首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We determined 24-hr plasma melatonin profiles in intact, sham-pinealectomized, and pinealectomized European starlings (Sturnus vulgaris) and house sparrows (Passer domesticus) in a light-dark (LD) cycle and in constant darkness (DD). In the intact and sham-pinealectomized birds of both species, a melatonin rhythm was found, with low levels during the day and high levels during the night. Pinealectomy abolished the nighttime peak of melatonin in both species; hence, levels were low at all times sampled. This uniform response of plasma melatonin to pinealectomy contrasts with the differential response of circadian activity rhythms to pinealectomy for these two species. In DD, locomotor activity in pinealectomized house sparrows is usually arrhythmic, whereas in starlings a rhythm usually persists. This suggests that in the latter species free-running circadian rhythms are not necessarily dependent on a rhythm in plasma melatonin. The same is true for the synchronized activity rhythm observed in pinealectomized birds of both species in LD, as well as for the damped rhythm that persists in pinealectomized house sparrows following an LD-to-DD transfer. The results are consistent with the hypothesis that the pineal and its periodic output of melatonin constitute only one component in a system of at least two coupled pacemakers. They also suggest that there are species differences in the relative role played by the pineal and other pacemakers in controlling circadian rhythms in behavior.  相似文献   

2.
Exposure to constant light abolishes circadian behavioral rhythms of locomotion and feeding as well as circulating melatonin rhythms in pigeons (Columba livia). To determine if feeding rhythmicity could be maintained in pigeons exposed to constant light, periodic infusions (10h/day) of melatonin were administered to pinealectomized and bilaterally retinectomized/pinealectomized pigeons under conditions of both constant darkness and constant light. The infusions were sufficient to entrain rhythmicity in pinealectomized pigeons in constant darkness and to restore and maintain rhythmicity in bilaterally retinectomized/pinealectomized pigeons in constant darkness. On subsequent exposure to constant light, rhythmicity remained phase locked to the melatonin infusions in bilaterally retinectomized/pinealectomized pigeons but was abolished in sighted pinealectomized birds. These results suggest that while endogenous melatonin rhythms are both necessary and sufficient to maintain behavioral rhythms in DD, their effect can be overridden by constant light but only if perceived by the eyes. Thus, constant light may abolish behavioral rhythmicity in intact pigeons (and perhaps in other species) by a mechanism other than suppression of endogenous melatonin rhythmicity. Such a mechanism might involve direct stimulation of locomotor or feeding activity by retinally perceived (but not by extra-retinally perceived) light, or alternatively by suppression of a hypothalamic oscillator that receives its major light input from the retinae.Abbreviations PX pinealectomized - EX bilaterally enucleated - LD light:dark cycle - LL constant light - DD constant darkness - DDb constant darkness before exposure to constant light - DDa constant darkness after exposure to constant light  相似文献   

3.
Summary We studied the potential zeitgeber qualities of periodic food availability on the circadian rhythms of locomotor and feeding activity of house sparrows. The birds were initially held in a LD-cycle of 12:12 h, with food restricted to the light phase. After transfer to constant dim light, the birds remained entrained by the restricted feeding schedule. Following an exposure to food ad libitum conditions, the rhythms could be re-synchronized by the feeding cycle. Shortening of the zeitgeber period to 23.5 h resulted in the loss of entrainment in most birds, whereas a longer zeitgeber period of 25 h re-entrained the rhythms of most birds. Although these results prove that periodic food availability can act as a zeitgeber for the circadian rhythms of house sparrows, several features of our data indicate that restricted feeding is only a weak zeitgeber. The pattern of feeding activity prior to the daily time of food access shown under some experimental conditions suggests that anticipation is due to a positive phase-angle difference of the birds' normal circadian system rather than being caused by a separate pacemaker.  相似文献   

