首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein methylation plays an integral role in cellular signaling, most notably by modulating proteins bound at chromatin and increasingly through regulation of non-histone proteins. One central challenge in understanding how methylation acts in signaling is identifying and measuring protein methylation. This includes locus-specific modification of histones, on individual non-histone proteins, and globally across the proteome. Protein methylation has been studied traditionally using candidate approaches such as methylation-specific antibodies, mapping of post-translational modifications by mass spectrometry, and radioactive labeling to characterize methylation on target proteins. Recent developments have provided new approaches to identify methylated proteins, measure methylation levels, identify substrates of methyltransferase enzymes, and match methylated proteins to methyl-specific reader domains. Methyl-binding protein domains and improved antibodies with broad specificity for methylated proteins are being used to characterize the “protein methylome”. They also have the potential to be used in high-throughput assays for inhibitor screens and drug development. These tools are often coupled to improvements in mass spectrometry to quickly identify methylated residues, as well as to protein microarrays, where they can be used to screen for methylated proteins. Finally, new chemical biology strategies are being used to probe the function of methyltransferases, demethylases, and methyl-binding “reader” domains. These tools create a “system-level” understanding of protein methylation and integrate protein methylation into broader signaling processes.  相似文献   

2.
3.
4.
Advances in autism genetics: on the threshold of a new neurobiology   总被引:1,自引:0,他引:1  
Autism is a heterogeneous syndrome defined by impairments in three core domains: social interaction, language and range of interests. Recent work has led to the identification of several autism susceptibility genes and an increased appreciation of the contribution of de novo and inherited copy number variation. Promising strategies are also being applied to identify common genetic risk variants. Systems biology approaches, including array-based expression profiling, are poised to provide additional insights into this group of disorders, in which heterogeneity, both genetic and phenotypic, is emerging as a dominant theme.  相似文献   

5.
MOTIVATION: Large amounts of protein and domain interaction data are being produced by experimental high-throughput techniques and computational approaches. To gain insight into the value of the provided data, we used our new similarity measure based on the Gene Ontology (GO) to evaluate the molecular functions and biological processes of interacting proteins or domains. The applied measure particularly addresses the frequent annotation of proteins or domains with multiple GO terms. RESULTS: Using our similarity measure, we compare predicted domain-domain and human protein-protein interactions with experimentally derived interactions. The results show that our similarity measure is of significant benefit in quality assessment and confidence ranking of domain and protein networks. We also derive useful confidence score thresholds for dividing domain interaction predictions into subsets of low and high confidence. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

6.
With the tremendous expansion of molecular sequence data in recent years, multiple alignment is arguably one of the two most important analytic techniques (the other being fast database searching). A number of useful approaches to this problem have previously been developed, but often they are limited to only a subset of multiple-alignment applications and cannot easily deal with the complex structural organization seen in an increasing number of sequences. For example, a single sequence may contain several domains of different evolutionary origins, and the multiplicities and relative ordering of these domains may be quite different among related sequences. Here we describe an integrated set of interactive Unix tools that combines several multiple-alignment techniques with traditional "dot-plot" visualization to provide a flexible environment for approaching complex sequence analysis problems. We apply these tools to the identification and characterization of "catalytic" domains in ras and rho/rac GTPase-activating proteins, to "Src homology" (SH2, SH3) domains in cytoplasmic signaling proteins, to repetitive sequence motifs in the alpha and beta subunits of protein prenyltransferases, and to regulatory DNA sequences in the locus control region of the beta-globin gene cluster.  相似文献   

7.
Within the field of species distribution modelling an apparent dichotomy exists between process‐based and correlative approaches, where the processes are explicit in the former and implicit in the latter. However, these intuitive distinctions can become blurred when comparing species distribution modelling approaches in more detail. In this review article, we contrast the extremes of the correlative–process spectrum of species distribution models with respect to core assumptions, model building and selection strategies, validation, uncertainties, common errors and the questions they are most suited to answer. The extremes of such approaches differ clearly in many aspects, such as model building approaches, parameter estimation strategies and transferability. However, they also share strengths and weaknesses. We show that claims of one approach being intrinsically superior to the other are misguided and that they ignore the process–correlation continuum as well as the domains of questions that each approach is addressing. Nonetheless, the application of process‐based approaches to species distribution modelling lags far behind more correlative (process‐implicit) methods and more research is required to explore their potential benefits. Critical issues for the employment of species distribution modelling approaches are given, together with a guideline for appropriate usage. We close with challenges for future development of process‐explicit species distribution models and how they may complement current approaches to study species distributions.  相似文献   

