首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Naive T cell circulation is restricted to secondary lymphoid organs. Effector and memory T cells, in contrast, acquire the ability to migrate to nonlymphoid tissues. In this study we examined whether nonlymphoid tissues contribute to the differentiation of effector T cells to memory cells and the long-term maintenance of memory T cells. We found that CD4, but not CD8, effector T cell differentiation to memory cells is impaired in adoptive hosts that lack secondary lymphoid organs. In contrast, established CD4 and CD8 memory T cells underwent basal homeostatic proliferation in the liver, lungs, and bone marrow, were maintained long-term, and functioned in the absence of secondary lymphoid organs. CD8 memory T cells found in nonlymphoid tissues expressed both central and effector memory phenotypes, whereas CD4 memory T cells displayed predominantly an effector memory phenotype. These findings indicate that secondary lymphoid organs are not necessary for the maintenance and function of memory T cell populations, whereas the optimal differentiation of CD4 effectors to memory T cells is dependent on these organs. The ability of memory T cells to persist and respond to foreign Ag independently of secondary lymphoid tissues supports the existence of nonlymphoid memory T cell pools that provide essential immune surveillance in the periphery.  相似文献   

2.
The adaptive immune response of human CD8 T cells to invading pathogens involves the differentiation of naive cells into memory and effector cells. However, the lineage relationship between memory and effector cells and the differentiation of CD8 T cells into distinct subsets of effector cell subpopulations are subjects of considerable debate. CD7 identifies three populations of CD8 T cells: CD7 high (CD7(high)), low (CD7(low)), and negative (CD7(neg)) that translate into subsets with distinct functional properties. The CD7(high) subset contains naive and memory cells and the CD7(low) and CD7(neg) subsets contain effector cells. The effector cells can functionally be divided into cytokine-secreting effector CD8 T cells and lytic effector CD8 T cells. These data provide a model of human CD8 T cell differentiation in which specialized distinct subpopulations can be identified by expression of CD7.  相似文献   

3.
4.
In response to infection, CD8(+) T cells integrate multiple signals and undergo an exponential increase in cell numbers. Simultaneously, a dynamic differentiation process occurs, resulting in the formation of short-lived effector cells (SLECs; CD127(low)KLRG1(high)) and memory precursor effector cells (CD127(high)KLRG1(low)) from an early effector cell that is CD127(low)KLRG1(low) in phenotype. CD8(+) T cell differentiation during vesicular stomatitis virus infection differed significantly than during Listeria monocytogenes infection with a substantial reduction in early effector cell differentiation into SLECs. SLEC generation was dependent on Ebi3 expression. Furthermore, SLEC differentiation during vesicular stomatitis virus infection was enhanced by administration of CpG-DNA, through an IL-12-dependent mechanism. Moreover, CpG-DNA treatment enhanced effector CD8(+) T cell functionality and memory subset distribution, but in an IL-12-independent manner. Population dynamics were dramatically different during secondary CD8(+) T cell responses, with a much greater accumulation of SLECs and the appearance of a significant number of CD127(high)KLRG1(high) memory cells, both of which were intrinsic to the memory CD8(+) T cell. These subsets persisted for several months but were less effective in recall than memory precursor effector cells. Thus, our data shed light on how varying the context of T cell priming alters downstream effector and memory CD8(+) T cell differentiation.  相似文献   

5.
6.
Mathematical models of T cell population dynamics after infection typically assume that T cells differentiate according to a linear process in which they first become effector cells, and then after some time, differentiate further into memory cells. In this paper, we offer a different mathematical model which can equally well capture T cell dynamics, using data from lymphocytic choriomeningitis (LCMV) infection. Our model assumes that memory cells are intermediates that further differentiate into effector cells only from additional or stronger antigenic stimulation. Our assumption naturally leads to a testable prediction about the generation of T cell memory-that the memory phenotype of T cells should be present in detectable numbers during the expansion phase of the response. We use our model to estimate a rate of differentiation from memory type cells to effectors. We argue that this differentiation assumption, where memory cells are intermediates, captures recent experimental work on T cell differentiation, and hence this new mathematical model could be helpful in doing further studies of T cell population dynamics. We also propose a method of distinguishing the models by examining the ratio of memory T cells detectable long after an infection to the peak numbers of T cells at the end of the expansion phase.  相似文献   