4.
Continuous melatonin administration via silastic implants accelerates the resynchronization of the circadian locomotor activity rhythm in house sparrows (Passer domesticus) after exposure to phase shifts of a weak light-dark cycle. Constant melatonin might induce this effect either by increasing the sensitivity of the visual system to a light zeitgeber or by reducing the degree of self-sustainment of the circadian pacemaker. To distinguish between these two possible mechanisms, two groups of house sparrows, one carrying melatonin implants and the other empty implants, were kept in constant dim light and subjected to advance and delay shifts of a 12-h feeding phase. The resynchronization times of their circadian feeding rhythm following the phase shifts were significantly shorter when the birds carried melatonin implants than when they carried empty implants. In a second experiment, melatonin-implanted and control birds were released into food ad libitum conditions 2 days after either a delay or an advance phase shift. The number of hours by which the activity rhythms had been shifted on the second day in food ad libitum conditions was assessed. Melatonin-implanted house sparrows had significantly larger phase shifts in their circadian feeding rhythm than control birds. This is in accordance with the first experiment since a larger phase shift at a given time reflects accelerated resynchronization. Additionally, the second experiment also excludes any possible masking effects of the nonphotic zeitgeber. In conclusion, constant melatonin accelerates resynchronization even after phase shifts of a nonphotic zeitgeber, indicating that constant high levels of melatonin can reduce the degree of self-sustainment of the circadian pacemaker independent of any effects on the photoreceptive system.  相似文献   

5.
Summary Although pinealectomy or blinding resulted in loss of the clarity of the free-running rhythm of locomotor activity and body temperature and reduced the peak level of circulating melatonin rhythms to approximately a half in intact pigeons, neither pinealectomy nor blinding abolished any of these rhythms. However, when pinealectomy and blinding were combined, the rhythms of locomotor activity and body temperature disappeared in prolonged constant dim light, and melatonin concentration was reduced to the minimum level of detection. In order to examine the role of melatonin in the pigeon's circadian system, it was administered either daily or continuously to PX + EX-pigeons in LLdim. Daily administration of melatonin restored circadian rhythms of locomotor activity which entrained to melatonin injections, but continuous administration did not induce any remarkable change of locomotor activity. These results suggest that melatonin synthesized in the pineal body and the eye contributes to circulating melatonin and its rhythmicity is important for the control of circadian rhythms of locomotor activity and body temperature in the pigeon.Abbreviations LD Light-dark - LLdim constant dim light - LLbright constant bright light - PX pinealectomy - EX blinding - SCN suprachiasmatic nucleus  相似文献   

6.
We recorded circadian locomotor activity rhythms of house sparrows (Passer domesticus) exposed to low-amplitude light-dark cycles (2∶1 lux) with periods of 22.5 or 24.5 h. Under these conditions the circadian rhythms of the majority of the birds were not synchronized by the light cycle but either free-ran or showed relative coordination. However, when melatonin was administered continuously via subcutaneous silastic implants the rhythms became synchronized. It is proposed that melatonin facilitates synchronization either by weakening the circadian oscillatory system thereby increasing its range of entrainment, or by enhancing circadian sensitivity to the light Zeitgeber. In general, the results suggest that melatonin, besides its well-known phasic effects on the circadian system also has important tonic effects modifying the ease with which circadian systems can be entrained.  相似文献   

7.
ABSTRACT. Locomotor, feeding, drinking, and oxygen consumption rhythms in adult virgin Acheta domesticus L. all appear to peak in the first half of the scotophase, be entrained cophasically by a LD 14:10 h cycle, have a lights-off Zeitgeber and persist in LL with a π c. 25 h for the locomotor rhythm and c. 23 h for the oxygen consumption rhythm. There is no evidence of these rhythms in last instar larvae. The onset of the locomotor rhythm requires 3 days at 30°C but 5–7 days at 25–28°C after the final ecdysis in virgins, indicating a temperature related development of the locomotor rhythm. Oxygen consumption rhythms are lacking in 2-day-old virgins but present in 8-day-old virgins. Feeding rhythms can be recorded in virgins as young as 2 days (before locomotor rhythm developed). Both oxygen consumption and locomotor rhythms persist during starvation. The results suggest that a central brain oscillator drives both feeding and locomotor rhythms independently, but that the oxygen consumption rhythm is derived from the metabolic demands associated with the other rhythms.  相似文献   

