首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deterioration of Golgi impregnation begins immediately after impregnated tissue blocks are sectioned with the Vibratome. The first signs of deterioration are fading of delicate impregnated processes, the disruption and fragmentation of dendrites, and, eventually, fading of entire neurons. These changes can be prevented by stabilization, i.e., by converting the water soluble silver chromate Golgi precipitate into metallic silver or by replacing the silver with some other dense, insoluble material. A technique is described using photographic developers to treat Vibratome sections containing Golgi-rapid or Golgi-Kopsch impregnated CNS neurons. In this way part of the silver chromate Golgi precipitate is reduced to metallic silver, and the remaining silver chromate is then removed with sodium thiosulfate. Of the various developers tested, Kodalith and Elon-ascorbic acid gave the best results, with excellent stabilization of the most delicate stuctures, such as the stalks of dendritic spines and finely woven axonal plexuses. Treatment with other developers (HC-110, Neutol, D-19, D-76, D-163, Kodak Universal, Rodinal, Atomal, Diafine, Eukobrom, Microdol-X) resulted in stabilization ranging from good to poor. Good stabilization of Golgi impregnation could also be achieved by first exposing the sections to sodium bromide (bromide substitution) followed by treatment with D-19, Kodalith, Elon-ascorbic acid or HC-110. After stabilization, the sections can be counterstained with aqueous cresyl violet or with alcoholic thionin without degradation of the stabilized Golgi image. The countentain permits exact determination of the position of impregnated neurons in cortical layers or subcortical nuclei.  相似文献   

2.
The silver chromate precipitate present in neurons impregnated according to the Golgi-rapid and Golgi-Kopsch procedures can be stabilized by treatment with a photographic developer. In a complementary light microscopic study the stabilizing properties of various photographic developers were tested. Kodalith, Elon-ascorbic acid, HC-110, D-19 and Neutol proved to be the most successful. In the present electron microscopic study, we studied the distribution, shape and size of the particles found in Golgi-rapid and Golgi-Kopsch-impregnated neurons by treatment with each of these developers and, simultaneously, the effect of the developer on the preservation of the ultrastructural details. The reaction product after developer-treatment of Golgi-rapid material is sufficiently stable to withstand embedding and thin sectioning, whereas in Golgi-Kopsch material additional gold chloride “Honing” is necessary. In Golgi-impregnated, Kodalith-, Elon-ascorbic acid-, or HC-110-treated material the formed particles are small and located in the cytoplasm, limited by the plasma membranes of the impregnated profiles. In Golgi-impregnated, D-19 treated neurons, the formed particles are relatively coarse. The majority of these particles are within cytoplasm, but particles may also lie either across or entirely outside the plasma membranes of the impregnated profiles. A large number of the small particles in Golgi impregnated, Neutol-stabilized neurons can be seen partly or entirely outside the plasma membranes of the impregnated profiles. Good original ultrastructural preservation seems to be unaffected by developer treatment. Treatment of Golgi material with sodium bromide before stabilization (bromide substitution) results in the formation of small silver particles both inside and outside the impregnated profiles. The sodium bromide step of this procedure has an adverse effect on the preservation of ultrastructural detail.  相似文献   