8.
Diverse ketosynthase (KS) genes were retrieved from the microbial community associated with the Great Barrier Reef sponge Pseudoceratina clavata. Bacterial isolation and metagenomic approaches were employed. Phylogenetic analysis of 16S rRNA of culturable sponge-associated bacterial communities comprised eight groups over four phyla. Ten KS domains were amplified from four genera of isolates and phylogenetics demonstrated that these KS domains were located in three clusters (actinobacterial, cyanobacterial and trans-AT type). Metagenomic DNA of the sponge microbial community was extracted to explore community KS genes by two approaches: direct amplification of KS domains and construction of fosmid libraries for KS domain screening. Five KS domains were retrieved from polymerase chain reaction (PCR) amplification using sponge metagenome DNA as template and five fosmid clones containing KS domains found using multiplex PCR screening. Analysis of selected polyketide synthase (PKS) from one fosmid showed that the PKS consists of two modules. Open reading frames located up- and downstream of the PKS displayed similarity with membrane synthesis-related proteins such as cardiolipin synthase. Metagenome approaches did not detect KS domains found in sponge isolates. All KS domains from both metagenome approaches formed a single cluster with KS domains originating from metagenomes derived from other sponge species from other geographical regions.  相似文献   

9.
Dysferlinopathies are autosomal recessive disorders caused by mutations in the dysferlin (DYSF) gene, encoding the dysferlin protein. DYSF mutations lead to a wide range of muscular phenotypes, with the most prominent being Miyoshi myopathy (MM) and limb girdle muscular dystrophy type 2B (LGMD2B) and the second most common being LGMD. Symptoms generally appear at the end of childhood and, although disease progression is typically slow, walking impairments eventually result. Dysferlin is a modular type II transmembrane protein for which numerous binding partners have been identified. Although dysferlin function is only partially elucidated, this large protein contains seven calcium sensor C2 domains, shown to play a key role in muscle membrane repair. On the basis of this major function, along with detailed clinical observations, it has been possible to design various therapeutic approaches for dysferlin-deficient patients. Among them, exon-skipping and minigene transfer strategies have been evaluated at the preclinical level and, to date, represent promising approaches for clinical trials. This review aims to summarize the pathophysiology of dysferlinopathies and to evaluate the therapeutic potential for treatments currently under development.  相似文献   

10.
The role of gap junction membrane channels in development   总被引:11,自引:0,他引:11  
In most developmental systems, gap junction-mediated cell-cell communication (GJC) can be detected from very early stages of embryogenesis. This usually results in the entire embryo becoming linked as a syncytium. However, as development progresses, GJC becomes restricted at discrete boundaries, leading to the subdivision of the embryo into communication compartment domains. Analysis of gap junction gene expression suggests that this functional subdivision of GJC may be mediated by the differential expression of the connexin gene family. The temporal-spatial pattern of connexin gene expression during mouse embryogenesis is highly suggestive of a role for gap junctions in inductive interactions, being regionally restricted in distinct developmentally significant domains. Using reverse genetic approaches to manipulate connexin gene function, direct evidence has been obtained for the connexin 43 (Cx43) gap junction gene playing a role in mammalian development. The challenges in the future are the identification of the target cell populations and the cell signaling processes in which Cx43-mediated cell-cell interactions are critically required in mammalian development. Our preliminary observations suggest that neural crest cells may be one such cell population.  相似文献   

11.
We have identified a family of 'Agenet' domains that are plant-specific homologs of Tudor domains. This finding has been extended, using a combination of sequence- and structure-dependent approaches, to show that the three beta-stranded core regions of Tudor, PWWP, chromatin-binding (Chromo) and MBT domains are homologous because they originate from a common ancestor. In addition, we have revealed pairs of tandem repeats in the fragile X mental retardation protein (FMRP) family that are also members of this Tudor domain 'Royal Family'.  相似文献   

