首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chick embyro extract (EE) has been widely employed as a growth-promoting supplement in avian myogenic cell cultures. We have purified a myotrophic substance from EE with ammonium sulfate precipitation, CM-Sephadex and DEAE-cellulose chromatography. Salt gradient elution from DEAE-cellulose columns yielded three active peaks with a protein of 80K daltons. The proteins have different isoelectric points of 6.1, 5.9, and 5.7, respectively. They promoted chick myoblasts to proliferate and myotubes to grow when added in the place of EE to a basal culture medium (BCM) composed of Eagle's minimal essential medium and horse serum. Their myotrophic activities were the same and reversibly lost by removal of protein-bound Fe. They were identified as transferrin (Tf) species of differing numbers of sialic acid residues, on the basis of physicochemical and immunological analyses. Tf in EE consisted of species of fewer sialic acid residues than adult serum Tf. Indispensability of Fe-bound Tf for EE to exert myotrophic activity was demonstrated by experiments to remove Tf by immunoprecipitation and to remove Fe from Tf in EE. Either treatment led to a complete loss of the myotrophic activity, which was restored by supplementation of Fe-bound Tf or Fe3+. Comparison of myotrophic activity of EE with that of Tf indicated the presence of other factors in EE which promote myogenic cell growth synergistically with Tf. From the results and on the basis of the class-specific function of Tf on the cells, we discuss the relation of Tf to nerve-derived myotrophic proteins and other factors in EE.  相似文献   

2.
3.
4.
T. Hasegawa, K. Saito, I. Kimura, and E. Ozawa (1981, Proc. Jopan Acad. B 57, 206-210) have shown that Fe ion can promote myogenic cell growth as Fe-bound transferrin. In the present work, the effects of these substances in supporting myogenic cell differentiation were examined. The hallmarks of differentiation adopted were appearance of structural and regulatory proteins, myofibrils, sarcoplasmic reticulum, and Ca-activated activities of myosin B and phosphorylase kinase; isoform transition of creatine kinase; and acquisition of cell membrane excitability and contractility following electrical stimulation of myotubes. The degree of differentiation of myotubes cultured in the presence of Fe ion was almost the same as that of myotubes cultured in the presence of Fe-bound transferrin. These facts suggest that transferrin protein molecules do not play a primary role in differentiation. Further, it has also been shown that myotubes acquire excitation-contraction and metabolism coupling qualitatively similar to that of adult muscle fiber.  相似文献   

5.
Summary The growth and differentiation of L6 myoblasts are subject to control by two proteins secreted by cells of the Buffalo rat liver line. The first of these, rat insulinlike growth factor-II (formerly designated multiplication stimulating activity) is a potent stimulator of myoblast proliferation and differentiation, as well as associated processes such as amino acid uptake and incroporation into protein, RNA synthesis, and thymidine incorporation into DNA. In addition, this hormone causes a significant decrease in the rate of protein degradation. All of these actions seem to be attributable to a single molecular species, although their time courses and sensitivity to the hormone differ substantially. The second protein, the differentiation inhibitor (DI), is a nonmitogenic inhibitor of all tested aspects of myoblast differentiation, including fusion and the elevation of creatine kinase. Indirect immunofluorescence experiments demonstrated that DI also blocks accumulation of myosin heavy chain and myomesin. Upon removal of DI after 72 h incubation, all of these effects were reversed and normal myotubes containing the usual complement of muscle-specific proteins were formed. Thus, this system makes it possible to achieve specific stimulation or inhibition of muscle cell differentiation by addition of purified proteins to cloned cells in serum-free medium. This work was supported by a Muscular Dystrophy Association Postdoctoral Fellowship (M. J. E.-H.), U.S. Public Health Service Grant HL-11551 and AG-00629 (J. R. F.) and AM-28433 (B. M. V.), and a grant from the Muscular Dystrophy Association (J. R. F.).  相似文献   

6.
Stimulation and inhibition of myoblast differentiation by hormones   总被引:3,自引:0,他引:3  
The growth and differentiation of L6 myoblasts are subject to control by two proteins secreted by cells of the Buffalo rat liver line. The first of these, rat insulinlike growth factor-II (formerly designated multiplication stimulating activity) is a potent stimulator of myoblast proliferation and differentiation, as well as associated processes such as amino acid uptake and incorporation into protein, RNA synthesis, and thymidine incorporation into DNA. In addition, this hormone causes a significant decrease in the rate of protein degradation. All of these actions seem to be attributable to a single molecular species, although their time courses and sensitivity to the hormone differ substantially. The second protein, the differentiation inhibitor (DI), is a nonmitogenic inhibitor of all tested aspects of myoblast differentiation, including fusion and the elevation of creatine kinase. Indirect immunofluorescence experiments demonstrated that DI also blocks accumulation of myosin heavy chain and myomesin. Upon removal of DI after 72 h incubation, all of these effects were reversed and normal myotubes containing the usual complement of muscle-specific proteins were formed. Thus, this system makes it possible to achieve specific stimulation or inhibition of muscle cell differentiation by addition of purified proteins to cloned cells in serum-free medium.  相似文献   