3.
The silver chromate precipitate present in neurons impregnated according to the Golgi-rapid and Golgi-Kopsch procedures can be stabilized by treatment with a photographic developer. In a complementary light microscopic study the stabilizing properties of various photographic developers were tested. Kodalith, Elon-ascorbic acid, HC-110, D-19 and Neutol proved to be the most successful. In the present electron microscopic study, we studied the distribution, shape and size of the particles found in Golgi-rapid and Golgi-Kopsch-impregnated neurons by treatment with each of these developers and, simultaneously, the effect of the developer on the preservation of the ultrastructural details. The reaction product after developer-treatment of Golgi-rapid material is sufficiently stable to withstand embedding and thin sectioning, whereas in Golgi-Kopsch material additional gold chloride "toning" is necessary. In Golgi-impregnated, Kodalith-, Elon-ascorbic acid-, or HC-110-treated material the formed particles are small and located in the cytoplasm, limited by the plasma membranes of the impregnated profiles. In Golgi-impregnated, D-19 treated neurons, the formed particles are relatively coarse. The majority of these particles are within cytoplasm, but particles may also lie either across or entirely outside the plasma membranes of the impregnated profiles. A large number of the small particles in Golgi impregnated, Neutol-stabilized neurons can be seen partly or entirely outside the plasma membranes of the impregnated profiles. Good original ultrastructural preservation seems to be unaffected by developer treatment. Treatment of Golgi material with sodium bromide before stabilization (bromide substitution) results in the formation of small silver particles both inside and outside the impregnated profiles. The sodium bromide step of this procedure has an adverse effect on the preservation of ultrastructural detail.  相似文献   

4.
Blocks of neural tissue were processed by a modified Golgi-Kopsch procedure and by the rapid Golgi method. Following the impregnation, the blocks were embedded in celloidin, sectioned at 100 micrometer, and collected in 70% alcohol. The sections were then processed as follows: 1) rinsed in distilled water; 2) substituted with 0.4M sodium bromide for five minutes; 3) reduced in Kodak D-19 developer; and 4) treated in 0.5M sodium thiosulfate. The silver chromate deposits within the impregnated cells are converted successively to silver bromide and to reduced silver by this procedure. Sections so treated resist decomposition of the Golgi impregnation, and they may be counterstained with conventional aqueous cresyl violet to demonstrate the cytoarchitecture of the Golgi-impregnated tissue.  相似文献   

5.
Blocks of neural tissue were processed by a modified Golgi-Kopsch procedure and by the rapid Golgi method. Following the impregnation, the blocks were embedded in celloidin, sectioned at 100μm, and collected in 70% alcohol. The sections were then processed as follows: 1) rinsed in distilled water; 2) substituted with 0.4M sodium bromide for five minutes; 3) reduced in Kodak D-19 developer; and 4) treated in 0.5M sodium thiosulfate. The silver chromate deposits within the impregnated cells are converted successively to silver bromide and to reduced silver by this procedure. Sections so treated resist decomposition of the Golgi impregnation, and they may be counterstained with conventional aqueous cresyl violet to demonstrate the cytoarchitecture of the Golgi-impregnated tissue.  相似文献   

6.
Summary Golgi preparations were made by consecutive treatment of formalin-fixed brain and liver with potassium dichromate and silver nitrate. Impregnated tissue dissected from thin slices of the blocks were studied by X-ray powder diffraction methods, in a diffractometer and a Guinier camera. Such tissue proved to contain crystalline silver chromate, Ag2CrO4, both while still in the silver nitrate solution and after dehydration in ethanol and clearing in xylene and xylene-Dammar resin. No other compounds containing chromium or silver were detectable. Formalin-fixed tissue merely treated with silver nitrate contained silver chloride, but in impregnated tissue the amount was too scarce to be visible. Hence, silver chloride was no integral part of the Golgi precipitate.A number of mostly ethereal oils traditionally used for clearing histological sections, did not cause the appearance of metallic silver in detectable amount in the Golgi preparations. However, after treatment with clove oil and creosote metallic silver was detected in the tissue.This study was supported by U.S. P.H. S. Grant NS 07998. This aid is gratefully acknowledged.We are indebted to Miss I. Madsen and Mrs. K. Sörensen for technical assistance.  相似文献   