12.
Both biological and model membranes can exhibit the formation of domains. A brief review of some of the diverse methodologies used to identify the presence of domains in membranes is given. Some of these domains are enriched in cholesterol. The segregation of lipids into cholesterol-rich domains can occur in both pure lipid systems as well as membranes containing peptides and proteins. Peptides and proteins can promote the formation of cholesterol-rich domains not only by preferentially interacting with cholesterol and being sequestered into these regions of the membrane, but also indirectly as a consequence of being excluded from cholesterol-rich domains. The redistribution of components is dictated by the thermodynamics of the system. The formation of domains in a biological membrane is a consequence of all of the intermolecular interactions including those among lipid molecules as well as between lipids and proteins.  相似文献   

13.
Optogenetics is an emerging field that combines optical and genetic approaches to non-invasively interfere with cellular events with exquisite spatiotemporal control. Although it arose originally from neuroscience, optogenetics is widely applicable to the study of many different biological systems and the range of applications arising from this technology continues to increase. Moreover, the repertoire of light-sensitive proteins used for devising new optogenetic tools is rapidly expanding. Light, Oxygen, or Voltage sensing (LOV) and Blue-Light-Utilizing flavin adenine dinucleotide (FAD) (BLUF) domains represent new contributors to the optogenetic toolkit. These small (100-140-amino acids) flavoprotein modules are derived from plant and bacterial photoreceptors that respond to UV-A/blue light. In recent years, considerable progress has been made in uncovering the photoactivation mechanisms of both LOV and BLUF domains. This knowledge has been applied in the design of synthetic photoswitches and fluorescent reporters with applications in cell biology and biotechnology. In this review, we summarize the photochemical properties of LOV and BLUF photosensors and highlight some of the recent advances in how these flavoproteins are being employed to artificially regulate and image a variety of biological processes.  相似文献   

14.
Plants are exposed to a temporally and spatially heterogeneous environment, and photosynthesis is well adapted to these fluctuations. Understanding of the complex, non-linear dynamics of photosynthesis in fluctuating light requires novel-modeling approaches that involve not only the primary light and dark biochemical reactions, but also networks of regulatory interactions. This requirement exceeds the capacity of the existing molecular models that are typically reduced to describe a partial process, dynamics of a specific complex or its particular dynamic feature. We propose a concept of comprehensive model that would represent an internally consistent, integral framework combining information on the reduced models that led to its construction. This review explores approaches and tools that exist in engineering, mathematics, and in other domains of biology that can be used to develop a comprehensive model of photosynthesis. Equally important, we investigated techniques by which one can rigorously reduce such a comprehensive model to models of low dimensionality, which preserve dynamic features of interest and, thus, contribute to a better understanding of photosynthesis under natural and thus fluctuating conditions. The web-based platform www.e-photosynthesis.org is introduced as an arena where these concepts and tools are being introduced and tested.  相似文献   

15.
Electrochemical detection of hydrogen peroxide at eight types of ormosil-modified electrodes, referred as hexacyanoferrate-system; Prussian blue systems (PB-1, PB-2, and PB-3), palladium (Pd-) system, graphite (Gr-) system, gold nanoparticle (AuNPs) system and palladium-gold nanoparticle (Pd-AuNPs) system were studied. The results on electrochemical detection suggested that hydrogen peroxide does not undergo homogeneous electrochemical mediation; however, the presence of redox mediator within nano-structured domains facilitates the electro-analysis of the same via redox electrocatalysis. Four approaches causing manipulation in nano-structured domains are described: (a) increase in the molecular size of the components generating nano-structured domains; (b) modulation via chemical reactivity; (c) modulation by non-reactive moieties and known nanoparticles; and (d) modulation by mixed approaches (a-c), all leading to decrease in a nano-structured domains. The results demonstrated that an increase in the size of nano-structured domains or decrease in micro-porous geometry increases the efficiency of electrocatalysis. The basic reaction protocol adopted in generating nano-structured domains, followed by manipulation protocols, supported the introduction of a library for creating electrocatalytic sites with varying electrocatalytic efficiency within the same basic nano-structured platform.  相似文献   

