首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The 47.7-kb plasmid pAgK84, present in Agrobacterium radiobacter strain K84, confers production of a novel, highly specific, antiagrobacterial antibiotic called agrocin 84. Strain K84 is used commercially to biocontrol crown gall caused by agrocin 84-susceptible strains of Agrobacterium tumefaciens. Efficient biocontrol is dependent upon production of agrocin 84 by strain K84. Starting with a derivative of pAgK84 containing a Tn5 insertion, a series of deletion derivatives of the plasmid were isolated. The smallest of these, pJS500, contains about 8 kb of the original agrocin plasmid and localized the replication functions to between 4 and 6 o'clock on the physical map. A smaller derivative, produced by clonal rescue of a Tn5 insertion in the 4 o'clock region, further localized the minimal replication functions to a 1.5-kb region mapping between coordinates 18.1 and 19.6. Analysis of plasmid stability indicated that functions required for maintenance of the plasmid under nonselective conditions are tightly linked to the minimal replication region. This region also encodes incompatibility functions; the deletion derivatives were all incompatible with the wild-type pAgK84. The stability/replication locus of pAgK84 maps just anticlockwise from the Tra region. This region is retained fully in pAgK1026, the directed Tra derivative of pAgK84 which is now in use as the primary crown gall biocontrol agent in Australia. One of the deletion derivatives, the 15-kb pJS400, was used as a vector to clone the KpnI fragments of an octopine-type Ti plasmid. Traits known to be encoded on these fragments were expressed and properly regulated in Agrobacterium hosts. One clone, encoding the Ti plasmid replication/incompatibility region, was used to cure IncRh1 Ti plasmids from their hosts. This clone also was found to be incompatible with pAtK84b, a large plasmid encoding opine catabolism present in A. radiobacter strain K84. This indicates that the opine catabolic plasmid is closely related to the IncRh1 Ti plasmids.  相似文献   

2.
S K Farrand  J E Slota  J S Shim  A Kerr 《Plasmid》1985,13(2):106-117
The kanamycin-resistance transposon Tn5 was randomly introduced into pAgK84, a 47.7-kb plasmid coding for agrocin 84 production in Agrobacterium. Using such marked plasmids, pAgK84 was found to be conjugal. It could be transferred to several Agrobacterium strains including those harboring octopine- or nopaline-type Ti plasmids. Its presence has no effect on Ti plasmid functions such as opine utilization and tumorigenicity, but it does confer agrocin 84 immunity upon previously sensitive strains. The plasmid could also be conjugally transferred to a Nod+ Fix+ strain of Rhizobium meliloti. The production of agrocin 84 is expressed in all Agrobacterium and Rhizobium transconjugants tested. The agrocin plasmid could not be introduced into restrictionless Escherichia coli or Pseudomonas aeruginosa recipients by conjugation or transformation. The sites of 92 independent Tn5 insertions were mapped on pAgK84. These insertions are dispersed over the entire length of the plasmid. Analysis of the sites and effects of the Tn5 insertions has allowed us to construct a functional map of pAgK84. Forty-three of these insertions, spanning a 20-kb segment of the plasmid, abolished or greatly reduced the production of agrocin 84. The presence of two insertions within this segment having an effect on agrocin production suggests that at least three regions of the plasmid are involved in agrocin 84 biosynthesis. Fourteen of the Tn5 insertion derivatives are no longer conjugally transferable. These insertions all map to a single region of the plasmid and define about 3.5-kb as being associated with transfer functions.  相似文献   

3.
4.
Summary Agrobacterium radiobacter strain K84 is used commercially for the biological control of crown gall. It contains the conjugative plasmid pAgK84, which encodes the synthesis of agrocin 84, an antibiotic that inhibits many pathogenic agrobacteria. A breakdown of control is threatened by the transfer of pAgK84 to pathogens, which then become resistant to agrocin 84. A mutant of pAgK84 with a 5.9-kb deletion overlapping the transfer (Tra) region was constructed using recombinant DNA techniques. The BamHI fragment B1 which covers most of the Tra region was cloned in pBR325 and its internal EcoRI fragments D1 and H, which overlap the Tra region, were removed, leaving 3.7 kb and 0.5 kb of pAgK84 on either side of the deletion. The latter was increased to 3.3 kb by adding EcoRI fragment D2 from a BamHI fragment C clone. The modified pBR325 clone was mobilized into Agrobacterium strain NT1 harbouring pAgK84 with a Tn5 insertion just outside the Tra region but covered by the deletion. A Tra+ cointegrate was formed between the Tn5-insertion derivative and the pBR325-based deletion construct by homologous recombination. The cointegrate was transferred by conjugation to a derivative of strain K84 lacking pAgK84, in which a second recombination event generated a stable deletion-mutant by deletion-marker exchange. The resultant new strain of A. radiobacter, designated K1026, shows normal agrocin 84 production. Mating experiments show that the mutant plasmid, designated pAgK1026, is incapable of conjugal transfer at a detectable frequency.  相似文献   