7.
B Kopriwa 《Histochemistry》1975,44(3):201-224
Fine grain development for electron microscopic radioautography was investigated with two types of radioactive specimens: sections of tritiated methacrylate, which provide a homogeneously labeled source for quantitative evaluation of the radioautographic reaction, and sections of 125I-labeled thyroid. Radioautographs were prepared with Ilford L4, Sakura NR-H2, Agfa-Gevaert NUC 307 or Kodak NTE emulsions. The radioautographs were developed with one of several "solution physical" development procedures (Agfa-Gevaert, phenidone-ascorbic acid, p-phenylenediamine developers) or with arrested "direct" developments (D-19b, Elon-ascorbic acid developers). By arresting each development at an early stage of the reaction and at progressively longer time intervals, it was possible to examine the sequence of shapes in the growth of developed silver deposits for each emulsion-development combination. Thus, conditions which resulted in the development of small, round, compact silver deposits were defined for each emulsion. These developments were used in conjuction with gold latensification, a treatment which increases the sensitivity of the emulsions and thus compensates for the lowered sensitivity of fine grain development procedures. The location of the silver deposits in relation to the silver bromide crystals from which they derive was investigated. The emulsion gelatin surrounding the crystals was stained whereas the spaces, which remained after the crystals were dissolved in the photographic fixer, appeared transparent. This analysis permitted the selection of development procedures in which the single or multiple round silver deposits originating from a single crystal will remain within or on the boundary of this crystal. By this method, quantitation of radioautographic reactions composed of small, round silver deposits was studied by using the uniformly labeled 3H-methacrylate sections as a standard source of radiation. The conditions under which grain counting is feasible are discussed.  相似文献   

8.
Summary Golgi impregnation of nerve tissue can be obtained by soaking the tissue in a solution of potassium dichromate followed by a solution of mercurous or mercuric nitrate. The precipitate formed in each of these two methods has been identified. Samples of impregnated tissues were ground and examined with X-ray powder diffraction and the patterns of spacings compared both with the values of international tables (the ASTM index) and with the results of X-ray studies of substances prepared by ourselves and subjected to quantitative chemical analysis. It was found that impregnated blocks contained mercurous chromate, Hg2CrO4, after mercurous nitrate treatment, and mercuric oxide chromate, Hg3O2CrO4, after mercuric nitrate treatment. Selected area electron diffraction of ultrathin sections through impregnated nervous structures (embedded in epoxy resin) showed these to contain the substances demonstrated by X-ray analysis of whole tissue.This study was supported by U. S. P. H. S. Grant NS 07998. This aid is gratefully acknowedged. We are indebted to Mrs. E. Clausen, Mrs. K. Kirkholt, Mr. A. Meier and Mrs. K. Sörensen for technical assistance.Institute of Geology, Aarhus University, Aarhus, Denmark.We are indebted to him for the possibility of basing some of our studies on his results.  相似文献   

9.
The Golgi silver impregnation technique is a simple histological procedure that reveals complete three-dimensional neuron morphology. This method is based in the formation of opaque intracellular deposits of silver chromate obtained by the reaction between potassium dichromate and silver nitrate (black reaction). Camillo Golgi, its discoverer, and Santiago Ramón y Cajal its main exponent, shared the Nobel Prize of Medicine and Physiology in 1906 for their contribution to the knowledge of the nervous system structure, Their successes were largely due to the application of the silver impregnation method. However, Golgi and Cajal had different views on the structure of nervous tissue. According to the Reticular Theory, defended by Golgi, the nervous system was formed by a network of cells connected via axons within a syncytium. In contrast, Cajal defended the Neuron Doctrine which maintained that the neurons were independent cells. In addition, Golgi had used a variant of his "black reaction" to discover the cellular organelle that became known as the Golgi apparatus. Electron microscopy studies confirmed the postulates of the Neuron Doctrine as well as the existence of the Golgi complex and contributed to a resurgence of use of the Golgi stain. Although modern methods of intracellular staining reveal excellent images of neuron morphology, the Golgi technique is an easier and less expensive method for the study of normal and pathological morphology of neurons.  相似文献   