16.
Multi-domain bacterial protein toxins are being explored as potential carriers for targeted delivery of biomolecules. Previous approaches employing isolated receptor binding subunits disallow entry into the cytosol. Strategies in which catalytic domains are replaced with cargo molecules are presumably inefficient due to co-operation of domains during the endosomal translocation step. Here, we characterize a novel transport vehicle in which cargo proteins are attached to the amino terminus of the full-length botulinum neurotoxin type D (BoNT/D). The intrinsic enzymatic activity of the neurotoxin allowed quantification of the efficacy of cargo delivery to the cytosol. Dihydrofolate reductase and BoNT type A (BoNT/A) light chain (LC) were efficiently conveyed into the cytosol, whereas attachment of firefly luciferase or green fluorescent protein drastically reduced the toxicity. Luciferase and BoNT/A LC retained their catalytic activity as evidenced by luciferin conversion or SNAP-25 hydrolysis in the cytosol of synaptosomes, respectively. Conformationally stabilized dihydrofolate reductase as cargo considerably decreased the toxicity indicative for the requirement of partial unfolding of cargo protein and catalytic domain as prerequisite for efficient translocation across the endosomal membrane. Thus, enzymatically inactive clostridial neurotoxins may serve as effective, safe carriers for delivering proteins in functionally active form to the cytosol of neurones.  相似文献   

17.
18.
Mucins belong to a heterogeneous family of large O-glycoproteins composed of a long peptidic chain called apomucin on which are linked hundreds of oligosaccharidic chains. Among mucins, membrane-bound mucins are modular proteins and have a structural organization usually containing Pro/Thr/Ser-rich O-glycosylated domains (PTS), EGF-like and SEA domains. Via these modular domains, the membrane-bound mucins participate in cell signalling and cell interaction with their environment in normal and pathological conditions. Moreover, the recent knowledge of these domains and their biological activities led to the development of new therapeutic approaches involving mucins. In this review, we show 3D structures of EGF and SEA domains. We also describe the functional features of the evolutionary conserved domains of membrane-bound mucins and discuss consequences of splice events.  相似文献   

19.
The fine three-dimensional structure of the nucleosomal fiber has remained elusive to genome-wide chromosome conformation capture (3C) approaches. A new study mapping contacts at the single nucleosome level (Micro-C) reveals topological interacting domains along budding yeast chromosomes. These domains encompass one to five consecutive genes and are delimited by highly active promoters.  相似文献   

20.
Protein tyrosine kinases and protein tyrosine phosphatases play a key role in cell signaling, and the recent success of specific tyrosine kinase inhibitors in cancer treatment strongly validates the clinical relevance of basic research on tyrosine phosphorylation. Functional profiling of the tyrosine phosphoproteome is likely to lead to the identification of novel targets for drug discovery and provide a basis for novel molecular diagnostic approaches. The ultimate aim of current mass spectrometry-based phosphoproteomic approaches is the comprehensive characterization of the phosphoproteome. However, current methods are not yet sensitive enough for routine detection of a large percentage of tyrosine-phosphorylated proteins, which are generally of low abundance. In this article, we discuss alternative methods that exploit Src homology 2 (SH2) domains for profiling the tyrosine phosphoproteome. SH2 domains are small protein modules that bind specifically to tyrosine-phosphorylated peptides; there are more than 100 SH2 domains in the human genome, and different SH2 domains bind to different classes of tyrosine-phosphorylated ligands. These domains play a critical role in the propagation of signals in the cell, mediating the relocalization and complex formation of proteins in response to changes in tyrosine phosphorylation. We have developed an SH2 profiling method based on far-Western blotting, in which a battery of SH2 domains is used to probe the global state of tyrosine phosphorylation. Application to the classification of human malignancies suggests that this approach has potential as a molecular diagnostic tool. We also describe ongoing efforts to modify and improve SH2 profiling, including the development of a multiplexed assay system that will allow high-throughput functional profiling of the tyrosine phosphoproteome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号