首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Intracellular recordings have been made from the somata of two metathoracic flight motoneurons, one innervating an elevator muscle of the hindwing, the tergosternal muscle 113 and the other a depressor, the first basalar muscle 127. The locust,Ghortoicetes terminifera was mounted ventral side uppermost with the thorax restrained and opened for access to the thoracic ganglia. Patterns of electrical activity recorded from the thoracic muscles were similar to those shown by a locust during flight when tethered in a more normal posture. In flight the left and right 113 motoneurons each receive a single impulse together at every stroke of the wing, with the 127 muscles active in approximate antiphase. A spike in a 113 motoneuron causes a delayed wave of excitation simultaneously upon itself and its contralateral partner (Fig. 2). The epsp's which form these waves summate and may cause a spike which follows the original one with a delay equal to the wingbeat period. The delayed excitation of the contralateral motoneuron is of larger amplitude than the ipsilateral one so that spikes in either motoneuron must activate separate but symmetrical pathways. A single spike may cause multiple waves in either motoneuron, each separated by intervals equal to the wingbeat period (Fig. 3). In the pathway must be neurons capable of reverberation.A spike in a 113 motoneuron causes a delayed excitation of the ipsilateral 127 motoneuron so that its membrane potential is lowered antiphasically to that of 113 (Fig. 17). A spike in a 127 motoneuron has no effect on the 113 motoneurons. In flight these pathways causing delayed excitation may co-ordinate the motoneurons.The left and right 113 motoneurons receive common synaptic inputs from at least two sources (Fig. 8). These occur as bursts of epsp's at intervals approximately equal to or multiples of the wingbeat period and in the absence of flight. Epsp's of sufficient amplitude cause a spike in the motoneuron which is in the correct phase in the flight pattern relative to any other active motoneurons (Fig. 9). During sustained flight epsp's contribute to the wave of depolarization that the motoneuron undergoes at each wingbeat (Fig. 11). In the absence of the epsp's the motoneuron does not oscillate on its own. At the end of flight bursts of epsp's may continue at the flight frequency long after all activity in the muscles has ceased.Beit Memorial Research Fellow.  相似文献   

2.
Dipteran flies are amongst the smallest and most agile of flying animals. Their wings are driven indirectly by large power muscles, which cause cyclical deformations of the thorax that are amplified through the intricate wing hinge. Asymmetric flight manoeuvres are controlled by 13 pairs of steering muscles acting directly on the wing articulations. Collectively the steering muscles account for <3% of total flight muscle mass, raising the question of how they can modulate the vastly greater output of the power muscles during manoeuvres. Here we present the results of a synchrotron-based study performing micrometre-resolution, time-resolved microtomography on the 145 Hz wingbeat of blowflies. These data represent the first four-dimensional visualizations of an organism''s internal movements on sub-millisecond and micrometre scales. This technique allows us to visualize and measure the three-dimensional movements of five of the largest steering muscles, and to place these in the context of the deforming thoracic mechanism that the muscles actuate. Our visualizations show that the steering muscles operate through a diverse range of nonlinear mechanisms, revealing several unexpected features that could not have been identified using any other technique. The tendons of some steering muscles buckle on every wingbeat to accommodate high amplitude movements of the wing hinge. Other steering muscles absorb kinetic energy from an oscillating control linkage, which rotates at low wingbeat amplitude but translates at high wingbeat amplitude. Kinetic energy is distributed differently in these two modes of oscillation, which may play a role in asymmetric power management during flight control. Structural flexibility is known to be important to the aerodynamic efficiency of insect wings, and to the function of their indirect power muscles. We show that it is integral also to the operation of the steering muscles, and so to the functional flexibility of the insect flight motor.  相似文献   

