首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The alpha-, beta-, and gamma-crystallins are the major structural proteins of mammalian lenses. The human lens also contains tryptophan-derived UV filters, which are known to spontaneously deaminate at physiological pH and covalently attach to lens proteins. 3-Hydroxykynurenine (3OHKyn) is the third most abundant of the kynurenine UV filters in the lens, and previous studies have shown this compound to be unstable and to be oxidized under physiological conditions, producing H2O2. In this study, we show that methionine and tryptophan amino acid residues are oxidized when bovine alpha-crystallin is incubated with 3-hydroxykynurenine. We observed almost complete oxidation of methionines 1 and 138 in alphaA-crystallin and a similar extent of oxidation of methionines 1 and 68 in alphaB-crystallin after 48 h. Tryptophans 9 and 60 in alphaB-crystallin were oxidized to a lesser extent. AlphaA-crystallin was also found to have 3OHKyn bound to its single cysteine residue. Examination of normal aged human lenses revealed no evidence of oxidation of alpha-crystallin; however, oxidation was detected at methionine 1 in both alphaA- and alphaB-crystallin from human cataractous lenses. Age-related nuclear cataract is associated with coloration and insolubilization of lens proteins and extensive oxidation of cysteine and methionine residues. Our findings demonstrate that 3-hydroxykynurenine can readily catalyze the oxidation of methionine residues in both alphaB- and alphaA-crystallin, and it has been reported that alpha-crystallin modified in this way is a poorer chaperone. Thus, 3-hydroxykynurenine promotes the oxidation and modification of crystallins and may contribute to oxidative stress in the human lens.  相似文献   

2.
Proteasome, a high molecular weight protease complex (HMP, approximately 600 kDa) was isolated from bovine eye lens epithelium tissue. In contrast with prior reports, lens proteasome degraded the major lens protein alpha-crystallin and S-carboxymethylated bovine serum albumin at 37 degrees C, mostly to trichloroacetic acid precipitable polypeptides. The proteasome, thus isolated, was labile at 55 degrees C. As indicated by the ability of p-chloromercuribenzoate and N-ethylmaleimide to block activity, a thiol group is required for activity. Alpha-crystallin was oxidized by exposure to 60Co-irradiation under an atmosphere of N2O (1-50 kilorads). This dose delivered 0.1-5.7 mol of hydroxyl radicals per mol of crystallin. Irradiation resulted in increased heterogeneity, aggregation, and fragmentation of the crystallin preparation. The proteolytic susceptibility of alpha-crystallin to the lens HMP was enhanced by the irradiation in a dose-dependent manner up to 20 kilorads (.OH concentration up to 2.3 mol per mol of alpha-crystallin). When 50 kilorads (5.7 mol .OH per mol of alpha-crystallin) was used, there was extensive aggregation and no enhancement in proteolysis over the unirradiated sample. The data indicate that the lens HMP can degrade mildly photooxidized lens proteins, but proteins which are extensively damaged are not degraded and may accumulate. This may be related to cataract formation.  相似文献   

3.
Previous studies from this laboratory have shown that there are striking similarities between the yellow chromophores, fluorophores and modified amino acids released by proteolytic digestion from calf lens proteins ascorbylated in vitro and their counterparts isolated from aged and cataractous lens proteins. The studies reported in this communication were conducted to further investigate whether ascorbic acid-mediated modification of lens proteins could lead to the formation of lens protein aggregates capable of scattering visible light, similar to the high molecular aggregates found in aged human lenses. Ascorbic acid, but not glucose, fructose, ribose or erythrulose, caused the aggregation of calf lens proteins to proteins ranging from 2.2 x 10(6) up to 3.0 x 10(8 )Da. This compared to proteins ranging from 1.8 x 10(6) up to 3.6 x 10(8 )Da for the water-soluble (WS) proteins isolated from aged human lenses. This aggregation was likely due to the glycation of lens crystallins because [U-(14)C] ascorbate was incorporated into the aggregate fraction and because NaCNBH(3), which reduces the initial Schiff base, prevented any protein aggregation. Reactions of ascorbate with purified crystallin fractions showed little or no aggregation of alpha-crystallin, significant aggregation of beta(H)-crystallin, but rapid precipitation of purified beta(L)- and gamma-crystallin. The aggregation of lens proteins can be prevented by the binding of damaged crystallins to alpha-crystallin due to its chaperone activity. Depending upon the ratios between the components of the incubation mixtures, alpha-crystallin prevented the precipitation of the purified beta(L)- and gamma-crystallin fractions during ascorbylation. The addition of at least 20% of alpha-crystallin by weight into glycation mixtures with beta(L)-, or gamma-crystallins completely inhibited protein precipitation, and increased the amount of the high molecular weight aggregates in solution. Static and dynamic light scattering measurements of the supernatants from the ascorbic acid-modified mixtures of alpha- and beta(L)-, or gamma-crystallins showed similar molar masses (up to 10(8 )Da) and hydrodynamic diameter (up to 80( )nm). These data support the hypothesis, that if the lens reducing environment is compromised, the ascorbylation of lens crystallins can significantly change the short range interactions between different classes of crystallins leading to protein aggregation, light scattering and eventually to senile cataract formation.  相似文献   

