首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The infection process of Colletotrichum lagenarium, the causal agent of cucumber anthracnose disease, involves several key steps: germination; formation of melanized appressoria; appressorial penetration; and subsequent invasive growth in host plants. Here we report that the C. lagenarium CMK1 gene encoding a mitogen-activated protein (MAP) kinase plays a central role in these infection steps. CMK1 can complement appressorium formation of the Pmk1 MAP kinase mutant of Magnaporthe grisea. Deletion of CMK1 causes reduction of conidiation and complete lack of pathogenicity to the host plant. Surprisingly, in contrast to M. grisea pmk1 mutants, conidia of cmk1 mutants fail to germinate on both host plant and glass surfaces, demonstrating that the CMK1 MAP kinase regulates conidial germination. However, addition of yeast extract rescues germination, indicating the presence of a CMK1-independent pathway for regulation of conidial germination. Germinating conidia of cmk1 mutants fail to form appressoria and the mutants are unable to grow invasively in the host plant. This strongly suggests that MAP kinase signaling pathways have general significance for infection structure formation and pathogenic growth in phytopathogenic fungi. Furthermore, three melanin genes show no or slight expression in the cmk1 mutant when conidia fail to germinate, suggesting that CMK1 plays a role in gene expression required for appressorial melanization.  相似文献   

2.
MAP kinase (MAPK) signaling results from activation of Raf kinases in response to external or internal stimuli. Here, we demonstrate that Raf kinase inhibitory protein (RKIP) regulates the activation of MAPK when B-Raf signaling is defective. We used multiple models including mouse embryonic fibroblasts (MEFs) and primary keratinocytes from RKIP- or Raf-deficient mice as well as allografts in mice to investigate the mechanism. Loss of B-Raf protein or activity significantly reduces MAPK activation in these cells. We show that RKIP depletion can rescue the compromised ERK activation and promote proliferation, and this rescue occurs through a Raf-1 dependent mechanism. These results provide formal evidence that RKIP is a bona fide regulator of Raf-1. We propose a new model in which RKIP plays a key role in regulating the ability of cells to signal through Raf-1 to ERK in B-Raf compromised cells.  相似文献   

3.
In Colletotrichum lagenarium, which is the causal agent of cucumber anthracnose, PEX6 is required for peroxisome biogenesis and appressorium-mediated infection. To verify the roles of peroxisome-associated metabolism in fungal pathogenicity, we isolated and functionally characterized ICL1 of C. lagenarium, which encodes isocitrate lyase involved in the glyoxylate cycle in peroxisomes. The icl1 mutants failed to utilize fatty acids and acetate for growth. Although Icl1 has no typical peroxisomal targeting signals, expression analysis of the GFP-Icl1 fusion protein indicated that Icl1 localizes in peroxisomes. These results indicate that the glyoxylate cycle that occurs inside the peroxisome is required for fatty acid and acetate metabolism for growth. Importantly, in contrast with the pex6 mutants that form nonmelanized appressoria, the icl1 mutants formed appressoria that were highly pigmented with melanin, suggesting that the glyoxylate cycle is not essential for melanin biosynthesis in appressoria. However, the icl1 mutants exhibited a severe reduction in virulence. Appressoria of the icl1 mutants failed to develop penetration hyphae in the host plant, suggesting that ICL1 is involved in host invasion. The addition of glucose partially restored virulence of the icl1 mutant. Heat shock treatment of the host plant also enabled the icl1 mutants to develop lesions, implying that the infection defect of the icl1 mutant is associated with plant defense. Together with the requirement of PEX6 for appressorial melanization, our findings suggest that peroxisomal metabolic pathways play functional roles in appressorial melanization and subsequent host invasion steps, and the latter step requires the glyoxylate cycle.  相似文献   

4.
In non-cancerous cells, phosphorylated proteins exist transiently, becoming de-phosphorylated by specific phosphatases that terminate propagation of signaling pathways. In cancers, compromised phosphatase activity and/or expression occur and contribute to tumor phenotype. The non-receptor phosphatase, PTPN13, has recently been dubbed a putative tumor suppressor. It decreased expression in breast cancer correlates with decreased overall survival. Here we show that PTPN13 regulates a new signaling complex in breast cancer consisting of ErbB2, Src, and EphrinB1. To our knowledge, this signaling complex has not been previously described. Co-immunoprecipitation and localization studies demonstrate that EphrinB1, a PTPN13 substrate, interacts with ErbB2. In addition, the oncogenic V660E ErbB2 mutation enhances this interaction, while Src kinase mediates EphrinB1 phosphorylation and subsequent MAP Kinase signaling. Decreased PTPN13 function further enhances signaling. The association of oncogene kinases (ErbB2, Src), a signaling transmembrane ligand (EphrinB1) and a phosphatase tumor suppressor (PTPN13) suggest that EphrinB1 may be a relevant therapeutic target in breast cancers harboring ErbB2-activating mutations and decreased PTPN13 expression.  相似文献   