7.
Aluminium (Al) affects erythropoiesis but the real mechanism of action is still unknown. Transferrin receptors (TfR) in K562 cells are able to bind Tf, when carrying either iron (Fe) or Al, with similar affinity. Then, the aim of this work was to determine whether Al could interfere with the cellular Fe uptake and utilisation. K562 cells were induced to erythroid differentiation by either haemin (H) or sodium butyrate (B) and cultured with and without Al. The effect of Al on cellular Fe uptake, Fe incorporation to haem and cell differentiation was studied. H- and B-stimulated cells grown in the presence of 10 microM Al showed a reduction in the number of haemoglobinised cells (by 18% and 56%, respectively) and high amounts of Al content. Al(2)Tf inhibited both the (59)Fe cellular uptake and its utilisation for haem synthesis. The removal of Al during the (59)Fe pulse, after a previous incubation with the metal, allowed the cells to acquire Fe quantities in the normal range or even exceeding the amounts incorporated by the respective control cells. However, the Fe incorporated to haem could not reach control values in B-stimulated cells despite enough Fe acquisition was observed after removing Al. Present results suggest that Al might exert either reversible or irreversible effects on the haemoglobin synthesis depending on cellular conditions.  相似文献   

8.
We have shown that triiodothyronine-dependent GH1 rat pituitary cell growth in serum-free defined culture required apotransferrin (apoTf) (D. A. Sirbasku, et al., Biochemistry 30, 295-304, 7466-7477, 1991). These studies were done in "low-Fe" medium without Fe(III)/Fe(II) salts. Nonetheless, significant concentrations of iron may have been contributed by other components, making this medium unsuitable for study of the differential effects of apoTf and diferric transferrin (2Fe.Tf). Measuring residual iron in culture medium has been troublesome because the most sensitive method (i.e., atomic absorption) detected levels only in excess of 10 ng/ml and did not distinguish between the forms of iron present. To estimate the Fe(III) available to bind to apoTf, we developed a more sensitive and specific method. Urea-polyacrylamide gel electrophoresis (PAGE) separates apoTf, the two monoferric transferrins, and 2Fe.Tf. [125I]apoTf was incubated with medium, or components, and the formation of [125I]-2Fe.Tf was monitored by urea-PAGE/autoradiography. By this method, the concentration of Fe(III) in low-Fe medium was estimated at 8.4 to 20 ng/ml and the sources were identified. We next sought to remove the Fe(III). Standard chelators were ineffective or cytotoxic. In contrast, an affinity method with deferoxamine-Sepharose depleted greater than or equal to 90% of the Fe(III). In this medium, apoTf and 2Fe.Tf showed differential effects with GH1 cells and with MCF-7, MTW9/PL2, an MDCK cells. With the methods described here, the effects of apoTf and 2Fe.Tf on growth can be studied separately.  相似文献   

9.
Ribosomal RNA, labelled with uridine and methionine, from dividing and post-mitotic mouse prenatal muscle cell cultures, has been characterised on polyacrylamide gels. Progress of differentiation in cultures was monitored by recording changing proportions of nuclei in myotubes, and increases in creatine kinase activity. Ribosomal RNA synthesis in myotubes is reduced relative to that in dividing cell cultures and considerable wastage of processed ribosomal RNA occurs. This changed pattern of ribosomal RNA production appears to be established in the post-mitotic myoblasts prior to fusion.  相似文献   

10.
Large myotubes degenerated in Ca-deficient medium containing Mg ion. Numerous vacuoles appeared in the cytoplasm and then grew larger. The cells were disrupted and eventually detached from the culture dish. The time course of the destruction process differed from cell to cell and the rate of reduction of creatine kinase in the culture dish was constant irrespective of the time after the removal of Ca ion. Most of the myoblasts survived in Ca-deficient medium, after almost all the large myotubes had disappeared. These myoblasts fused to form new myotubes when Ca ion was supplied.
Myotubes formed from myoblasts which had been cultured with Ca-deficient medium for 2 weeks also degenerated on Ca removal.
Sr ion added to Ca-deficient medium did not completely prevent the destruction of myotubes but decreased the rate of their reduction.  相似文献   