10.
Neurons of the substantia nigra show severe morphological changes in Parkinson's disease. Pathological alterations of cell bodies have been described, whereas those of neuronal processes have hardly been investigated. Golgi impregnation has been the chosen method for demonstrating neuronal processes and dendritic and somatic spines. We therefore used the Golgi-Braitenberg method to qualitatively and semi-quantitatively study the substantia nigra of eight patients with Parkinson's disease compared with eight control cases. Golgi impregnation of substantia nigra neurons was good in all control cases. In full agreement with the analysis of Braak and Braak (1986) three neuronal types within the substantia nigra were found. In cases of Parkinson's disease, severe pathological changes such as decrease of dendritic length, loss of dendritic spines and several types of dendritic varicosities were found only in the melanin-containing pars compacta neurons. Pars reticulata nerve cells were intact. These findings support the predominant role played by the dopaminergic efferent pathway in the degenerative process. The afferent pathway was not affected. This suggests that the substantia nigra lesion is primary in Parkinson's disease. Loss of neurons found in H & E sections corresponded to a lesser amount of impregnated pars compacta neurons in cases with Parkinson's disease when compared to controls. Evidences exist that the duration of the disease may be related to the extent of pathologically altered Golgi-impregnated pars compacta cells. The amount of Lewy bodies in H & E sections corresponded to the quantity of round varicosities in impregnated pars compacta neurons. These round dendritic varicosities were considered to be Lewy body inclusions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Summary After application of a rapid, selective silver impregnation procedure for light (LM) and electron (EM) microscopy, individual neurons are distinguishable by a light silver precipitation. The silver content is sufficient that entire nerve cells can be observed light microscopically; on the other hand, electron microscopically the cytological details are still visible. Brains of mice were fixed by phosphate-buffered aldehyde perfusion, and pieces of tissue left in a 1 % K2Cr2O7 solution for 13 h before impregnation in a 0.5 % AgNO3 solution for 2h. Thick sections (30–50 m) of the impregnated tissue were cut; from these sections, suitably stained neurons were dissected out and re-embedded for ultrathin sectioning, thereby allowing observations on the same neurons at the EM level. A thin silver deposit was observed along the delimiting neuronal membrane, the microtubules and the smooth ER, including the spinal apparatus of the dendritic spines. The fine cytoplasmic details of the impregnated neurons and the surrounding tissue are well preserved and, therefore, suitable for subsequent determination of synaptic relationships of the impregnated neurons with the adjacent neuronal elements.  相似文献   

12.
By light microscopic observation of mouse brain stained by Holmes' silver method deeply stained cytoplasmic inclusion bodies were seen in almost all nerve cells of the locus coeruleus. Electron microscopy of tissue samples from floating Vibratome sections stained by Holmes' silver method demonstrated that the nucleolus-like bodies in the cytoplasm were densely impregnated with gold particles. Hence, it was confirmed that the cytoplasmic inclusion bodies of paraffin sections stained by Holmes' method are identical to the so-called nucleolus-like bodies seen in electron microscopic studies.  相似文献   

13.
Paraffin embedding was found to be satisfactory for brain stained by a modification of the Golgi dichromate-silver method. Nitrocellulose embedding caused fading in a few specimens. Several modifications in which the tissue was impregnated with silver nitrate before treating it with potassium dichromate were investigated. The following one is recommended. Fix pieces of brain 5-6 mm. thick for 2 days in: silver nitrate;0.5%, 90 ml.; formalin, comml. unneutralized (37-40% gas), 10 ml.; pyridine, pure, 0.05-0.1 ml. Mix in the order given and test for pH with brom cresol purple. A pH of 5.5-6.0 is about optimum and the amount of pyridine added can be varied to adjust it. A slight turbidity of the fixing fluid may be disregarded, but precipitation indicates too much alkalinity. Rinse the tissues with distilled water and place them in a mixture of potassium dichromate, 2.5%, 100 ml. and osmic acid, 1%, 1 ml., for 3-5 days. Wash in water, dehydrate with alcohol and embed in soft paraffin for thick sectioning. Greater intensity of staining (but with an increase in precipitate) can be secured by rinsing the blocks after the dichromate treatment and resilvering in a 0.5% solution of silver nitrate for a day or two, then washing, dehydrating and embedding. This modification of the Golgi method was worked out on brain of adult rat, guinea pig, cat and monkey. Results with fetal material were not good. All solutions used were aqueous, and staining was done at room temperature.  相似文献   