5.
6.
Airway smooth muscle constriction leads to the development of compressive stress on bronchial epithelial cells. Normal human bronchial epithelial cells exposed to an apical-to-basal transcellular pressure difference equivalent to the computed stress in the airway during bronchoconstriction demonstrate enhanced phosphorylation of extracellular signal-regulated kinase (ERK). The response is pressure dependent and rapid, with phosphorylation increasing 14-fold in 30 min, and selective, since p38 and c-Jun NH(2)-terminal kinase phosphorylation remains unchanged after pressure application. Transcellular pressure also elicits a ninefold increase in expression of mRNA encoding heparin-binding epidermal growth factor-like growth factor (HB-EGF) after 1 h, followed by prominent immunostaining for pro-HB-EGF after 6 h. Inhibition of the ERK pathway with PD-98059 results in a dose-dependent reduction in pressure-induced HB-EGF gene expression. The magnitude of the HB-EGF response to transcellular pressure and tumor necrosis factor (TNF)-alpha (1 ng/ml) is similar, and the combined mechanical and inflammatory stimulus is more effective than either stimulus alone. These results demonstrate that compressive stress is a selective and potent activator of signal transduction and gene expression in bronchial epithelial cells.  相似文献   

7.
Wang Y  Liu TB  Patel S  Jiang L  Xue C 《Eukaryotic cell》2011,10(11):1455-1464
Casein kinases regulate a wide range of cellular functions in eukaryotes, including phosphorylation of proteins that are substrates for degradation via the ubiquitin-proteasome system (UPS). Our previous study demonstrated that Fbp1, a component of the SCF(FBP1) E3 ligase complex, was essential for Cryptococcus virulence. Because the Saccharomyces cerevisiae homolog of Fbp1, Grr1, requires casein kinase I (Yck1 and Yck2) to phosphorylate its substrates, we investigated the function of casein kinase I in Cryptococcus neoformans. In this report, we identified a C. neoformans casein kinase I protein homolog, Cck1. Similar to Fbp1, the expression of Cck1 is negatively regulated by glucose and during mating. cck1 null mutants showed significant virulence attenuation in a murine systemic infection model, but Cck1 was dispensable for the development of classical virulence factors (capsule, melanin, and growth at 37°C). cck1 mutants were hypersensitive to SDS treatment, indicating that Cck1 is required for cell integrity. The functional overlap between Cck1 and Fbp1 suggests that Cck1 may be required for the phosphorylation of Fbp1 substrates. Interestingly, the cck1 mutant also showed increased sensitivity to osmotic stress and oxidative stress, suggesting that Cck1 regulates both cell integrity and the cellular stress response. Our results show that Cck1 regulates the phosphorylation of both Mpk1 and Hog1 mitogen-activated protein kinases (MAPKs), demonstrating that Cck1 regulates cell integrity via the Mpk1 pathway and regulates cell adaptation to stresses via the Hog1 pathway. Overall, our study revealed that Cck1 plays important roles in regulating multiple signaling pathways and is required for fungal pathogenicity.  相似文献   

8.
《Autophagy》2013,9(2):249-251
The notion that phosphorylation constitutes a major mechanism to induce autophagy was established 15 years ago when a conserved Atg1/ULK kinase family was identified as an essential component of the autophagy machinery. The key observation was that starved atg1Δ cells lack autophagosomes in the cytosol and fail to accumulate autophagic bodies in the vacuole. Although many studies have revealed important details of Atg1 activation and function, a cohesive model for how Atg1 regulates the autophagic machinery is lacking. Our recent findings identified conserved steps of temporal and spatial regulation of Atg1/ULK1 kinase at both the PAS and autophagosomal membranes, suggesting that Atg1 not only promotes autophagy induction, but may also facilitate late stages of autophagosome biogenesis.  相似文献   