4.
The water-binding properties of bovine lens alpha-crystallin, collagen from calf skin and bovine serum albumin (BSA), were investigated with various techniques. The water absorptive capacity was obtained in high vacuum desorption experiments volumetrically, and also gravimetrically in controlled atmosphere experiments. NMR spin-echo technique was used to study the hydration of protein samples and to determine the spin-spin relaxation times (T2) from the protons of water, absorbed on the proteins. Isolated bovine lenses were sectioned into 11-12 morphological layers (from anterior cortex through nucleus to posterior cortex). Crystallin profiles were obtained for each lens layer using thin-layer isoelectric focusing in polyacrylamide gel (IEF). The water content in relation to dry weight of proteins was measured in individual morphological lens layers. During the water vapor uptake P/P(0)=0.75, alpha-crystallin did not absorb water, suggesting that hydrophobic regions of the protein are exposed to the aqueous solvent. At P/P(0)=1.0, the absorption of water by alpha-crystallin was 17% with a single component decay character of spin-echo (T2=3 ms). Addition of water to alpha-crystallin to about 50% of its w/w in the protein sample showed T2=8 ms with only one single component decay of the spin-echo signal. The single component decay character of the spin-echo indicates at the tightly bound water by alpha-crystallin. Under a relative humidity P/P(0)=1.0, collagen and BSA absorbed correspondingly 19.3% and 28% of water and showed a two-component decay curve with T2 of about 5 and 40 ms. The findings demonstrate the presence of two water fractions in collagen and BSA which are separated in space. The IEF data suggest a tight binding of water with alpha-crystallin with similar distribution patterns in the lens layers. The IEF data demonstrate a possible chaperone-like function for alpha-crystallin in the nucleus and inner cortex of the lens, but not in the outer cortex. To conclude, it was found that alpha-crystallin can immobilize and bind water to a greater extent than other proteins such as collagen and BSA. These results shed new light on structural properties of alpha-crystallin and have important implications for understanding the mechanism of the chaperone-like action of this protein in the lens and non-ocular tissues.  相似文献   

5.
alpha-Crystallin, a molecular chaperone of the eye lens, plays an important role in maintaining the transparency of the lens by preventing the aggregation/inactivation of several proteins and enzymes in addition to its structural role. alpha-Crystallin is a long-lived protein and is susceptible to several posttranslational modifications during aging, more so in certain clinical conditions such as diabetes. Nonenzymatic glycation of lens proteins and decline in the chaperone-like function of alpha-crystallin have been reported in diabetic conditions. Therefore, inhibitors of nonenzymatic protein glycation appear to be a potential target to preserve the chaperone activity of alpha-crystallin and to combat cataract under hyperglycemic conditions. In this study, we investigated the antiglycating potential of cumin in vitro and its ability to modulate the chaperone-like activity of alpha-crystallin vis-à-vis the progression of diabetic cataract in vivo. Aqueous extract of cumin was tested for its antiglycating ability against fructose-induced glycation of goat lens total soluble protein (TSP), alpha-crystallin from goat lens and a nonlenticular protein bovine serum albumin (BSA). The antiglycating potential of cumin was also investigated by feeding streptozotocin (STZ)-induced diabetic rats with diet containing 0.5% cumin powder. The aqueous extract of cumin prevented in vitro glycation of TSP, alpha-crystallin and BSA. Slit lamp examination revealed that supplementation of cumin delayed progression and maturation of STZ-induced cataract in rats. Cumin was effective in preventing glycation of TSP and alpha-crystallin in diabetic lens. Interestingly, feeding of cumin to diabetic rats not only prevented loss of chaperone activity but also attenuated the structural changes of alpha-crystallin in lens. These results indicated that cumin has antiglycating properties that may be attributed to the modulation of chaperone activity of alpha-crystallin, thus delaying cataract in STZ-induced diabetic rats.  相似文献   

