate constants of the complexes of trypsin-kallikrein inhibitor with chymotrypsin or with trypsin towards the modified inhibitor are estimated to be unmeasurably slow (half-life times of 45 or 1.5 x 10(4) years, respectively).  相似文献   

16.
We have characterized a Kazal family serine protease inhibitor, Toxoplasma gondii protease inhibitor 1 (TgPI-1), in the obligate intracellular parasite Toxoplasma gondii. TgPI-1 contains four inhibitor domains predicted to inhibit trypsin, chymotrypsin, and elastase. Antibodies against recombinant TgPI-1 detect two polypeptides, of 43 and 41 kDa, designated TgPI-1(43) and TgPI-1(41), in tachyzoites, bradyzoites, and sporozoites. TgPI-1(43) and TgPI-1(41) are secreted constitutively from dense granules into the excreted/secreted antigen fraction as well as the parasitophorous vacuole that T. gondii occupies during intracellular replication. Recombinant TgPI-1 inhibits trypsin, chymotrypsin, pancreatic elastase, and neutrophil elastase. Immunoprecipitation studies with anti-rTgPI-1 antibodies reveal that recombinant TgPI-1 forms a complex with trypsin that is dependent on interactions with the active site of the protease. TgPI-1 is the first anti-trypsin/chymotrypsin inhibitor to be identified in bradyzoites and sporozoites, stages of the parasite that would be exposed to proteolytic enzymes in the digestive tract of the host.  相似文献   

17.
Two major forms of rabbit plasma alpha-1-antiproteinase, S and F, were separated by affinity chromatography on Red Sepharose, and their modes of interaction with porcine trypsin were studied. The S form interacted with trypsin much more slowly than the F form, and the resulting complex partially retained the amidolytic and proteolytic activities towards benzoyl-L-arginine p-nitroanilide and remazol brilliant blue hide powder, respectively. This S form-trypsin complex also prevented the inactivation of bound trypsin by soybean trypsin inhibitor. In marked contrast, an equimolar complex of trypsin and the F form retained neither amidolytic nor proteolytic activity. These results suggest that the F form blocks the active site of trypsin while the S form does not bind directly to the active site, thereby preserving the catalytic potential of trypsin. No similar interaction was observed, however, between the S form and either bovine chymotrypsin or porcine pancreatic elastase. Both the S and F forms inactivated these proteinases in a stoichiometric manner with differing inhibitor/proteinase binding ratios. The S form showed about twofold greater capacity to inhibit elastase than the F form, whereas the reverse was the case for chymotrypsin.  相似文献   

18.
The steady-state kinetics of plasmin (EC 3.4.21.7) catalysed reactions with some alpha-N-benzoyl-L-arginine compounds is investigated in the pH range 5.8--9.0. The results are interpreted in terms of a three-step mechanism, which involves enzyme-substrate complex formation, followed by acylation and deacylation of the enzyme. Alpha-N-Benzoyl-L-arginine methyl ester and ethyl ester show the same pH behaviour. The kinetic parameter kc/Km is influenced by two groups with pK values of 6.5 and 8.4, respectively. kc is affected only by the group with pK equal to 6.5 and Km only by the group with pK equal to 8.4. It is suggested that the group with pK equal to 6.5 is the 1-chloro-3-tosyl-amido-7-amino-2-heptanone-sensitive histidine residue in the active site and that the group with pK equal to 8.4 is perhaps the alpha-amino group of the N-terminus in analogy to trypsin and chymotrypsin. alpha-N-Benzoyl-L-arginine amide is not hydrolysed by plasmin, but proves to be a competitive inhibitor, Ki = 12.8 +/- 1.8 mM, pH = 7.8. Also the product alpha-N-benzoyl-L-arginine is a competitive inhibitor, Ki = 26 +/- 3.1 mM, pH = 7.8. Estimates of individual rate constants are compared with similar trypsin data.  相似文献   

19.
The interaction of alpha1-antitrypsin with trypsin and chymotrypsin has been investigated by protease activity assays, by electrophoretic analysis, by CD and absorption difference spectra, and by gel filtration of reaction mixtures containing excess inhibitor or excess protease. When alpha1-antitrypsin is present in excess, only one stable inhibitor - protease complex is formed. In the presence of excess protease, however, this primary complex is degraded relatively rapidly to one or more secondary complexes. These latter conversions are more pronounced in the case of the antititrypsin-chymotrypsin system. The greater lability of the antitrypsin-chymotrypsin system is evidenced by the relatively rapid release of inactive chymotrypsin from the secondary antitrypsin - chymotrypsin complex. Only minimal amounts of active protease were released from the complexes on the addition of excess protease and one protease could not displace the other from the complex, although competition experiments showed that chymotrypsin reacted more rapidly with the inhibitor than trypsin.  相似文献   

20.
Resorufin acetate is shown to be an attractive substrate to use with chymotrypsin since the absorbance of the product is several times more intense than that formed by the widely usedp-nitrophenyl acetate. Furthermore, under the right conditions, resorufin acetate allows convenient observation of the burst reaction by conventional spectrophotometry. The steady-statekcatvalues for chymotrypsin-catalyzed hydrolysis of resorufin acetate andp-nitrophenyl acetate are virtually the same, as expected for a rate-limiting deacylation step involving an identical intermediate from both substrates. Stopped-flow studies show that the maximal bursts of product from both substrates are again (in molar terms) about the same. When chymotrypsin is presented with a mixture of both substrates, the monitoring of reaction with resorufin acetate (at 571 nm) is not interfered with by simultaneous hydrolysis ofp-nitrophenyl acetate. Under these conditions,p-nitrophenyl acetate is shown to increase the burst rate constant for acylation of the enzyme by resorufin acetate, demonstrating unequivocally thatp-nitrophenyl acetate can bind to chymotrypsin elsewhere than in the active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号