3.
Summary In the locust,Locusta migratoria, the pairs of connectives between the three thoracic ganglia and in the neck were transected in all possible combinations. Each of these preparations was tested for the production of rhythmic flight motor activity, with sensory input from the wing receptors intact and after deafferentation. The motor activity elicited in these preparations was characterized by intracellular recordings from motoneurons and electromyographic analyses.The motor patterns observed in locusts with either the neck or the pro-mesothoracic connectives severed (Figs. 2, 3, and 4) were very similar to the flight motor pattern produced by animals with intact connectives. The activity recorded in mesothoracic flight motoneurons of locusts with either only the meso-metathoracic connectives cut or both the meso-metathoracic and the neck connectives transected were similar to each other. Rhythmic motor activity could be observed in these preparations only as long as sensory feedback from the wing receptors was intact. These patterns were significantly different from the intact motor pattern (Figs. 5, 6, and 7). Similar results were obtained when the mesothoracic ganglion was isolated from the other two thoracic ganglia, although the oscillations produced under these conditions were weak (Fig. 8 upper). In the isolated metathorax no rhythmic flight motor activity could be recorded (Fig. 8 lower), even when wing afferents were intact.Considering the differences between the motor patterns observed in the various preparations these results suggest that the ganglia of the locust ventral nerve cord do not contain segmental, homologous flight oscillators which are coupled to produce the intact flight rhythm. Instead they support the idea that the functional flight oscillator network is distributed throughout the thoracic ganglia (Robertson and Pearson 1984). The results also provide further evidence that sensory feedback from the wing sense organs is necessary for establishing the correct motor pattern in the intact animal (Wendler 1974, 1983; Pearson 1985; Wolf and Pearson 1987 a).Abbreviations CPG central pattern generator - EMG electromyogram  相似文献   

4.
1. Some flight motoneurones receive two superimposed rhythms of depolarizing synaptic potentials when the locust is not flying; a slow rhythm which is invariably linked to the expiratory phase of ventilation, and a fast rhythm with a period of about 50 ms which is similar to the wingbeat period in flight. 2. By recording simultaneously from groups of motoneurones, the synaptic potentials which underly these rhythms have been revealed in 30 flight motoneurones in the three thoracic ganglia. The inputs occur in elevator motoneurones and some depressors but are of lower amplitude in the latter. The inputs have not been found in leg motoneurones. 3. The rhythmic depolarizations are usually subthreshold but sum with sensory inputs to evoke spikes in flight motoneurones at intervals equal to or multiples of the wingbeat period in flight. 4. Both rhythms originate in the metathoracic ganglion and are mediated by the same interneurones. They can be adequately explained by supposing that there are two symmetrical interneurones which each make widespread connexions with left and right flight motoneurones in the three ganglia. 5. The slow rhythm is coded in the overall burst of interneurone spikes during expiration and the fast rhythm in the interval between the spikes of a burst.  相似文献   

5.
There is increasing evidence that heat shock (HS) has long-term effects on electrophysiological properties of neurons and synapses. Prior HS protects neural circuitry from a subsequent heat stress but little is known about the mechanisms that mediate this plasticity and induce thermotolerance. Exposure of Locusta migratoria to HS conditions of 45 degrees C for 3 h results in thermotolerance to hitherto lethal temperatures. Locust flight motor patterns were recorded during tethered flight at room temperature, before and after HS. In addition, intracellular action potentials (APs) were recorded from control and HS motoneurons in a semi-intact preparation during a heat stress. HS did not alter the timing of representative depressor or elevator muscle activity, nor did it affect the ability of the locust to generate a steering motor pattern in response to a stimulus. However, HS did increase the duration of APs recorded from neuropil segments of depressor motoneurons. Increases in AP duration were associated with protection of AP generation against failure at subsequent elevated temperatures. Failure of AP generation at high temperatures was preceded by a concomitant burst of APs and depolarization of the membrane. The protective effects of HS were mimicked by pharmacological blockade of I(K+) with tetraethylammonium (TEA). Taken together, these findings are consistent with a hypothesis that HS protects neuronal survival and function via K+ channel modulation.  相似文献   