7.
T cell exhaustion and loss of memory potential occur during many chronic viral infections and cancer. We investigated when during chronic viral infection virus-specific CD8 T cells lose the potential to form memory. Virus-specific CD8 T cells from established chronic infection were unable to become memory CD8 T cells if removed from infection. However, at earlier stages of chronic infection, these virus-specific CD8 T cells retained the potential to partially or fully revert to a memory differentiation program after transfer to infection-free mice. Conversely, effector CD8 T cells primed during acute infection were not protected from exhaustion if transferred to a chronic infection. We also tested whether memory and exhausted CD8 T cells arose from different subpopulations of effector CD8 T cells and found that only the KLRG1(lo) memory precursor subset gave rise to exhausted CD8 T cells. Together, these studies demonstrate that CD8 T cell exhaustion is a progressive developmental process. Early during chronic infection, the fate of virus-specific CD8 T cells remains plastic, while later, exhausted CD8 T cells become fixed in their differentiation state. Moreover, exhausted CD8 T cells arise from the memory precursor and not the terminally differentiated subset of effector CD8 T cells. These studies have implications for our understanding of senescence versus exhaustion and for therapeutic interventions during chronic infection.  相似文献   

8.
Notch governing mature T cell differentiation   总被引:4,自引:0,他引:4  
The differentiation of naive T cells to effector/memory T cells is regulated by a variety of factors. The recent advance of the contribution of Notch signaling in this differentiation step has provided a new path to better understand the acquisition or persistence of effector function of mature T cells. In this review, we summarize emerging and, in some points, conflicting evidence for Notch signaling on mature T cell activation and differentiation.  相似文献   

9.
Memory CD8 T cells acquire effector memory cell properties after reinfection and may reach terminally differentiated, senescent states ("Hayflick limit") after multiple infections. The signals controlling this process are not well understood, but we found that the degree of secondary effector and memory CD8 T cell differentiation was intimately linked to the amount of T-bet expressed upon reactivation and preexisting memory CD8 T cell number (i.e., primary memory CD8 T cell precursor frequency) present during secondary infection. Compared with naive cells, memory CD8 T cells were predisposed toward terminal effector (TE) cell differentiation because they could immediately respond to IL-12 and induce T-bet, even in the absence of Ag. TE cell formation after secondary (2°) or tertiary infections was dependent on increased T-bet expression because T-bet(+/-) cells were resistant to these phenotypic changes. Larger numbers of preexisting memory CD8 T cells limited the duration of 2° infection and the amount of IL-12 produced, and consequently, this reduced T-bet expression and the proportion of 2° TE CD8 T cells that formed. Together, these data show that over repeated infections, memory CD8 T cell quality and proliferative fitness is not strictly determined by the number of serial encounters with Ag or cell divisions, but is a function of the CD8 T cell differentiation state, which is genetically controlled in a T-bet-dependent manner. This differentiation state can be modulated by preexisting memory CD8 T cell number and the intensity of inflammation during reinfection. These results have important implications for vaccinations involving prime-boost strategies.  相似文献   

10.
Despite the rapid accumulation of quantitative data on the dynamics of CD8(+) T cell responses following acute viral or bacterial infections of mice, the pathways of differentiation of naive CD8(+) T cells into memory during an immune response remain controversial. Currently, three models have been proposed. In the "stem cell-associated differentiation" model, following activation, naive T cells differentiate into stem cell-like memory cells, which then convert into terminally differentiated short-lived effector cells. In the "linear differentiation" model, following activation, naive T cells first differentiate into effectors, and after Ag clearance, effectors convert into memory cells. Finally, in the "progressive differentiation" model, naive T cells differentiate into memory or effector cells depending on the amount of specific stimulation received, with weaker stimulation resulting in formation of memory cells. This study investigates whether the mathematical models formulated from these hypotheses are consistent with the data on the dynamics of the CD8(+) T cell response to lymphocytic choriomeningitis virus during acute infection of mice. Findings indicate that two models, the stem cell-associated differentiation model and the progressive differentiation model, in which differentiation of cells is strongly linked to the number of cell divisions, fail to describe the data at biologically reasonable parameter values. This work suggests additional experimental tests that may allow for further discrimination between different models of CD8(+) T cell differentiation in acute infections.  相似文献   