6.
D Roy  A Spector 《Biochemistry》1976,15(5):1180-1188
alpha-Crystallin has been isolated from the peripheral region of old cataractous lenses. It was found to be closely related to bovine alpha-crystallin and to human newly synthesized alpha-crystallin in terms of its amino acid composition, the size of its polypeptide chains and the lack of free NH2-terminal groups. However, in contrast to the simple urea gel electrophoretic polypeptide patterns obtained with the reference proteins, 11 polypeptides were detected in the preparation. Ten of the polypeptides were isolated and shown to be either A or B chains on the basis of their amino acid compositions and comparison of the peptide maps of their tryptic hydrolysates. The four B chains as well as the six A chains were closely related, with most of the tryptic peptides being common to all members of their respective group. A nomenclature based upon the urea gel electrophoretic mobilites of the polypeptides has been proposed to define each chain. It was found that this alpha-crystallin preparation is composed of at least two populations of macromolecules, one of which contains macromolecules greater than 5 X 10(6) daltons on the basis of gel filtration with Bio-Gel A-5m. The compositions of the two fractions were found to be essentially identical.  相似文献   

7.
M Maiti  M Kono  B Chakrabarti 《FEBS letters》1988,236(1):109-114
Of the crystallin proteins of the lens, the principal subunit of the beta-crystallin, beta B2 (beta Bp), has been considered to be the only heat-stable protein because it does not precipitate upon heating. In our recent investigations, however, we have found that the alpha-crystallin from bovine lenses is not only heat stable but also does not denature at temperatures up to 100 degrees C. Using circular dichroism and fluorescence to monitor the conformational changes of alpha- and beta B2-crystallins upon heating, we found that alpha-crystallin maintains a high degree of structure, whereas the beta B2-crystallin shows a reversible sigmoidal order-disorder transition at about 58 degrees C.  相似文献   

8.
9.
Whole eye lens and alpha-crystallin gels and solutions were investigated using X-ray scattering techniques at temperatures ranging from 20 degrees C to 70 degrees C. In whole lens isolated in phosphate-buffered saline, the spacing of the dominant X-ray reflection seen with low-angle scattering was constant from 20 degrees C to 45 degrees C but increased at 50 degrees C from 15.2 nm to 16.5 nm. At room temperature, the small-angle X-ray diffraction pattern of the intact lens was very similar to the pattern of alpha-crystallin gels at near-physiological concentration (approximately 300 mg/ml), so it is reasonable to assume that the alpha-crystallin pattern dominates the pattern of the intact lens. Our results therefore indicate that in whole lens alpha-crystallin is capable of maintaining its structural properties over a wide range of temperature. This property would be useful in providing protection for other lens proteins super-aggregating. In the alpha-crystallin gels, a moderate increase in both the spacing and intensity of the reflection was observed from 20 degrees C to 45 degrees C, followed by an accelerated increase from 45 degrees C to 70 degrees C. Upon cooling, this effect was found to be irreversible over 11 hours. Qualitatively similar results were observed for alpha-crystallin solutions at a variety of lower concentrations.  相似文献   

10.
Crystallins are structural proteins responsible for establishing the remarkable optical properties of the lens. Yet many of these highly conserved proteins are also expressed in nonocular tissues, where they have alternative functions apparently unrelated to their structural role in the lens. Here we report that lens alpha-crystallins, some of which function as heat-shock proteins in other tissues, are modified with O-linked N-acetylglucosamine (O-GlcNAc). An in vitro enzymatic assay that transfers [3H]Gal to terminal GlcNAc moieties labels alpha A and alpha B crystallins in lens homogenates from man, rhesus monkey, rat, cow, and rhea (an ostrich-like bird). O-Linkage of the saccharide is demonstrated by sensitivity to base-catalyzed beta-elimination and resistance to peptide:N-glycosidase F treatment. Chromatographic analyses of the beta-elimination products and fast atom bombardment-mass spectrometry of [3H]Gal-labeled tryptic peptides confirm the saccharide structure. Isoelectric focusing of [3H]Gal-labeled bovine lens proteins reveals the presence of O-GlcNAc on all four alpha-crystallin subunits, A1, A2, B1, and B2. Electrospray mass spectrometry of bovine alpha-crystallin demonstrates the presence of a single O-GlcNAc substitution on alpha A2. Gas-phase protein sequencing and fast atom bombardment-mass spectrometry of the major radiolabeled tryptic peptide from bovine alpha-crystallin reveal that GlcNAc is attached to the alpha A subunits at serine 162. This post-translational modification may play an important role in the molecular organization of lens alpha-crystallin.  相似文献   