6.
Muscle sensory neurons, called Ia afferents, make monosynaptic connections with functionally related sets of motoneurons in the spinal cord. Previous work has suggested that peripheral target muscles play a major role in determining the central connections of Ia afferents with motoneurons. Here, we ask whether motoneurons can also be influenced by their target muscles in terms of the monosynaptic input they receive from Ia afferents, by transplanting thoracic motoneurons into the lumbosacral spinal cord so that they innervate foreign muscles. Three or four segments of thoracic neural tube from stage 14-15 chicken embryos were transplanted to the lumbosacral region of stage 16-17 embryos, and electrophysiological recordings were made from transplanted motoneurons after the embryos had reached stage 38-40. Transplanted thoracic motoneurons innervated limb muscles and received monosynaptic inputs from Ia afferents. These connections were not random: Most of the connections were formed between Ia afferents and motoneurons projecting to the same muscle (homonymous connections). Few aberrant connections were found although the anatomical distribution of afferents in the transplant indicated that they had ample opportunity to contact inappropriate motoneurons. We conclude that although peripheral target cues are not sufficient to respecify an already committed motoneuron (turn a thoracic motoneuron into a lumbosacral motoneuron), they do provide sufficient information for Ia afferent input to be functionally correct.  相似文献   

7.
Gliding behaviour elicited by lateral looming stimuli in flying locusts   总被引:2,自引:2,他引:0  
We challenged tethered, flying locusts with visual stimuli looming from the side towards one eye in a way that mimics the approach of a predatory bird. Locusts respond to the lateral approach of a looming object with steering movements and a stereotyped, rapid behaviour in which the wingbeat pattern ceases and the wings are swept into a gliding posture. This gliding behaviour may cause the locust to dive. The gliding posture is maintained for 200 ms or more after which flight is resumed with an increased wingbeat frequency or else the wings are folded. A glide begins with a strong burst of activity in the mesothoracic second tergosternal motor neuron (no. 84) on both sides of the locust. Recordings of descending contralateral movement detector (DCMD) activity in a flying locust show that it responds to small (80-mm diameter) looming stimuli during tethered flight, with a prolonged burst of spikes that tracks stimulus approach and reaches peak instantaneous frequencies as, or after, stimulus motion ceases. There is a close match between the visual stimuli that elicit a gliding behaviour and those that are effective at exciting the DCMD neuron. Wing elevation into the gliding posture occurs during a maintained burst of high frequency DCMD spikes.  相似文献   

8.
Experimental studies of mechanisms underlying the specification of synaptic connections in the monosynaptic stretch reflex of frogs and chicks are described. Sensory neurons innervating the triceps brachii muscles of bullfrogs are born throughout the period of sensory neurogenesis and do not appear to be related clonally. Instead, the peripheral targets of these sensory neurons play a major role in determining their central connections with motoneurons. Developing thoracic sensory neurons made to project to novel targets in the forelimb project into the brachial spinal cord, which they normally never do. Moreover, these foreign sensory neurons make monosynaptic excitatory connections with the now functionally appropriate brachial motoneurons. Normal patterns of neuronal activity are not necessary for the formation of specific central connections. Neuromuscular blockade of developing chick embryos with curare during the period of synaptogenesis still results in the formation of correct sensory-motor connections. Competitive interactions among the afferent fibers also do not seem to be important in this process. When the number of sensory neurons projecting to the forelimb is drastically reduced during development, each afferent still makes central connections of the same strength and specificity as normal. These results are discussed with reference to the development of retinal ganglion cells and their projections to the brain. Although many aspects of the two systems are similar, patterned neural activity appears to play a much more important role in the development of the visual pathway than in the spinal reflex pathway described here.  相似文献   