8.
Avian behavior and physiology are temporally regulated by a complex circadian clock on both a daily and an annual basis. The circadian secretion of the hormone melatonin is a critical component of the regulation of circadian/daily processes in passerine birds, but there is little evidence that the gland regulates annual changes in primary reproductive function. Here it is shown that locomotor rhythms of house sparrows, Passer domesticus, which are made arrhythmic by either pinealectomy or maintenance in constant light, can be synchronized by daily administration of melatonin of different durations to simulate the melatonin profiles indicative of long and short photoperiods. Pinealectomized male sparrows maintained in constant darkness were entrained by both melatonin regimens. In both cases, testes were regressed and the song control nuclei were small. Intact male house sparrows maintained in constant light were also entrained to both melatonin regimens. However, sparrows that received a long duration melatonin cycle exhibited small song control nuclei, while sparrows that received short duration melatonin or no melatonin at all exhibited large song control nuclei. The data indicate that seasonal changes in melatonin duration contribute to the regulation of song control nuclei.  相似文献   

9.
Summary Locomotor activity and feeding activity were measured together with circulating levels of melatonin in pigeons which were exposed to constant bright light (LLbright, 2000 lux) following light-dark (LD) cycles. Although all the pigeons showed daily rhythms of locomotor activity, feeding activity, and melatonin levels under LD cycles, they lost all the rhythms in prolonged LLbright. Acute exposure to bright light (2000 lux) during darkness reduced plasma melatonin levels. The half-time for the suppression in melatonin levels was about 30 min after short-term light exposure. These results support the hypothesis that melatonin may control the circadian rhythms of locomotor activity and feeding activity in the pigeon.Abbreviations LD light-dark - LLdim constant dim light - LLbright constant bright light - DD constant darkness - PX pinealectomy - EX blinding - RIA radioimmunoassay  相似文献   

10.
Feeding and locomotor activities of the Japanese catfish Plotosus japonicus under solitary condition were recorded to identify mechanisms controlling these behaviours. In the absence of food, the catfish showed nocturnal locomotor activity, but no feeding activity. Under ad libitum food conditions, both feeding and locomotor activities occurred during the dark period and were synchronized with light/dark (LD) cycles. Feeding activity lasted for 11–24 days when food was stopped after ad libitum food availability. Restricted food during the light phase produced both food-anticipatory and light-entrainable feeding activity. Furthermore, this condition produced weak food-anticipatory and light-entrainable locomotor activity. Under the light/light (LL) condition, restricted food produced food-anticipatory feeding and locomotor activities, suggesting that a food-entrainable oscillator controls both feeding and locomotor activities. However, under the LL condition, light-entrainable feeding and locomotor activities were not observed, suggesting that a light-entrainable oscillator controls both feeding and locomotor activities. During a restricted food schedule, LD cycle shifts resulted in disrupted synchronization of feeding activity onset in three of the four fish, but one fish showed synchronized feeding activity. These results suggest that the food- and the light-entrainable oscillator may control feeding and locomotor activities, respectively.  相似文献   

11.
A study was carried out to investigate the daily rhythms of locomotor and feeding activity of Khajoo, Schizothorax pelzami, a candidate species for freshwater aquaculture. Using self-feeder juvenile Khajoo were exposed to a 12/12 LD cycle to determine the rhythms of locomotor and feeding activity. The effects of feeding on locomotor and feeding activity of fish were also examined. Finally, the endogenous rhythmicity under different lighting condition tested. Fish displayed a strictly diurnal feeding and locomotor activities with 98% and 84% of the total activity occurred in the photophase, respectively. In scheduled feeding, both the L-group (fed in light) and the D-group (fed in the dark) showed a diurnal locomotor activity pattern. However, the L-group had a peak of locomotor activity near the feeding time, but the D-group had a scarce locomotor activity in the scatophase with no significant change at the mealtime. Most of the individuals display free-running rhythms when exposed to different lighting condition including, constant darkness, ultradian 45:45 min LD cycle and reversed DL photo cycle. Taken together the results of this study showed that both locomotor and feeding activity have diurnal rhythms in Khajoo S. pelzami, even fish feeding had taken place at night. Additionally, the free-running locomotor activity of the fish in the absence of external light stimuli, suggests the existence of an endogenous timing mechanism in this fish species.  相似文献   