9.
Symbiosis receptor-like kinase(SymRK) is a key protein mediating the legume-Rhizobium symbiosis. Our previous work has identified an MAP kinase kinase, SIP2, as a SymRK-interacting protein to positively regulate nodule organogenesis in Lotus japonicus, suggesting that an MAPK cascade might be involved in Rhizobium-legume symbiosis. In this study, LjMPK6 was identified as a phosphorylation target of SIP2. Stable transgenic L. japonicus with RNAi silencing of LjMPK6 decreased the numbers of nodule primordia(NP) and nodule, while plants overexpressing LjMPK6 increased the numbers of nodule, infection threads(ITs), and NP, indicating that LjMPK6 plays a positive role in nodulation. LjMPK6 could interact with a cytokinin receptor, LHK1 both in vivo and in vitro. LjMPK6 was shown to compete with LHP1 to bind to the receiver domain(RD) of LHK1 and to downregulate the expression of two LjACS(1-aminocyclopropane-1-carboxylic acid synthase) genes and ethylene levels during nodulation. This study demonstrated an important role of LjMPK6 in regulation of nodule organogenesis and ethylene production in L. japonicus.  相似文献   

10.
11.
Colletotrichum lagenarium, the causal agent of cucumber anthracnose, invades host plants by forming a specialized infection structure called an appressorium. In this fungus, the mitogen-activated protein kinase (MAPK) gene CMK1 is involved in several steps of the infection process, including appressorium formation. In this study, the goal was to investigate roles of other MAPKs in C. lagenarium. The MAPK gene MAF1, related to Saccharomyces cerevisiae MPK1 and Magnaporthe grisea MPS1, was isolated and functionally characterized. The maf1 gene replacement mutants grew normally, but there was a significant reduction in conidiation and fungal pathogenicity. The M. grisea mps1 mutant forms appressoria, but conidia of the C. lagenarium maf1 mutants produced elongated germ tubes without appressoria on both host plant and glass, on which the wild type forms appressoria, suggesting that MAF1 has an essential role in appressorium formation on inductive surfaces. On a nutrient agar, wild-type conidia produced elongated germ tubes without appressoria. The morphological phenotype of the wild type on the nutrient agar was similar to that of the maf1 mutants on inductive surfaces, suggesting repression of the MAF1-mediated appressorium differentiation on the nutrient agar. The cmk1 mutants failed to form normal appressoria but produced swollen, appressorium-like structures on inductive surfaces, which is morphologically different from the maf1 mutants. These findings suggest that MAF1 is required for the early differentiation phase of appressorium formation, whereas CMK1 is involved in the maturation of appressoria.  相似文献   

12.
The fungus Cercospora zeae-maydis causes gray leaf spot of maize and produces cercosporin, a photosensitizing perylenequinone with toxic activity against a broad spectrum of organisms. However, little is known about the biosynthetic pathway or factors that regulate cercosporin production. Analysis of a cDNA subtraction library comprised of genes that are up-regulated during cercosporin synthesis revealed a sequence highly similar to mitogen-activated protein (MAP) kinases in other fungi. Sequencing and conceptual translation of the full-length genomic sequence indicated that the gene, which we designated CZK3, contains a 4,119-bp open reading frame devoid of introns and encodes a 1,373-amino acid sequence that is highly similar to Wis4, a MAP kinase kinase kinase in Schizosaccharomyces pombe. Targeted disruption of CZK3 suppressed expression of genes predicted to participate in cercosporin biosynthesis and abolished cercosporin production. The disrupted mutants grew faster on agar media than the wild type but were deficient in conidiation and elicited only small chlorotic spots on inoculated maize leaves compared with rectangular necrotic lesions incited by the wild type. Complementation of disruptants with the CZK3 open reading frame and flanking sequences restored wild-type levels of conidiation, growth rate, and virulence as well as the ability to produce cercosporin. The results suggest that cercosporin is a virulence factor in C. zeae-maydis during maize pathogenesis, but the pleiotropic effects of CZK3 disruption precluded definitive conclusions.  相似文献   

13.
14.
MUC1 mucin is a receptor-like glycoprotein expressed abundantly in various cancer cell lines as well as in glandular secretory epithelial cells, including airway surface epithelial cells. The role of this cell surface mucin in the airway is not known. In an attempt to understand the signaling mechanism of MUC1 mucin, we established a stable cell line from COS-7 cells expressing a chimeric receptor consisting of the extracellular and transmembrane domains of CD8 and the cytoplasmic (CT) domain of MUC1 mucin (CD8/MUC1 cells). We previously observed that treatment of these cells with anti-CD8 antibody resulted in tyrosine phosphorylation of the CT domain of the chimera. Here we report that treatment of CD8/MUC1 cells with anti-CD8 resulted in activation of extracellular signal-regulated kinase (ERK) 2 as assessed by immunoblotting, kinase assay, and immunocytochemistry. The activation of ERK2 was completely blocked either by a dominant negative Ras mutant or in the presence of a mitogen-activated protein kinase kinase (MEK) inhibitor. We conclude that tyrosine phosphorylation of the CT domain of MUC1 mucin leads to activation of a mitogen-activated protein kinase pathway through the Ras-MEK-ERK2 pathway. Combined with the existing data by others, it is suggested that one of the roles of MUC1 mucin may be regulation of cell growth and differentiation via a common signaling pathway, namely the Grb2-Sos-Ras-MEK-ERK2 pathway.  相似文献   