14.
Paraffin embedding was found to be satisfactory for brain stained by a modification of the Golgi dichromate-silver method. Nitrocellulose embedding caused fading in a few specimens. Several modifications in which the tissue was impregnated with silver nitrate before treating it with potassium dichromate were investigated. The following one is recommended. Fix pieces of brain 5-6 mm. thick for 2 days in: silver nitrate;0.5%, 90 ml.; formalin, comml. unneutralized (37-40% gas), 10 ml.; pyridine, pure, 0.05-0.1 ml. Mix in the order given and test for pH with brom cresol purple. A pH of 5.5-6.0 is about optimum and the amount of pyridine added can be varied to adjust it. A slight turbidity of the fixing fluid may be disregarded, but precipitation indicates too much alkalinity. Rinse the tissues with distilled water and place them in a mixture of potassium dichromate, 2.5%, 100 ml. and osmic acid, 1%, 1 ml., for 3-5 days. Wash in water, dehydrate with alcohol and embed in soft paraffin for thick sectioning. Greater intensity of staining (but with an increase in precipitate) can be secured by rinsing the blocks after the dichromate treatment and resilvering in a 0.5% solution of silver nitrate for a day or two, then washing, dehydrating and embedding. This modification of the Golgi method was worked out on brain of adult rat, guinea pig, cat and monkey. Results with fetal material were not good. All solutions used were aqueous, and staining was done at room temperature.  相似文献   

15.
The Golgi silver impregnation technique gives detailed information on neuronal morphology of the few neurons it labels, whereas the majority remain unstained. In contrast, the Nissl staining technique allows for consistent labeling of the whole neuronal population but gives very limited information on neuronal morphology. Most studies characterizing neuronal cell types in the context of their distribution within the tissue slice tend to use the Golgi silver impregnation technique for neuronal morphology followed by deimpregnation as a prerequisite for showing that neuron's histological location by subsequent Nissl staining. Here, we describe a rapid method combining Golgi silver impregnation with cresyl violet staining that provides a useful and simple approach to combining cellular morphology with cytoarchitecture without the need for deimpregnating the tissue. Our method allowed us to identify neurons of the facial nucleus and the supratrigeminal nucleus, as well as assessing cellular distribution within layers of the dorsal cochlear nucleus. With this method, we also have been able to directly compare morphological characteristics of neuronal somata at the dorsal cochlear nucleus when labeled with cresyl violet with those obtained with the Golgi method, and we found that cresyl violet-labeled cell bodies appear smaller at high cellular densities. Our observation suggests that cresyl violet staining is inadequate to quantify differences in soma sizes.  相似文献   

16.
For many years, a variant of the silver impregnation technique of Bielchowsky has been used to study the lymph node because it clearly outlines the various structures which are usually hard to contrast with standard staining methods. Like other variants of silver impregnation, this method blackens the cell nuclei as well as the reticular fibers; however, it inhibits the impregnation of the nuclear chromatin immediately adjacent to fibers. Hence, this variant selectively darkens the lymphoid cell populations of the nodal structures which contain a loose fiber network.