12.
Summary The role of the hormone melatonin in the circadian system of pigeons (Columba livia) was investigated. Using an automatic infusion system, melatoni at physiological levels was delivered for 10 h each day to cannulated, pinealectomized (P-X) pigeons in constant darkness. These cyclic infusions of melatonin entrained feeding rhythms in P-X pigeons while vehicle infusions were ineffective entraining agents. When the retinae of P-X pigeons were removed (E-X), feeding rhythms were abolished in constant darkness. When cyclic melatonin infusions were delivered to these birds (E-X and P-X), feeding rhythmicity was restored whereas vehicle infusions alone did not restore rhythmicity. When melatonin infusions were terminated in E-X/P-X pigeons, feeding rhythms persisted for several days but eventually decayed. Blood melatonin levels were measured in both P-X and E-X/P-X birds infused cyclically with exogenous melatonin and were found to be within the physiological range both in level and pattern. These results strongly suggest that endogenous melatonin, released by the pineal gland and the retinae, regulates the timing of feeding rhythms by entraining other oscillators in the circadian system of the pigeon.Abbreviations P-X pinealectomized - E-X bilaterally enucleated - T period of infusion cycle - LD light: dark cycle - DD constant darkness  相似文献   

13.
Glass eels of the temperate anguillid species, Anguilla japonica, clearly showed a nocturnal activity rhythm under laboratory conditions. Light–dark cycle was a determinant factor affecting their photonegative behavior, nocturnal locomotor activity, and feeding behavior. Under natural light conditions, glass eels remained in shelters with little daytime feeding, but came out to forage during darkness. They moved and foraged actively in the following dark, and then their activity gradually declined possibly because of food satiation. They finally buried in the sand or stayed in tubes immediately after the lights came on. Under constant light, glass eels often came out of the shelters to forage in the lights but spent little time moving outside the shelters (e.g. swimming or crawling on the sand). Glass eels took shelter to avoid light and preferred tubes to sand for shelter possibly because tubes were much easier for them to take refuge in than sand. Feeding and locomotor activities of the glass eels were nocturnal and well synchronized. They appeared to depend on olfaction rather than vision to detect and capture prey in darkness. Feeding was the driving force for glass eels to come out of sand under constant light. However, in the dark, some glass eels swam or crept actively on sand even when they were fully fed. The lunar cycles of activity rhythms of glass eels that have been observed in some estuarine areas were not detected under these laboratory conditions.  相似文献   

14.
To investigate daily feeding rhythms in zebrafish, the authors have developed a new self-feeding system with an infrared photocell acting as a food-demand sensor, which lets small-size fish such as zebrafish trigger a self-feeder. In this paper, the authors used eight groups of 20 fish. Locomotor activity rhythms were also investigated by means of infrared sensors. Under a 12?h:12?h light (L)-dark (D) cycle, zebrafish showed a clear nocturnal feeding pattern (88.0% of the total daily food-demands occurring in the dark phase), concentrated during the last 4?h of the dark phase. In contrast, locomotor activity was mostly diurnal (88.2% of total daily activity occurring in the light phase). Moreover, both feeding and locomotor rhythms were endogenously driven, as they persisted under free-running conditions. The average period length (τ) of the locomotor and feeding rhythms was shorter (τ?=?22.9?h) and longer (τ?=?24.6?h) than 24?h, respectively. During the time that food availability was restricted, fish could only feed during ZT0-ZT12 or ZT12-ZT16. This resulted in feeding activity being significantly modified according to feeding time, whereas the locomotor activity pattern remained synchronized to the LD cycle and did not change during this trial. These findings revealed an independent phasing between locomotor and feeding activities (which were mostly nocturnal or diurnal, respectively), thus supporting the concept of multioscillatory control of circadian rhythmicity in zebrafish.  相似文献   