11.
The developmental pathways of long-lived memory CD8 T cells and the lineage relationship between memory T cell subsets remain controversial. Although some studies indicate the two major memory T cell subsets, central memory T (T(CM)) and effector memory T (T(EM)), are related lineages, others suggest that these subsets arise and are maintained independently of one another. In this study, we have investigated this issue and examined the differentiation of memory CD8 T cell subsets by tracking the lineage relationships of both endogenous and TCR transgenic CD8 T cell responses after acute infection. Our data indicate that TCR transgenic as well as nontransgenic T(EM) differentiate into T(CM) in the absence of Ag. Moreover, the rate of memory CD8 T cell differentiation from T(EM) into the self-renewing and long-lived pool of T(CM) is influenced by signals received during priming, including Ag levels, clonal competition, and/or the duration of infection. Although some T(EM) appear to not progress to T(CM), the vast majority of T(CM) are derived from T(EM). Thus, long-lasting, Ag-independent CD8 T cell memory results from progressive differentiation of memory CD8 T cells, and the rate of memory T cell differentiation is governed by events occurring early during T cell priming.  相似文献   

12.
Rapid development of T cell memory   总被引:2,自引:0,他引:2  
Prime-boost immunization is a promising strategy for inducing and amplifying pathogen- or tumor-specific memory CD8 T cell responses. Although expansion of CD8 T cell populations following the second Ag dose is integral to the prime-boost strategy, it remains unclear when, after priming, memory T cells become competent to proliferate. In this study, we show that Ag-specific CD8 T cells with the capacity to undergo extensive expansion are already present at the peak of the primary immune response in mice. These early memory T cells represent a small fraction of the primary immune response and, at early time points, their potential to proliferate is obscured by large effector T cell populations that rapidly clear Ag upon reimmunization. With sufficient Ag boosting, however, secondary expansion of these memory cells can be induced as early as 5-7 days following primary immunization. Importantly, both early and delayed boosting result in similar levels of protective immunity to subsequent pathogen challenge. Early commitment and differentiation of memory T cells during primary immunization suggest that a short duration between priming and boosting is feasible, providing potential logistic advantages for large-scale prime-boost vaccination of human populations.  相似文献   

13.
Whether tissue microenvironment influences memory CD8 T cell differentiation is unclear. We demonstrate that virus-specific intraepithelial lymphocytes in gut resemble neither central nor effector memory CD8 T cells isolated from spleen or blood. This unique phenotype arises in situ within the gut, suggesting that anatomic location plays an inductive role in the memory differentiation program. In support of this hypothesis, memory CD8 T cells changed phenotype upon change in location. After transfer and in vivo restimulation, gut or spleen memory cells proliferated, disseminated into spleen and gut, and adopted the memory T cell phenotype characteristic of their new environment. Our data suggests that anatomic location directly impacts the memory T cell differentiation program.  相似文献   

14.
15.
16.
Recent studies have suggested a role for MHC class Ib molecules in providing signals for memory T cell differentiation during the early phases of acute infection. To test this hypothesis, we assessed the development of effector and memory CD8 T cells in transgenic mice expressing a single chain H-2D(d)/beta2-microglobulin (beta2M) fusion protein on a beta2M-deficient background. These mice thus express a single MHC class Ia in the absence of all other beta2M-dependent class Ia and Ib molecules. Following infection with a recombinant vaccinia virus expressing a known D(d)-restricted epitope from HIV-1 gp160, the development of effector and memory cells CD8 T cells was comparable to control mice. Furthermore, these memory cells responded rapidly and robustly to antigenic restimulation. Therefore, we conclude that full CD8 memory differentiation requires only a single MHC class Ia chain, ruling out a requirement for MHC class Ib molecules in this process.  相似文献   