9.
1.  Coordinated movements of the wings during flight in the locust result from coordinated activity of flight neurons in the thoracic ganglia. Many flight interneurons and motoneurons fire synchronous bursts of action potentials during the expression of the flight motor pattern. The mechanisms which underlie this synchronous firing were investigated in a deafferented preparation of Locusta migratoria.
2.  Simultaneous intracellular recordings were taken from flight neurons in the mesothoracic ganglion using glass microelectrodes filled with fluorescent dye.
3.  Three levels of synchronous activity between synergistic motoneurons and between the right and left partners of bilaterally symmetrical pairs of interneurons were observed: bursting which was loosely in phase but which showed little correlation between the temporal parameters of individual bursts in the two neurons; bursting which showed synchrony of the beginning and end of bursts; and bursts which showed highly synchronous spike-for-spike activity.
4.  Direct interactions between the neurons had little or no part to play in maintaining any of the levels of synchrony, even in instances of very close synchrony (spikes in different neurons occurring within 1 ms of each other). Highly synchronous firing was a consequence of common synaptic input impinging on neurons with similar morphological and physiological properties.
  相似文献   

10.
In the chick, sensory neurons grow to their segmentally appropriate target sites in the hindlimb from the outset during normal development. To elucidate the underlying mechanisms, we performed various manipulations of the neural tube, including the neural crest, or of the hindlimb, before axonal outgrowth and assessed the resulting sensory projections using retrograde and anterograde HRP labeling and electrophysiological techniques. Previous experiments had shown that motoneurons are specified to project to their appropriate target muscles prior to axon outgrowth and that they respond to cues in the limb in order to grow to those targets (C. Lance-Jones and L. Landmesser, 1980, J. Physiol. (London) 302, 559-602; C. Lance-Jones and L. Landmesser, 1981, Proc. R. Soc. London, B 214, 19-52). When several segments of neural tube and neural crest were deleted, sensory neurons in the remaining segments still projected along their correct pathways, as did motoneurons. In situations in which motoneurons grew to their correct targets from altered positions with respect to the limb (e.g., small neural tube reversals), sensory neurons also tended to project along the segmentally appropriate pathways both to skin and to muscle. In situations in which motoneurons were displaced greater distances from their normal point of entry into the limb and made wrong connections (e.g., large neural tube reversals, anterior-posterior limb reversals), sensory neurons also projected incorrectly. The patterns of sensory projections to muscles were, in each situation, generally similar to the motoneuron projections. These results are consistent with the possibility that sensory neurons, like motoneurons, are specified with respect to their peripheral connectivity. Alternatively, the results suggest that motoneurons may play a role in the process of pathway selection by sensory neurons.  相似文献   

11.
The projections of nerves 6 and 7 of the locust suboesophageal ganglion (SOG) were stained by axonal filling with cobalt chloride. Nerve 6 contains two motoneurons which innervate neck muscles 50 and 51. Sensory neurons innervating hairs on the dorso-occipital region of the head also enter the ganglion through nerve 6 and terminate in a small bilateral plexus. The projections of the head hairs in nerve 6 do not overlap the arborizations of the motoneurons or the neurons of nerve 7, but lie in the same area as descending sensory neurons from wind-sensitive hairs of the front of the head. One branch of nerve 7 (7B) contains two fibres which innervate the salivary gland. These 'salivary' neurons (labelled SN1 and SN2) have their cell bodies in the ganglion. The second branch, 7A, contains sensory neurons from the submentum of the labium, which form four sensory plexuses, two dorsal and two ventral. The sensory plexuses from the submentum have specific regions of overlap with the salivary neurons and with the neck muscle motoneurons. We interpret these as indicating a flow of information from labial receptors signalling head and mouthpart movement to neurons involved in salivation and head movement. We further postulate that the anatomical separation of the various sensory plexuses is indicative of functional localization within the ganglion.  相似文献   