11.
Kose S  Imamoto N  Yoneda Y 《FEBS letters》1999,453(3):327-330
Carbohydrates with reactive aldehyde and ketone groups can undergo Maillard reactions with proteins to form advanced glycation end products. Oxalate monoalkylamide was identified as one of the advanced glycation end products formed from the Maillard reaction of ascorbate with proteins. In these experiments, we have analyzed human lens proteins immunochemically for the presence of oxalate monoalkylamide. Oxalate monoalkylamide was absent in most of the very young lenses but was present in old and cataractous lenses. The highest levels were found in senile brunescent lenses. Incubation experiments using bovine lens proteins revealed that oxalate monoalkylamide could form from the ascorbate degradation products, 2,3-diketogulonate and L-threose. These data provide the first evidence for oxalate monoalkylamide in vivo and suggest that ascorbate degradation and its binding to proteins are enhanced during lens aging and cataract formation.  相似文献   

12.
Age-related cataract is a result of crystallins, the predominant lens proteins, forming light-scattering aggregates. In the low protein turnover environment of the eye lens, the crystallins are susceptible to modifications that can reduce stability, increasing the probability of unfolding and aggregation events occurring. It is hypothesized that the alpha-crystallin molecular chaperone system recognizes and binds these proteins before they can form the light-scattering centres that result in cataract, thus maintaining the long-term transparency of the lens. In the present study, we investigated the unfolding and aggregation of (wild-type) human and calf betaB2-crystallins and the formation of a complex between alpha-crystallin and betaB2-crystallins under destabilizing conditions. Human and calf betaB2-crystallin unfold through a structurally similar pathway, but the increased stability of the C-terminal domain of human betaB2-crystallin relative to calf betaB2-crystallin results in the increased population of a partially folded intermediate during unfolding. This intermediate is aggregation-prone and prevents constructive refolding of human betaB2-crystallin, while calf betaB2-crystallin can refold with high efficiency. alpha-Crystallin can effectively chaperone both human and calf betaB2-crystallins from thermal aggregation, although chaperone-bound betaB2-crystallins are unable to refold once returned to native conditions. Ordered secondary structure is seen to increase in alpha-crystallin with elevated temperatures up to 60 degrees C; structure is rapidly lost at temperatures of 70 degrees C and above. Our experimental results combined with previously reported observations of alpha-crystallin quaternary structure have led us to propose a structural model of how activated alpha-crystallin chaperones unfolded betaB2-crystallin.  相似文献   

13.
Andley UP  Hamilton PD  Ravi N 《Biochemistry》2008,47(36):9697-9706
AlphaA-crystallin is a small heat shock protein that functions as a molecular chaperone and a lens structural protein. The R49C single-point mutation in alphaA-crystallin causes hereditary human cataracts. We have previously investigated the in vivo properties of this mutant in a gene knock-in mouse model. Remarkably, homozygous mice carrying the alphaA-R49C mutant exhibit nearly complete lens opacity concurrent with small lenses and small eyes. Here we have investigated the 90 degrees light scattering, viscosity, refractive index, and bis-ANS fluorescence of lens proteins isolated from the alphaA-R49C mouse lenses and found that the concentration of total water-soluble proteins showed a pronounced decrease in alphaA-R49C homozygous lenses. Light scattering measurements on proteins separated by gel permeation chromatography showed a small amount of high-molecular mass aggregated material in the void volume which still remains soluble in alphaA-R49C homozygous lens homogenates. An increased level of binding of beta- and gamma-crystallin to the alpha-crystallin fraction was observed in alphaA-R49C heterozygous and homozygous lenses but not in wild-type lenses. Quantitative analysis with the hydrophobic fluorescence probe bis-ANS showed a pronounced increase in fluorescence yield upon binding to alpha-crystallin from mutant as compared with the wild-type lenses. These results suggest that the decrease in the solubility of the alphaA-R49C mutant protein was due to an increase in its hydrophobicity and supra-aggregation of alphaA-crystallin that leads to cataract formation. Our study further shows that analysis of mutant proteins from the mouse model is an effective way to understand the mechanism of protein insolubilization in hereditary cataracts.  相似文献   