15.
To investigate daily feeding rhythms in zebrafish, the authors have developed a new self-feeding system with an infrared photocell acting as a food-demand sensor, which lets small-size fish such as zebrafish trigger a self-feeder. In this paper, the authors used eight groups of 20 fish. Locomotor activity rhythms were also investigated by means of infrared sensors. Under a 12?h:12?h light (L)-dark (D) cycle, zebrafish showed a clear nocturnal feeding pattern (88.0% of the total daily food-demands occurring in the dark phase), concentrated during the last 4?h of the dark phase. In contrast, locomotor activity was mostly diurnal (88.2% of total daily activity occurring in the light phase). Moreover, both feeding and locomotor rhythms were endogenously driven, as they persisted under free-running conditions. The average period length (τ) of the locomotor and feeding rhythms was shorter (τ?=?22.9?h) and longer (τ?=?24.6?h) than 24?h, respectively. During the time that food availability was restricted, fish could only feed during ZT0–ZT12 or ZT12–ZT16. This resulted in feeding activity being significantly modified according to feeding time, whereas the locomotor activity pattern remained synchronized to the LD cycle and did not change during this trial. These findings revealed an independent phasing between locomotor and feeding activities (which were mostly nocturnal or diurnal, respectively), thus supporting the concept of multioscillatory control of circadian rhythmicity in zebrafish. (Author correspondence: )  相似文献   

16.
Circadian clocks are responsible for daily rhythms in a wide array of processes, including gastrointestinal (GI) function. These are vital for normal digestive rhythms and overall health. Previous studies demonstrated circadian clocks within the cells of GI tissue. The present study examines the roles played by the suprachiasmatic nuclei (SCN), master circadian pacemaker for overt circadian rhythms, and the sympathetic nervous system in regulation of circadian GI rhythms in the mouse Mus musculus. Surgical ablation of the SCN abolishes circadian locomotor, feeding, and stool output rhythms when animals are presented with food ad libitum, while restricted feeding reestablishes these rhythms temporarily. In intact mice, chemical sympathectomy with 6-hydroxydopamine has no effect on feeding and locomotor rhythmicity in light-dark cycles or constant darkness but attenuates stool weight and stool number rhythms. Again, however, restricted feeding reestablishes rhythms in locomotor activity, feeding, and stool output rhythms. Ex vivo, intestinal tissue from PER2::LUC transgenic mice expresses circadian rhythms of luciferase bioluminescence. Chemical sympathectomy has little effect on these rhythms, but timed administration of the β-adrenergic agonist isoproterenol causes a phase-dependent shift in PERIOD2 expression rhythms. Collectively, the data suggest that the SCN are required to maintain feeding, locomotor, and stool output rhythms during ad libitum conditions, acting at least in part through daily activation of sympathetic activity. Even so, this input is not necessary for entrainment to timed feeding, which may be the province of oscillators within the intestines themselves or other components of the GI system.  相似文献   

17.
Heart rate and arterial haemolymph flow rates were measured in freshly trapped Dungeness crabs, Cancer magister, using a pulsed-Doppler flowmeter. In the laboratory, freshly collected subtidal crabs exhibited endogenous rhythms in both cardiac function and haemolymph flow through one or more arterial systems, of both tidal and diurnal periodicity. The strongest tidal rhythms were recorded in the sternal and paired anterolateral arteries. These endogenous rhythms of selective tissue perfusion are related to an underlying locomotor activity, but may also be involved with hormonal transport or feeding. Changes in both heart rate and stroke volume were responsible for the increases in haemolymph flow rates. These rhythms were not entrained by aerial exposure, since confinement of arhythmic crabs in intertidal cages did not re-entrain an endogenous tidal rhythm. Endogenous locomotory rhythms are known to be controlled by neurohormones released in cycles from the sinus gland on the eyestalk. These hormones may also control the endogenous cardiovascular rhythms, since these were abolished after eyestalk ablation in freshly collected Cancer magister. These results suggest that hormones synthesized and released by the X-organ/sinus gland complex may, together with pericardial hormones, play a role in modulation of crustacean cardiovascular function.  相似文献   