11.
Summary We have identified a major mouse milk protein as transferrin (Tf) using immunoprecipitation, 2-dimensional electrophoresis, Ouchterlony diffusion and V-8 protease digests. We show that Tf is synthesized by mammary epithelial cells themselves and that its synthesis and secretion is regulated distinctly from that of other milk proteins. In culture, the kinetics of Tf synthesis and secretion are distinct from that of β-casein; furthermore, Tf is relatively insensitive to lactogenic hormones whereas β-casein is hormone-dependent.In vivo, however, Tf is regulated by pregnancy. While the virgin gland produces small amounts of Tf, its production is greatly increased during pregnancy and lactation. Thus, Tf synthesis in the mammary gland is modulated by as yet unknown factorsin vivo. These observations are discussed in terms of Tf’s possible role in mammary gland growth, differentiation and function. This research was supported by the OHER office of U. S. DOE, contract DE-AC 03-76S F00098, and NIH grant BRSG RR05918. Editor’s Statement This study combines cultured cells and direct analytical approaches to show that authentic transferrin is a major mouse milk protein and is regulated differently than beta-casein in mammary epithelium. Wallace L. McKeehan  相似文献   

12.
We have reported previously that a novel muscle cell growth factor, having a structure of a peptide with sugar chains, was successfully purified from porcine skeletal muscle. It was named s-myotrophin. To determine the role of s-myotrophin in skeletal muscle growth, the effect of s-myotrophin on primary cultured chick skeletal muscle cells (composed almost totally of multinucleated myotubes) was investigated by comparing s-myotrophin with Insulin-like growth factor-I (IGF-I). Both s-myotrophin and IGF-I significantly increased creatine kinase activity of the cultures; both substances gave similar responses. Intracellar protein content was also increased by the addition of these factors. The content of myosin and actin in s-myotrophin treated culture in the differentiation medium was significantly higher than that of the control (unstimulated). The content of those proteins in IGF-I treated culture was also higher than that of control, but the differences were not statistically significant. Immunoblot analysis confirmed that the amounts of myosin and actin in the myocytes were greatly increased by s-myotrophin stimulation and also by IGF-I stimulation. Morphological observations using an anti-desmin antibody staining procedure demonstrated that the size of both s-myotrophin and IGF-I treated myotubes was appreciably larger than that of control myotubes. These results suggest that s-myotrophin is a potent mediator of skeletal muscle cell hypertrophy thorough the accumulations of muscle structural proteins.  相似文献   

13.
14.
Hypoxia alters the biological functions of skeletal muscle cells to proliferate and differentiate into myotubes. However, the cellular responses of myoblasts to hypoxia differ according to the levels of oxygen and the types of cells studied. This study examined the effect of hypoxia (1% oxygen) on bovine satellite cells. Hypoxia significantly increased the proliferation of satellite cells cultured in a growth medium. In addition, the levels of PCNA, cyclin D1, cyclin-dependent kinase-1 (CDK1) and CDK2 expression were increased. Hypoxia facilitated the formation of myotubes as well as the stimulation of MyoD, myogenin, and myosin heavy chain (MHC) expression in differentiating medium (DM) cultures. In particular, satellite cells cultured under hypoxic/DM conditions showed increased p21 expression but not p27. The transfection of satellite cells with antisense MyoD oligonucleotides resulted in a decrease in the MHC, myogenin, MRF4 RNA and protein levels with the concomitant decrease in fused cells to levels similar to those observed under normoxia/DM conditions. This indicates that MyoD up-regulation is closely associated with hypoxia-stimulated myogenic differentiation. In conclusion, hypoxia stimulates the proliferation of satellite cells and promotes their myogenic differentiation with MyoD playing an important role.  相似文献   

15.
L6 myoblasts accumulate large stores of neutral lipid (predominantly triacylglycerol) when cultured in fatty acid-supplemented growth medium. No accumulation of neutral lipid was evident in myotubes (differentiated myoblasts) when treated similarly. Triacylglycerol accumulation was rapid and dependent on exogenous fatty acid concentration. Triacylglycerol content in myoblasts cultured in fatty acid-supplemented growth medium was approx. 3-fold higher than that in myotubes treated similarly and 2-3-fold higher than that in myoblasts cultured in normal growth medium. Incorporation studies using [I-14C]oleic acid showed that myoblasts and myotubes take up exogenous fatty acid at similar rates. However, cells cultured in fatty acid-supplemented growth medium remove more exogenous fatty acid than do cells cultured in normal growth medium. Over 90% of the incorporated label was found in phospholipid and triacylglycerol fractions in all situations studied. Myoblasts incorporated a more significant proportion (P less than 0.001) of label into triacylglycerol compared with that of myotubes. No differences in fatty acid oxidation rates were detected when differentiating L6 cells cultured in normal growth medium were compared with those cultured in fatty acid-supplemented growth medium. However, fatty acid oxidation rates were observed to increase 3-5-fold upon myoblast differentiation. We conclude that there is a marked change in the pattern of lipid metabolism when myoblasts (primarily triacylglycerol-synthesizing cells) differentiate into myotubes (primarily phospholipid-synthesizing cells). Understanding these changes, which coincide with normal muscle development, may be important, since a defect in this natural switch could explain the observed accumulation of lipid in muscle characteristic of some of the muscular dystrophies and other lipid-storage myopathies.  相似文献   