14.
alpha-Crystallin, the major eye lens protein and a member of the small heat-shock protein family, has been shown to protect the aggregation of several proteins and enzymes under denaturing conditions. The region(s) in the denaturing proteins that interact with alpha-crystallin during chaperone action has not been identified. Determination of these sites would explain the wide chaperoning action (promiscuity) of alpha-crystallin. In the present study, using two different methods, we have identified a sequence in yeast alcohol dehydrogenase (ADH) that binds to alpha-crystallin during chaperone-like action. The first method involved the incubation of alpha-crystallin with ADH peptides at 48 degrees C for 1 h followed by separation and analysis of bound peptides. In the second method, alpha-crystallin was first derivatized with a photoactive trifunctional cross-linker, sulfosuccinimidyl-2[6-(biotinamido)-2-(p-azidobenzamido)-hexanoamido]ethyl-1,3di-thiopropionate (sulfo-SBED), and then complexed with ADH at 48 degrees C for 1 h in the dark. The complex was photolyzed and digested with protease, and the biotinylated peptide fragments were isolated using an avidin column and then analyzed. The amino acid sequencing and mass spectral analysis revealed the sequence YSGVCHTDLHAWHGDWPLPVK (yeast ADH(40-60)) as the alpha-crystallin binding site in ADH. The interaction was further confirmed by demonstrating complex formation between alpha-crystallin and a synthetic peptide representing the binding site of ADH.  相似文献   

15.
Two-dimensional 1H NMR spectroscopy of bovine eye lens alpha-crystallin and its isolated alpha A and alpha B subunits reveals that these aggregates have short and very flexible C-terminal extensions of eight (alpha A) and ten (alpha B) amino acids which adopt little preferred conformation in solution. Total alpha-crystallin forms a tighter aggregate than the isolated alpha A and alpha B subunit aggregates. Our results are consistent with a micelle model for alpha-crystallin quaternary structure. The presence of terminal extensions is a general feature of those crystallins, alpha and beta, which form aggregates.  相似文献   

16.
The amino acid sequences of the alpha-crystallin A and B chains of the dogfish, Squalus acanthias, have been determined. Comparison with alpha-crystallins from other species reveals that charged amino acid replacements have been strongly avoided in the evolution of this lens protein. The homology of alpha-crystallins with the small heat shock proteins is pronounced throughout the major part of the proteins, starting from the position of the first intron in the alpha-crystallin genes, but is also detectable in the amino-terminal sequences of human, Xenopus, and Drosophila small heat shock proteins. In addition, a remarkable short sequence similarity is present only in the amino termini of dogfish alpha B and Drosophila HSP22. The Schistosoma egg antigen p40 turns out to have a tandemly repeated region of homology with the common sequence domain of alpha-crystallins and small heat shock proteins. Comparison of hydropathy profiles indicates the conservation of conformation of the common domains in these three families of proteins. Construction of phylogenetic trees suggests that the alpha A and alpha B genes apparently originated from a single ancestral small heat shock protein gene and indicates that introns have been lost during the evolution of the heat shock protein genes.  相似文献   

17.
The chaperone-like activity of human lens alpha-crystallin in inhibiting the aggregation of denatured proteins suggests a role for alpha-crystallin in cataract prevention. Although a variety of techniques have generated structural information relevant to its chaperone-like activity, the size and heterogeneity of alpha-crystallin have prevented determination of its crystal structure. Even though synthetic cross-linkers have provided considerable information about protein structures, they have not previously been used to study the proximity and orientation of subunits within human alpha-crystallin. Cross-linkers provide structural insight into proteins by binding the side chains of amino acids within close proximity. To identify the cross-linked residues, the modified protein is digested and the resulting peptides are analyzed by mass spectrometry. Analysis of products from the reaction of alpha-crystallin with 3,3'dithiobis(sulfosuccinimidyl propionate), DTSSP, identified several modifications to both alphaA and alphaB. The most structurally informative of these modifications was a cross-link between lysine 166 of alphaA and lysine 175 of alphaB. This cross-link provides experimental evidence supporting theoretical structural models that place the C termini of alphaA and alphaB within close proximity in the native aggregate.  相似文献   