18.
《Chronobiology international》2013,30(7):1389-1408
Food is not continuously available in the wild, and so most animals show a wide variety of circadian rhythms that can be entrained to feeding time. The aim of this research was to evaluate the effect of time-restricted feeding on the daily rhythms of gilthead sea bream, with food being provided during the day or night under a 12:12?h light-dark (LD) cycle or constant light (LL) conditions. Self-feeding and locomotor activity, as well as daily rhythms of cortisol, glucose, and melatonin, were evaluated. Fish synchronized their feeding behavior to the feeding phase, so that in LD they displayed 78% nocturnal feeding activity under night-feeding and 81% diurnal feeding activity under day-feeding, while under LL-feeding they displayed 72% of their daily activity during the 12?h feeding phase. In contrast, locomotor activity was mostly diurnal (66–71%), regardless of the feeding schedule, and it became arrhythmic under LL. Cortisol showed daily rhythms that peaked at different times, depending on the light and feeding schedule: one peak several hours before feeding under day-feeding and night-feeding, and two peaks under LL-feeding. Glucose displayed low-amplitude variations, with no daily rhythms being detected. Melatonin, however, showed a nocturnal rhythm, regardless of the feeding schedule, while the rhythm became attenuated under LL. Taken together, these results highlight the role of feeding on endocrine and metabolic rhythms, suggesting that feeding behavior should be considered when studying these variables. (Author correspondence: )  相似文献   

19.
Circadian rhythms in animals are regulated at the level of individual cells and by systemic signaling to coordinate the activities of multiple tissues. The circadian pacemakers have several physiological outputs, including daily locomotor rhythms. Several redox-active compounds have been found to function in regulation of circadian rhythms in cells, however, how particular compounds might be involved in regulating specific animal behaviors remains largely unknown. Here the effects of hydrogen peroxide on Drosophila movement were analyzed using a recently developed three-dimensional real-time multiple fly tracking assay. Both hydrogen peroxide feeding and direct injection of hydrogen peroxide caused increased adult fly locomotor activity. Continuous treatment with hydrogen peroxide also suppressed daily locomotor rhythms. Conditional over-expression of the hydrogen peroxide-producing enzyme superoxide dismutase (SOD) also increased fly activity and altered the patterns of locomotor activity across days and weeks. The real-time fly tracking system allowed for detailed analysis of the effects of these manipulations on behavior. For example, both hydrogen peroxide feeding and SOD over-expression increased all fly motion parameters, however, hydrogen peroxide feeding caused relatively more erratic movement, whereas SOD over-expression produced relatively faster-moving flies. Taken together, the data demonstrate that hydrogen peroxide has dramatic effects on fly movement and daily locomotor rhythms, and implicate hydrogen peroxide in the normal control of these processes.  相似文献   

20.
Summary Fluoxetine, a specific serotonergic reuptake blocker and indirect agonist, and 5,6-dihydroxytryptamine, a serotonergic neurotoxin, affect the free-running locomotor rhythms of house sparrows,Passer domesticus. Both compounds caused phase-shifts in the circadian system that times locomotor activity of the birds. The magnitude and direction of the phase-shifts were dependent on the circadian phase of the drug administration, suggesting that serotonergic activity can modulate the circadian pacemaker of the house sparrow.Abbreviations 5HT serotonin, 5-hydroxytryptamine - 5,6-DHT 5,6-dihydroxytryptamine - DMI desmethylimipramine - SCN suprachiasmatic nuclei - CT circadian time - CAP compound action potential This paper is dedicated to Professor Colin S. Pittendrigh on the occasion of his 65th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号