12.
There is increasing evidence that heat shock (HS) has long‐term effects on electrophysiological properties of neurons and synapses. Prior HS protects neural circuitry from a subsequent heat stress but little is known about the mechanisms that mediate this plasticity and induce thermotolerance. Exposure of Locusta migratoria to HS conditions of 45°C for 3 h results in thermotolerance to hitherto lethal temperatures. Locust flight motor patterns were recorded during tethered flight at room temperature, before and after HS. In addition, intracellular action potentials (APs) were recorded from control and HS motoneurons in a semi‐intact preparation during a heat stress. HS did not alter the timing of representative depressor or elevator muscle activity, nor did it affect the ability of the locust to generate a steering motor pattern in response to a stimulus. However, HS did increase the duration of APs recorded from neuropil segments of depressor motoneurons. Increases in AP duration were associated with protection of AP generation against failure at subsequent elevated temperatures. Failure of AP generation at high temperatures was preceded by a concomitant burst of APs and depolarization of the membrane. The protective effects of HS were mimicked by pharmacological blockade of I with tetraethylammonium (TEA). Taken together, these findings are consistent with a hypothesis that HS protects neuronal survival and function via K+ channel modulation. © 2001 John Wiley & Sons, Inc. J Neurobiol 49: 188–199, 2001  相似文献   

13.
Animals rely on sensory feedback to generate accurate, reliable movements. In many flying insects, strain-sensitive neurons on the wings provide rapid feedback that is critical for stable flight control. While the impacts of wing structure on aerodynamic performance have been widely studied, the impacts of wing structure on sensing are largely unexplored. In this paper, we show how the structural properties of the wing and encoding by mechanosensory neurons interact to jointly determine optimal sensing strategies and performance. Specifically, we examine how neural sensors can be placed effectively on a flapping wing to detect body rotation about different axes, using a computational wing model with varying flexural stiffness. A small set of mechanosensors, conveying strain information at key locations with a single action potential per wingbeat, enable accurate detection of body rotation. Optimal sensor locations are concentrated at either the wing base or the wing tip, and they transition sharply as a function of both wing stiffness and neural threshold. Moreover, the sensing strategy and performance is robust to both external disturbances and sensor loss. Typically, only five sensors are needed to achieve near-peak accuracy, with a single sensor often providing accuracy well above chance. Our results show that small-amplitude, dynamic signals can be extracted efficiently with spatially and temporally sparse sensors in the context of flight. The demonstrated interaction of wing structure and neural encoding properties points to the importance of understanding each in the context of their joint evolution.  相似文献   

14.
Octopod (Octo) is a mutation of the moth Manduca sexta, which transforms the first abdominal segment (A1) in the anterior direction. Mutant animals are characterized by the appearance of homeotic thoracic-like legs on A1. We exploited this mutation to determine what rules might be used in specifying the fates of sensory neurons located on the body surface of larval Manduca. Mechanical stimulation of homeotic leg sensilla did not cause reflexive movements of the homeotic legs, but elicited responses similar to those observed following stimulation of ventral A1 body wall hairs. Intracellular recordings demonstrated that several of the motoneurons in the A1 ganglion received inputs from the homeotic sensory hairs. The responses of these motoneurons to stimulation of homeotic sensilla resembled their responses to stimulation of ventral body wall sensilla. Cobalt fills revealed that the mutation transformed the segmental projection pattern of only the sensory neurons located on the ventral surface of A1, resulting in a greater number with intersegmental projection patterns typical of sensory neurons found on the thoracic body wall. Many of the sensory neurons on the homeotic legs had intersegmental projection patterns typical of abdominal sensory neurons: an anteriorly directed projection terminating in the third thoracic ganglion (T3). Once this projection reached T3, however, it mimicked the projections of the thoracic leg sensory neurons. These results demonstrate that the same rules are not used in the establishment of the intersegmental and leg-specific projection patterns. Segmental identity influences the intersegmental projection pattern of the sensory neurons of Manduca, whereas the leg-specific projections are consistent with a role for positional information in determining their pattern. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
 Real pattern-generating networks often consist of more neurons than necessary for the production of a certain rhythm. We investigated the question of whether these neurons contribute to the robustness of a pattern-generating system of using the central pattern generator (CPG) for flight of the locust, generating the deafferented activity pattern of wing elevator and wing depressor motoneurons, as an example of a rhythm-generating system. The neuronal network was reconstructed, based on the known connectivity of the interneurons in the flight CPG, using a biologically orientated network simulator (BioSim 3.0). This simulator allows a physiologically realistic simulation of particular neurons as well as the synaptic connections between them. The flight CPG consists of at least five cyclic loops. The simulation shows that each of them is in principle able to produce a rhythm comparable to the rhythm produced by the whole network, i.e. the ‘deafferented’ flight pattern of elevator and depressor motoneurons. Varying the parameter ‘synaptic strength’ in each of these loops and in the complete system shows that this parameter can be changed within certain ranges without loosing the ability to produce oscillations. These ranges are much smaller in each of the subloops than in the whole network. This result demonstrates that the robustness of the system is increased by supranumerary neurons and connections. Changing the active properties of the simulated neurons so that they are able to produce plateau potentials has no effect on the robustness of the simulated network. Received: 13 April 1994/Accepted in revised form: 15 September 1994  相似文献   