16.
This paper investigates the extent to which Cu loading influences Fe levels in HepG2 cells and the effect on proteins regulated by Fe status. Cu supplementation increased Cu content 3-fold, concomitant with a decrease in cellular Fe levels. Intracellular levels of both transferrin (Tf) and ceruloplasmin (Cp) protein rose in parallel with increased secretion into the culture media. There was no increase in mRNA levels for either protein. Rather, our data suggested increased translation of the mRNA. The increase was not reflected in total protein synthesis, which actually decreased. The effect was not a generalised stress or cell damage response, since heat shock protein 70 levels and lactate dehydrogenase secretion were not significantly altered. To test whether the Cu effect could be acting though the decrease in Fe levels, we measured transferrin receptor (TfR) levels using 125I labeled Tf and mRNA analysis. Neither protein nor mRNA levels were changed. Neither was the level of ferroportin mRNA. As a positive control, Fe chelation increased Tf and Cp secretion significantly, and TfR mRNA levels rose 2-fold. We excluded the possibility that the increased Cp or Tf could provide the required substrate to stimulate Fe efflux, and instead demonstrate that Cu can substitute for Fe in the iron regulatory protein - iron responsive element regulation mechanism.  相似文献   

17.
18.
HeLa cells cultured in a biotin-deficient medium showed reduced rates of protein synthesis, DNA synthesis and growth. Continuous synthesis is required for the increase in DNA synthesis observed upon addition of biotin to cells cultured in biotin-deficient medium. The addition of biotin to the biotin-deficient culture medium increased the activity of guanylate cyclase in both HeLa cells and fibroblasts. Both cell types cultured in biotin deficient medium showed reduced activity of RNA Polymerase II. The exogenous addition of biotin to the biotin-deficient cell cultures also resulted in increased activity of RNA Polymerase II in HeLa cells and fibroblasts. The maximal response was observed in 4 hours. Significant increase in enzyme activity was observed at 10–8 M biotin in the culture medium. The growth promoting effect of biotin seems to involve stimulations of cellular guanylate cyclase and RNA Polymerase II activity.  相似文献   

19.
In order to study to what extent and at which stage serum response factor (SRF) is indispensable for myogenesis, we stably transfected C2 myogenic cells with, successively, a glucocorticoid receptor expression vector and a construct allowing for the expression of an SRF antisense RNA under the direction of the mouse mammary tumor virus long terminal repeat. In the clones obtained, SRF synthesis is reversibly down-regulated by induction of SRF antisense RNA expression by dexamethasone, whose effect is antagonized by the anti-hormone RU486. Two kinds of proliferation and differentiation patterns have been obtained in the resulting clones. Some clones with a high level of constitutive SRF antisense RNA expression are unable to differentiate into myotubes; their growth can be blocked by further induction of SRF antisense RNA expression by dexamethasone. Other clones are able to differentiate and are able to synthesize SRF, MyoD, myogenin, and myosin heavy chain at confluency. When SRF antisense RNA expression is induced in proliferating myoblasts by dexamethasone treatment, cell growth is blocked and cyclin A concentration drops. When SRF antisense RNA synthesis is induced in arrested confluent myoblasts cultured in a differentiation medium, cell fusion is blocked and synthesis of not only SRF but also MyoD, myogenin, and myosin heavy chain is inhibited. Our results show, therefore, that SRF synthesis is indispensable for both myoblast proliferation and myogenic differentiation.  相似文献   

20.
The effects of supplementation with creatine (Cr) and its analog, β-guanidinopropionic acid (β-GPA), on the differentiation of myoblasts and the numbers of nucleoli were studied in C2C12 cells. The cells were cultured in differentiation medium for 4 d. Then Cr (1 mM) or β-GPA (1 mM) was added to the cells, and the mixture was cultured for an additional 2 d. Although the number of myotubes was not different among the groups, myotube diameters and nuclear numbers in myotubes were increased by Cr and β-GPA treatment respectively. The expression of differentiation marker proteins, myogenin, and the myosine heavy chain, was increased in the β-GPA group. Supplementation with β-GPA also increased the percentage of p21 (inhibitor for cell cycle progression)-positive myoblasts. Supplementation with Cr inhibited the decrease in nucleoli numbers, whereas β-GPA increased nucleolar sizes in the myotubes. These results suggest that β-GPA supplementation stimulated the differentiation of myoblasts into multi-nucleated myotubes through induction of p21 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号