17.
CD4(+) T cells are known to provide support for the activation and expansion of primary CD8(+) T cells, their subsequent differentiation, and ultimately their survival as memory cells. However, the importance of cognate memory CD4(+) T cells in the expansion of memory CD8(+) T cells after re-exposure to Ag has been not been examined in detail. Using bone marrow-derived dendritic cells pulsed with cognate or noncognate MHC class I- and class II-restricted peptides, we examined whether the presence of memory CD4(+) T cells with the same Ag specificity as memory CD8(+) T cells influenced the quantity and quality of the secondary CD8(+) T cell response. After recombinant vaccinia virus-mediated challenge, we demonstrate that, although cognate memory CD4(+) T cells are not required for activation of secondary CD8(+) T cells, their presence enhances the expansion of cognate memory CD8(+) T cells. Cognate CD4(+) T cell help results in an approximate 2-fold increase in the frequency of secondary CD8(+) T cells in secondary lymphoid tissues, and can be accounted for by enhanced proliferation in the secondary CD8(+) T cell population. In addition, cognate memory CD4(+) T cells further selectively enhance secondary CD8(+) T cell infiltration of tumor-associated peripheral tissue, and this is accompanied by increased differentiation into effector phenotype within the secondary CD8(+) T cell population. The consequence of these improvements to the magnitude and phenotype of the secondary CD8(+) T cell response is substantial increase in control of tumor outgrowth.  相似文献   

18.
Steel C  Nutman TB 《PloS one》2011,6(4):e19197
Chronic lymphatic filarial (LF) infection is associated with suppression of parasite-specific T cell responses that persist even following elimination of infection. While several mechanisms have been implicated in mediating this T cell specific downregulation, a role for alterations in the homeostasis of T effector and memory cell populations has not been explored. Using multiparameter flow cytometry, we investigated the role of persistent filarial infection on the maintenance of T cell memory in patients from the filarial-endemic Cook Islands. Compared to filarial-uninfected endemic normals (EN), microfilaria (mf) positive infected patients (Inf) had a reduced CD4 central memory (T(CM)) compartment. In addition, Inf patients tended to have more effector memory cells (T(EM)) and fewer effector cells (T(EFF)) than did ENs giving significantly smaller T(EFF):T(EM) ratios. These contracted T(CM) and T(EFF) populations were still evident in patients previously mf+ who had cleared their infection (CLInf). Moreover, the density of IL-7Rα, necessary for T memory cell maintenance (but decreased in T effector cells), was significantly higher on memory cells of Inf and CLInf patients, although there was no evidence for decreased IL-7 or increased soluble IL7-Rα, both possible mechanisms for signaling defects in memory cells. However, effector cells that were present in Inf and CLInf patients had lower percentages of HLA-DR suggesting impaired function. These changes in T cell populations appear to reflect chronicity of infection, as filarial-infected children, despite the presence of active infection, did not show alterations in the frequencies of these T cell phenotypes. These data indicate that filarial-infected patients have contracted T(CM) compartments and a defect in effector cell development, defects that persist even following clearance of infection. The fact that these global changes in memory and effector cell compartments do not yet occur in infected children makes early treatment of LF even more crucial.  相似文献   

19.
Studies of memory T cell differentiation are hampered by a lack of quantitative models to test hypotheses in silico before in vivo experimentation. We created a stochastic computer model of CD4+ memory T cell generation that can simulate and track 10(1)-10(8) individual lymphocytes over time. Parameters for the model were derived from experimental data using naive human CD4+ T cells stimulated in vitro. Using discrete event computer simulation, we identified two key variables that heavily influence effector burst size and the persistent memory pool size: the cell cycle dependent probability of apoptosis, and the postactivation mitosis at which memory T cells emerge. Multiple simulations were performed and varying critical parameters permitted estimates of how sensitive the model was to changes in all of the model parameters. We then compared two hypotheses of CD4+ memory T cell generation: maturation from activated naive to effector to memory cells (model I) vs direct progression from activated naive to memory cells (model II). We find that direct progression of naive to memory T cells does not explain published measurements of the memory cell mass unless postactivation expansion of the memory cell cohort occurs. We conclude that current models suggesting direct progression of activated naive cells to the persistent memory phenotype (model II) do not account for the experimentally measured size of the postactivation CD4+, Ag-specific, memory T cell cohort.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号