To study the blood vascular network of the lymph node based on perfusion of colloidal carbon, a staining procedure was needed which would contrast nodal structures on thick sections, while allowing the carbon-filled small blood vessels to be distinguished from the impregnated coarse reticular fibers. In an attempt to adapt this variant of Bielchowsky's technique, 10, 20, 40 and 60 nm thick sections from rat nodes, fixed in a solution of Bouin-Hollande for 72 hr, were silver impregnated with serial dilutions (1:2 to 1:128) of the ammoniacal silver solution. Forty-micrometer thick sections impregnated with a 1:16 dilution of the original silver solution at 37 C and for 30 min provided the best results for the conditions.  相似文献   

17.
A Golgi-electron microscope method for insect nervous tissue.   总被引:2,自引:0,他引:2  
Golgi's light microscope method of selective silver impregnation for nervous tissue combined with electron microscopy appears to offer a promising method for working out the detailed anatomy of individual neurons and their connections. Insect nervous tissue is fixed in a mixture of 2% paraformaldehyde and 2 1/2% glutaraldehyde in Millonig's buffer (pH 7.2) before postfixation for 12 hours in a solution brought to pH 7.2 with KOH containing 2% potassium dichromate, 1% osmium tetroxide and 2% D-glucose. The tissue is then transferred to a solution of 4% potassium dichromate for 1 day; and for 1-2 days to a 0.75% silver nitrate solution. After dehydration and embedding in Araldite, 50 mum sections are made. Areas of interest are cut from these sections and re-embedded in silicone molds. Ultrathin sections are then cut and stained with uranyl acetate and lead citrate. The Golgi method described here gives good results at the level of both light and electron microscopy.  相似文献   

18.
The ultrastructure of prostatic secretory cells was studied with the osmium impregnation technique in order to determine if the ER reactivity, or its absence, and its three-dimensional organization correspond to specific functions possibly hormono-dependent. Thick sections (0.3 micron) of rat ventral prostate were made after a five-day impregnation with osmium tetroxide and examined by standard transmission electron microscopy at 80 kV. Studies were performed in normal adult rats, between the 3rd and 26th day following castration and in castrated rats treated with 5-alpha-dihydrotestosterone. In normal rats the impregnation technique delineated three secretory cell types (dark, greyish and clear), representing various degrees of reactivity in ER cisternae; however, despite this quantitative variation, they had similar morphological characteristics. In a longitudinal section, the ER network appeared to be made of saccules running parallel along the length of the cell and forming whorl-like patterns around the nucleus. Comparison of sections taken at various angles suggests that the ER network is made of concentric parallel saccules extending from the base to the apex of the cell and encircling the nucleus and the Golgi apparatus like a large multilayered cylinder. Whereas in dark cells the Golgi apparatus contained mostly clear vesicles, it was always heavily impregnated in clear cells. Noteworthy, osmium deposits were rarely observed on the nuclear envelope of secretory cells but were always present in basal cells. After castration, secretory cells became progressively cubic and the most conspicuous cytoplasmic change was observed in association with the ER. The Golgi apparatus decreased markedly in volume and became heavily stained with metallic osmium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
A method of counterstaining sections impregnated according to a previously reported modification of the Glees silver impregnation is described. The basis for this counterstain is the Klüver-Barrera luxol fast blue technique. The results are illustrated and the advantages and disadvantages of the procedure are discussed.  相似文献   

20.
The difficulties in impregnating bony tissues, which occur after decalcification with acids or electrolysis are avoided by decalcification with ethylenediaminetetraacetic acid at pH 8.2-8.5. The decalcification of adult human teeth which have been cut to a thickness of 2-5 mm takes 1-2 mo. If frozen sections of the decalcified teeth are impregnated 24 hr in 20% AgNo3, rinsed through 6 changes of 20% neutralized (CaCO3) formalin, blotted thoroughly with a cloth and placed in an ammoniated silver solution for 15-20 min, reliable impregnation of nerve fibers is obtained. The stock ammoniated silver solution is prepared by adding concentrated NH4OH to 10-20 ml of 20% AgNO3 until the precipitate formed by it is dissolved and then adding a few drops of the silver solution until the first permanent opalescence of the mixture is obtained. From this 2 ml are diluted directly before use with 6 ml of distilled water and 4 drops of concentrated NH4OH added. The diluted stock solution should be used for few (5-10) sections only. The rest of the technic is done in the routine manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号