15.
MAP kinase signaling in diverse effects of ethanol   总被引:9,自引:0,他引:9  
Aroor AR  Shukla SD 《Life sciences》2004,74(19):2339-2364
Chronic ethanol abuse is associated with liver injury, neurotoxicity, hypertension, cardiomyopathy, modulation of immune responses and increased risk for cancer, whereas moderate alcohol consumption exerts protective effect on coronary heart disease. However, the signal transduction mechanisms underlying these processes are not well understood. Emerging evidences highlight a central role for mitogen activated protein kinase (MAPK) family in several of these effects of ethanol. MAPK signaling cascade plays an essential role in the initiation of cellular processes such as proliferation, differentiation, development, apoptosis, stress and inflammatory responses. Modulation of MAPK signaling pathway by ethanol is distinctive, depending on the cell type; acute or chronic; normal or transformed cell phenotype and on the type of agonist stimulating the MAPK. Acute exposure to ethanol results in modest activation of p42/44 MAPK in hepatocytes, astrocytes, and vascular smooth muscle cells. Acute ethanol exposure also results in potentiation or prolonged activation of p42/44MAPK in an agonist selective manner. Acute ethanol treatment also inhibits serum stimulated p42/44 MAPK activation and DNA synthesis in vascular smooth muscle cells. Chronic ethanol treatment causes decreased activation of p42/44 MAPK and inhibition of growth factor stimulated p42/44 MAPK activation and these effects of ethanol are correlated to suppression of DNA synthesis, impaired synaptic plasticity and neurotoxicity. In contrast, chronic ethanol treatment causes potentiation of endotoxin stimulated p42/44 MAPK and p38 MAPK signaling in Kupffer cells leading to increased synthesis of tumor necrosis factor. Acute exposure to ethanol activates pro-apoptotic JNK pathway and anti-apoptotic p42/44 MAPK pathway. Apoptosis caused by chronic ethanol treatment may be due to ethanol potentiation of TNF induced activation of p38 MAPK. Ethanol induced activation of MAPK signaling is also involved in collagen expression in stellate cells. Ethanol did not potentiate serum stimulated or Gi-protein dependent activation of p42/44 MAPK in normal hepatocytes but did so in embryonic liver cells and transformed hepatocytes leading to enhanced DNA synthesis. Ethanol has a 'triangular effect' on MAPK that involve direct effects of ethanol, its metabolically derived mediators and oxidative stress. Acetaldehyde, phosphatidylethanol, fatty acid ethyl ester and oxidative stress, mediate some of the effects seen after ethanol alone whereas ethanol modulation of agonist stimulated MAPK signaling appears to be mediated by phosphatidylethanol. Nuclear MAPKs are also affected by ethanol. Ethanol modulation of nuclear p42/44 MAPK occurs by both nuclear translocation of p42/44 MAPK and its activation in the nucleus. Of interest is the observation that ethanol caused selective acetylation of Lys 9 of histone 3 in the hepatocyte nucleus. It is plausible that ethanol modulation of cross talk between phosphorylation and acetylations of histone may regulate chromatin remodeling. Taken together, these recent developments place MAPK in a pivotal position in relation to cellular actions of ethanol. Furthermore, they offer promising insights into the specificity of ethanol effects and pharmacological modulation of MAPK signaling. Such molecular signaling approaches have the potential to provide mechanism-based therapy for the management of deleterious effects of ethanol or for exploiting its beneficial effects.  相似文献   