16.
Intracellular recordings were carried out on locust flight motoneurons after hemisection of individual thoracic ganglia. With the exception of minimal surgical manipulations, the animals were intact and able to perform tethered flight. Analysis of the synaptic drive recorded in the motoneurons during flight motor activity revealed the extent to which ganglion hemisection influenced the premotor rhythm generating network.
1.  Hemisection of the mesothoracic ganglion (Fig. 2) as well as hemisection of both the mesothoracic and the prothoracic ganglia (Fig. 3) had no significant effects on the pattern of synaptic input to the flight motoneurons. Thus the rhythm generating premotor network does not depend on commissural information transfer in the mesothoracic and the prothoracic ganglia. This conclusion was supported by experiments in which more extensive surgical isolations of thoracic ganglia were carried out (Fig. 5).
2.  Removal of input from wing receptors (deafferentation) in addition to hemisection of the mesothoracic ganglion (Fig. 4) resulted in rhythmic and coordinated oscillations of the motoneuron membrane potential which were indistinguishable from those observed in deafferented animals with all ganglia intact.
3.  Hemisection of the metathoracic ganglion had more pronounced effects on the patterns of synaptic drive to the flight motoneurons and their spike discharge. Rhythmic activity which was often subthreshold could, however, still be recorded following a metathoracic split (Fig. 6).
4.  No rhythmic synaptic input was observed after hemisection of both mesothoracic and metathoracic ganglia (Fig. 7).
  相似文献   

17.
Chick sensory neurons grow to their correct targets in the hindlimb from the outset during normal development and following various experimental manipulations. This may result not because sensory neurons respond to specific limb-derived cues, but because they interact in some way with motoneurons which are responsive to such cues. To test this possibility, we removed the ventral part of the neural tube, which contains motoneurons and their precursors, at stages 16 1/2-20 1/2 and later examined the pathways sensory neurons had taken within the limb. Muscle nerves generally were missing or were reduced in diameter beyond the extent expected simply from the absence of motoneuron axons. In many cases, cutaneous nerves were enlarged, presumably due to the addition of other sensory axons. This result suggests that, in the absence of motoneurons, sensory neurons that normally project to muscles are unable to do so and may instead project along cutaneous pathways. Sensory axons from different segments also crossed less extensively in the plexus region than they did in control embryos, suggesting that alterations in their trajectories may normally be facilitated by similar changes in motoneuron pathways. Thus, motoneurons greatly enhance sensory neuron growth to muscles and contribute significantly toward the achievement of the normal sensory projection pattern. Sensory axons may fasciculate with motoneuron axons, or motoneuron axons may provide an aligned substrate for sensory neurons to grow along. Alternatively, motoneuron axons may alter the environment, thereby making certain pathways in the limb permissive for sensory neuron growth.  相似文献   

