首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Parental selection influences the gain from selection and the optimum allocation of test resources in breeding programs. We compared two hybrid maize (Zea mays L.) breeding schemes with evaluation of testcross progenies: (a) doubled haploid (DH) lines in both stages (DHTC) and (b) S1 families in the first stage and DH lines within S1 families in the second stage (S1TC-DHTC). Our objectives were to (1) determine the optimum allocation regarding the number of crosses, S1 families, DH lines, and test locations, (2) investigate the impact of parental selection on the optimum allocation and selection gain (ΔG), and (3) compare the maximum ΔG achievable with each breeding scheme. Selection gain was calculated by numerical integration. Different assumptions were made regarding the budget, variance components, correlation between the mean phenotypic performance of the parents and the mean genotypic value of the testcross performance of their progenies (ρ P ), and the composition of the finally selected test candidates. In comparison with randomly chosen crosses, maximum ΔG was largely increased with parental selection in both breeding schemes. With an increasing correlation ρ P , this superiority increased strongly, while the optimum number of crosses decreased in favor of an increased number of test candidates within crosses. Thus, concentration on few crosses among the best parental lines might be a promising approach for short-term success in advanced cycle breeding. Breeding scheme S1TC-DHTC led to a larger ΔG but had a longer cycle length than DHTC. However, with further improvements in the DH technique and the realization of more than two generations per year, early testing of S1 families prior to production of DH lines would become very attractive in hybrid maize breeding. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. T. Wegenast and C. F. H. Longin contributed equally to this work.  相似文献   

2.
Early testing prior to doubled haploid (DH) production is a promising approach in hybrid maize breeding. We (1) determined the optimum allocation of the number of S1 families, DH lines, and test locations for two different breeding schemes, (2) compared the maximum selection gain achievable under both breeding schemes, and (3) investigated limitations in the current method of DH production. Selection gain was calculated by numerical integration in two-stage breeding schemes with evaluation of testcross progenies of (1) DH lines in both stages (DHTC), or (2) S1 families in the first and DH lines within S1 families in the second stage (S1TC-DHTC). Different assumptions were made regarding the budget, variance components, and time of DH production within S1 families. Maximum selection gain in S1TC-DHTC was about 10% larger than in DHTC, indicating the large potential of early testing prior to DH production. The optimum allocation of test resources in S1TC-DHTC involved similar numbers of test locations and test candidates in both stages resulting in a large optimum number of S1 families in the first stage and DH lines within the best two S1 families in the second stage. The longer cycle length of S1TC-DHTC can be compensated by haploid induction of individual S1 plants instead of S1 families. However, this reduces selection gain largely due to the current limitations in the DH technique. Substantial increases in haploid induction and chromosome doubling rates as well as reduction in costs of DH production would allow early testing of S1 lines and subsequent production and testing of DH lines in a breeding scheme that combines high selection gain with a short cycle length. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
In hybrid maize (Zea mays L.) breeding, doubled haploids (DH) are increasingly replacing inbreds developed by recurrent selfing. Doubled haploids may be developed directly from S0 plants in the parental cross or via S1 families. In both these breeding schemes, we examined 2 two-stage selecting strategies, i.e., considering or ignoring cross and family structure while selection among and within parental crosses and S1 families. We examined the optimum allocation of resources to maximize the selection gain ΔG and the probability P(q) of identifying the q% best genotypes. Our specific objectives were to (1) determine the optimum number and size of crosses and S1 families, as well as the optimum number of test environments and (2) identify the superior selection strategy. Selection was based on the evaluation of testcross progenies of (1) DH lines in both stages (DHTC) and (2) S1 families in the first stage and of DH lines within S1 families in the second stage (S1TC-DHTC) with uniform and variable sizes of crosses and S1 families. We developed and employed simulation programs for selection with variable sizes of crosses and S1 families within crosses. The breeding schemes and selection strategies showed similar relative efficiency for both optimization criteria ΔG and P (0.1%). As compared with DHTC, S1TC-DHTC had larger ΔG and P (0.1%), but a higher standard deviation of ΔG. The superiority of S1TC-DHTC was increased when the selection was done among all DH lines ignoring their cross and family structure and using variable sizes of crosses and S1 families. In DHTC, the best selection strategy was to ignore cross structures and use uniform size of crosses.  相似文献   

4.
Optimum allocation of test resources is of crucial importance for the efficiency of breeding programs. Our objectives were to (1) determine the optimum allocation of the number of lines, test locations, as well as number and type of testers in hybrid maize breeding using doubled haploids with two breeding strategies for improvement of general combining ability (GCA), (2) compare the maximum selection gain (ΔG) achievable under both strategies, and (3) give recommendations for the optimum implementation of doubled haploids in commercial hybrid maize breeding. We calculated ΔG by numerical integration for two two-stage selection strategies with evaluation of (1) testcross performance in both stages (BS1) or (2) line per se performance in the first stage followed by testcross performance in the second stage (BS2). Different assumptions were made regarding the budget, variance components (VCs), and the correlation between line per se performance and GCA. Selection gain for GCA increased with a broader genetic base of the tester. Hence, testers combining a large number of divergent lines are advantageous. However, in applied breeding programs, the use of single- or double-cross testers in the first and inbred testers in the second selection stage may be a good compromise between theoretical and practical requirements. With a correlation between line per se performance and GCA of 0.50, ΔG for BS1 is about 5% higher than for BS2, if an economic weight of line per se performance is neglected. With increasing economic weight of line per se performance, relative efficiency of BS2 increased rapidly resulting in a superiority of BS2 over BS1 already for an economic weight for line per se performance larger than 0.1. Considering the importance of an economic seed production, an economic weight larger than 0.1 seems realistic indicating the necessity of separate breeding strategies for seed and pollen parent heterotic groups. C. Friedrich H. Longin and H. Friedrich Utz have contributed equally to this work.  相似文献   

5.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号