16.
Chen T  Zhu H  Ke D  Cai K  Wang C  Gou H  Hong Z  Zhang Z 《The Plant cell》2012,24(2):823-838
The symbiosis receptor kinase, SymRK, is required for root nodule development. A SymRK-interacting protein (SIP2) was found to form protein complex with SymRK in vitro and in planta. The interaction between SymRK and SIP2 is conserved in legumes. The SIP2 gene was expressed in all Lotus japonicus tissues examined. SIP2 represents a typical plant mitogen-activated protein kinase kinase (MAPKK) and exhibited autophosphorylation and transphosphorylation activities. Recombinant SIP2 protein could phosphorylate casein and the Arabidopsis thaliana MAP kinase MPK6. SymRK and SIP2 could not use one another as a substrate for phosphorylation. Instead, SymRK acted as an inhibitor of SIP2 kinase when MPK6 was used as a substrate, suggesting that SymRK may serve as a negative regulator of the SIP2 signaling pathway. Knockdown expression of SIP2 via RNA interference (RNAi) resulted in drastic reduction of nodules formed in transgenic hairy roots. A significant portion of SIP2 RNAi hairy roots failed to form a nodule. In these roots, the expression levels of SIP2 and three marker genes for infection thread and nodule primordium formation were downregulated drastically, while the expression of two other MAPKK genes were not altered. These observations demonstrate an essential role of SIP2 in the early symbiosis signaling and nodule organogenesis.  相似文献   

17.
Little is known about the molecular basis of organelle size control in eukaryotes. Cells of the biflagellate alga Chlamydomonas reinhardtii actively maintain their flagella at a precise length. Chlamydomonas mutants that lose control of flagellar length have been isolated and used to demonstrate that a dynamic process keeps flagella at an appropriate length. To date, none of the proteins required for flagellar length control have been identified in any eukaryotic organism. Here, we show that a novel MAP kinase is crucial to enforcing wild-type flagellar length in C. reinhardtii. Null mutants of LF4 [2], a gene encoding a protein with extensive amino acid sequence identity to a mammalian MAP kinase of unknown function, MOK [3], are unable to regulate the length of their flagella. The LF4 protein (LF4p) is localized to the flagella, and in vitro enzyme assays confirm that the protein is a MAP kinase. The long-flagella phenotype of lf4 cells is rescued by transformation with the cloned LF4 gene. The demonstration that a novel MAP kinase helps enforce flagellar length control indicates that a previously unidentified signal transduction pathway controls organelle size in C. reinhardtii.  相似文献   

18.
Interleukin-8 (IL-8) is known to contribute to human cancer progression through its potential function as a mitogenic, angiogenic, or motogenic factor. We found a high level of IL-8 production in SK-N-MC human primitive neuroectodermal tumor cells transfected with the human RET gene (SK-N-MC (RET) cells) in response to glial cell line-derived neurotrophic factor (GDNF) stimulation. IL-8 was also produced at high levels in TT human medullary thyroid carcinoma and TPC-1 human papillary thyroid carcinoma cell lines both of which express activated RET tyrosine kinase. To investigate which signaling pathways are responsible for IL-8 expression, we treated SK-N-MC (RET) cells with several kinase inhibitors before GDNF stimulation. The results showed that a MEK1 inhibitor, PD98059, a p38MAPK inhibitor, SB202190, and a protein kinase C (PKC) inhibitor, Calphostin C, markedly decreased the IL-8 secretion from SK-N-MC (RET) cells at 24 h after GDNF stimulation. In contrast, a phosphatidylinositol 3-kinase (PI3-K) inhibitor, LY294002, increased its secretion. These results thus suggested that IL-8 production by RET tyrosine kinase is regulated by multiple signaling pathways.  相似文献   

19.
20.
Control of MAP kinase signaling to the nucleus   总被引:11,自引:0,他引:11  
Kondoh K  Torii S  Nishida E 《Chromosoma》2005,114(2):86-91
MAP kinase (MAPK) signaling is among central signaling pathways that regulate cell proliferation, cell differentiation and apoptosis. As MAPK should transmit extracellular signals to proper regions or compartments in cells, controlling subcellular localization of MAPK is important for regulating fidelity and specificity of MAPK signaling. The ERK1/2-type of MAPK is the best characterized member of the MAPK family. In response to extracellular stimulus, ERK1/2 translocates from the cytoplasm to the nucleus by passing through the nuclear pore by several independent mechanisms. Sef (similar expression to fgf genes), a transmembrane protein, has been shown to be a regulator of subcellular distribution of ERK1/2. Sef binds to activated MEK1/2, the specific activator of ERK1/2, and tethers the activated MEK1/2/activated ERK1/2 complex to the Golgi apparatus and the plasma membrane. Thus, Sef blocks ERK1/2 signaling to the nucleus and allows signaling to the cytoplasm. Here we review recent findings on spatial regulation of MAPK, especially on nucleocytoplasmic trafficking of ERK1/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号