18.
The initiation, execution, and completion of complex locomotor behaviors are depending on precisely integrated neural circuitries consisting of motor pathways that activate muscles in the extremities and sensory afferents that deliver feedback to motoneurons. These projections form in tight temporal and spatial vicinities during development, yet the molecular mechanisms and cues coordinating these processes are not well understood. Using cell-type specific ablation of the axon guidance receptor Neuropilin-1 (Npn-1) in spinal motoneurons or in sensory neurons in the dorsal root ganglia (DRG), we have explored the contribution of this signaling pathway to correct innervation of the limb. We show that Npn-1 controls the fasciculation of both projections and mediates inter-axonal communication. Removal of Npn-1 from sensory neurons results in defasciculation of sensory axons and, surprisingly, also of motor axons. In addition, the tight coupling between these two heterotypic axonal populations is lifted with sensory fibers now leading the spinal nerve projection. These findings are corroborated by partial genetic elimination of sensory neurons, which causes defasciculation of motor projections to the limb. Deletion of Npn-1 from motoneurons leads to severe defasciculation of motor axons in the distal limb and dorsal-ventral pathfinding errors, while outgrowth and fasciculation of sensory trajectories into the limb remain unaffected. Genetic elimination of motoneurons, however, revealed that sensory axons need only minimal scaffolding by motor axons to establish their projections in the distal limb. Thus, motor and sensory axons are mutually dependent on each other for the generation of their trajectories and interact in part through Npn-1-mediated fasciculation before and within the plexus region of the limbs.  相似文献   

19.
In electron microscopic study of structural organization of the thoracic ganglion of the locust larva of the 1st age (1–2 days after hatching), the data on the structure of motoneurons of the 1st nerve, basal and motor neuropil of the larva were obtained. The effector elements of the larval locust CNS are formed rather early and have the structural plan similar to that in adult insects. However, in the larval motoneurons innervating the flight muscles (longitudinal dorsal muscles, wing depressors) the clearly seen features of immaturity of these nervous elements are revealed. Study of the larval ganglion neuropil has shown that the basal neuropil is morphologically formed sufficiently completely as early as in larvae of the first days after hatching. There are shown longitudinal contacts between axons of the ventral neuropil zone, the presence of axons forming theen-passant contacts as well as the synapses with a heterogeneous set of vesicles in the presynaptic area. The presence of the great number of granular vesicles in the basal neuropil of the locust larva may indicate an important role of catecholamines in the early development of the nervous system in the locust larva.  相似文献   

20.
Previous studies suggest that sensory axon outgrowth is guided by motoneurons, which are specified to innervate particular target muscles. Here we present evidence that questions this conclusion. We have used a new approach to assess the pathfinding abilities of bona fide sensory neurons, first by eliminating motoneurons after neural crest cells have coalesced into dorsal root ganglia (DRG) and second by challenging sensory neurons to innervate muscles in a novel environment created by shifting a limb bud rostrally. The resulting sensory innervation patterns mapped with the lipophilic dyes DiI and DiA showed that sensory axons projected robustly to muscles in the absence of motoneurons, if motoneurons were eliminated after DRG formation. Moreover, sensory neurons projected appropriately to their usual target muscles under these conditions. In contrast, following limb shifts, muscle sensory innervation was often derived from inappropriate segments. In this novel environment, sensory neurons tended to make more "mistakes" than motoneurons. Whereas motoneurons tended to innervate their embryologically correct muscles, sensory innervation was more widespread and was generally from more rostral segments than normal. Similar results were obtained when motoneurons were eliminated in embryos with limb shifts. These findings show that sensory neurons are capable of navigating through their usual terrain without guidance from motor axons. However, unlike motor axons, sensory axons do not appear to actively seek out appropriate target muscles when confronted with a novel terrain. These findings suggest that sensory neuron identity with regard to pathway and target choice may be unspecified or quite plastic at the time of initial axon outgrowth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号