18.
The molecular chaperone function of alpha-crystallin in the lens prevents the aggregation and insolubilization of lens proteins that occur during the process of aging. We found that chemical modification of alpha-crystallin by a physiological alpha-dicarbonyl compound, methylglyoxal (MG), enhances its chaperone function. Protein-modifying sugars and ascorbate have no such effect and actually reduce chaperone function. Chaperone assay after immunoprecipitation or with immunoaffinity-purified argpyrimidine-alpha-crystallin indicates that 50-60% of the increased chaperone function is due to argpyrimidine-modified protein. Incubation of alpha-crystallin with DL-glyceraldehyde and arginine-modifying agents also enhances chaperone function, and we believe that the increased chaperone activity depends on the extent of arginine modification. Far- and near-UV circular dichroism spectra indicate modest changes in secondary and tertiary structure of MG-modified alpha-crystallin. LC MS/MS analysis of MG-modified alpha-crystallin following chymotryptic digestion revealed that R21, R49, and R103 in alphaA-crystallin were converted to argpyrimidine. 1,1'-Bis(4-anilino)naphthalene-5,5'-disulfonic acid binding, an indicator of hydrophobicity of proteins, increased in alpha-crystallin modified by low concentrations of MG (2-100 microM). MG similarly enhances chaperone function of another small heat shock protein, Hsp27. Our results show that posttranslational modification by a metabolic product can enhance the chaperone function of alpha-crystallin and Hsp27 and suggest that such modification may be a protective mechanism against environmental and metabolic stresses. Augmentation of the chaperone function of alpha-crystallin might have evolved to protect the lens from deleterious protein modifications associated with aging.  相似文献   

19.
Bovine lens alpha-crystallin was immobilized on EAH-Sepharose gel and glycated using d-ribose. Incubation with 500 and 100 mm d-ribose for 2 and 15 days produced short-term glycated (STGP gel) and long-term glycated proteins (LTGP gel). Both STGP and LTGP gels produced oxygen free radicals. Hydroxyl radical production was twice that in STGP gel compared with the LTGP gel. Incubation with the glycated gels produced pentosidine in a mixture of N-alpha-acetylarginine + N-alpha-acetyllysine, bovine lens proteins (BLP), and lysozyme; the amounts measured with STGP gel were higher than those with LTGP gel. Reactive oxygen species scavengers decreased the formation of pentosidine. Pentosidine was also formed in BLP when incubated with water-insoluble proteins extracted from aged or brunescent human lenses. Early glycated proteins from aged or diabetic lenses were bound to a boronate affinity column, the protein-containing gel was incubated with BLP, and pentosidine was measured in the incubation mixtures. With this method we found that diabetic lens proteins produced more pentosidine on BLP than did aged lens proteins. Further investigation indicates that two and three carbon carbohydrates possibly formed from oxidative cleavage of early glycation products are involved in pentosidine formation. Based on our findings, we propose a novel pathway for pentosidine formation on native proteins from glycated proteins.  相似文献   

20.
Maintenance of the state of differentiation in serially cultured bovine epithelial lens cells has been investigated. The radioactive labelled soluble proteins were studied by gel filtration and gel electrophoresis. 1. In the lens epithelium on its capsule, preferential synthesis of alpha B2 vs alpha A2 crystallin subunits and synthesis of beta-crystallins (mainly beta Bp) were observed. 2. Epithelial lens cells cultured on plastic Petri dishes for up to 35 divisions still synthesized alpha B2 and beta Bp, but no longer alpha A2. Conversely, the same cells injected into nude mice synthesized alpha B and alpha A, but no beta-crystallin could be detected. 3. The ratio of non-crystallin proteins to crystallin polypeptides increased drastically with the number of cell divisions. Among these proteins, both Mr 45 000 and Mr 57 000 proteins are probably constituents of the water-soluble cytoskeletal proteins, respectively actin and vimentin. A Mr 17 000 polypeptide was observed and its relationship with a metabolic product of alpha-crystallin is proposed. 4. The polymerization process of crystallin polypeptides in these cells was studied and compared with crystallin aggregates found in the lens. Newly synthesized alpha crystallins were readily involved in high molecular aggregates. This process does not seem to require alpha A, since only alpha B was detected. Interestingly, non-crystallin-soluble proteins form the bulk of proteins found in high molecular weight (HMW) polymers. The time course of crystallin aggregate formation, in long-term culture cells, seems to be different for alpha- vs beta-polypeptides. These results allowed us to conclude that bovine epithelial lens cells in vitro, although they do not undergo terminal differentiation into fibers, are not dedifferentiated, since they still express specific features of the epithelium in situ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号