5.
The efficacies of Agrobacterium radiobacter K84 and K1026 in root colonization, crown gall control, and plasmid transfer were compared. Levels of root colonization by K84 and K1026 of Montclar and Nemaguard peach seedlings were similar during the 21 days of the experiment. Four strains of A. tumefaciens bv. 1 were used for soil inoculations in biological control experiments on GF677 and Adafuel peach x almond rootstocks; two were sensitive and two were resistant to agrocin 84. Both strains K84 and K1026 were very efficient in controlling the sensitive strains, but some tumors appeared with both treatments. In the biocontrol of resistant strains, no galls were observed in K1026-treated plants, but some K84-treated plants had galls. Recovery of agrobacteria from galls in experiments with sensitive and resistant strains showed that all of the isolates from the controls or K1026-treated plants and most of the isolates from K84-treated plants had the same characteristics as the inoculated strains. Nine isolates from the K84-treated plants growing in soil inoculated with one resistant strain were virulent and produced agrocin 84. These isolates had a plasmid that hybridized with a probe prepared with the BamHI C fragment from pAgK84. These results show the efficiency of K1026 in biocontrol of agrocin 84-sensitive and -resistant strains of A. tumefaciens and suggest the use of K1026 as a safer organism than K84 for biological control of crown gall.  相似文献   

6.
The biological control strain Agrobacterium rhizogenes K84 is an effective agent in the control of Agrobacterium pathogens, the causative agents of crown gall disease. A number of factors are thought to play a role in the control process, including production of the specific agrocins 84 and 434, which differ in the spectra of pathogenic strains that they inhibit in vitro. A range of derivatives of strain K84 has been developed with every combination of the three resident plasmids, pAgK84, pAgK434, and pAtK84b, including a plasmid-free strain. These derivatives produced either both, one, or neither of the characterized agrocins 84 and 434 and were isolated by plasmid curing, conjugation, and Tn5 transposon mutagenesis. The ability of the derivative strains to inhibit gall formation on almond roots was compared to that of the wild-type K84 parent. Treatment with the plasmid-free derivative did not result in a significant level of control of an A. rhizogenes pathogen based on numbers or dry weight of galls formed on injured almond roots. The presence of plasmid pAgK84, pAgK434, or pAtK84b significantly enhanced the biological control efficacy of K84 derivatives, and the highest level of control was observed with strains harboring two or more plasmids. The results observed with strains deficient in agrocin 434 production suggest that this product may play an important role in the biological control of A. rhizogenes pathogens. The involvement of plasmid pAgK84b in biological control has not previously been reported. This study supports the conclusion that multiple factors are involved in the success of strain K84 as a biological control agent.  相似文献   

7.
The crown gall biocontrol agent strain K84 and three mutants derived from it, K1026 (Tra deletion mutant of pAgK84), K84 Agr (lacking pAgK84), and K1143 (lacking pAgK84 and pNoc), significantly reduced gall formation caused by two pathogenic strains resistant to agrocin 84 in peach × almond seedlings planted in infested soil. Cocolonization of roots by pathogenic and nonpathogenic strains was observed in these biocontrol experiments under field conditions. In spite of the efficient biocontrol observed, average populations consisting of 102 and 106 pathogenic agrobacteria per g of root were found 8 months after planting. The total numbers of pathogenic bacteria on roots were similar for plants treated with the biocontrol strains and for the untreated plants. Strain K84 and the genetically engineered organism K1026 survived at a level of 106 agrocin 84-producing bacteria per g of root. The population size of genetically engineered strain K1026 was not significantly different than the population size of wild-type strain K84 8 months after root inoculation. Strains K84 and K1026 controlled two pathogens resistant to agrocin 84 without reducing the total number of pathogenic bacteria in the root system. In addition, this study shows that some biological control activity of strain K84 against agrocin 84-resistant pathogens is independent of plasmids pAgK84 and pNoc.  相似文献   

8.
Summary The successful biocontrol agent for crown gall disease, Agrobacterium radiobacter strain K84, is unable to protect grapevines from infection. We have identified a strain of Agrobacterium tumefaciens, J73, which produces an agrocin active both in vitro and in vivo against grapevine pathogens (Webster et al. 1986). We now report on the curing of this strain of its nopaline-type Ti plasmid and the location, by transposon mutagenesis, of the genes involved in the production of the agrocin. The Ti plasmid was cured by the introduction of selectable plasmids carrying the origins of replication of either the nopaline Ti plasmid, pTiC58, or the octopine Ti plasmid, pTi15955. Tn5 mutagenesis indicated that the genes responsible for agrocin production and/or export are located both on the chromosome and on a plasmid, pAgJ73, which co-migrated in agarose gels with pTiJ73. As the two plasmids were separable after transposon mutagenesis, we postulate that during or after mutagenesis of the agrocin plasmid, DNA rearrangements occurred between it and pTiJ73, resulting in an increase in size of pAgJ73. We provide evidence that the rearrangements involved the duplication of nopaline catabolism genes from pTiJ73 and their insertion into pAgJ73, which facilitated the resolution of the two plasmids. As expected pTiJ73 has homology with the nopaline Ti plasmid, pTiC58.  相似文献   

9.
The plasmid responsible for agrocin 84 biosynthesis by Agrobacterium radiobacter strain K84 has been genetically isolated free from any opine-catabolic plasmids. This was accomplished by mobilizing the agrocin plasmid, pAgK84, into a Ti plasmid-free A. tumefaciens strain, A136. The mobilizing element, pAt84a, was then cured from such a transconjugant by cultivation at 37 °C. Derivatives of strain A136 harboring both plasmids or pAgK84 only produce agrocin 84. The agrocin plasmid isolated from these strains is indistinguishable by restriction endonuclease analysis from that in strain K84. A physical map of pAgK84 has been constructed with respect to six restriction endonucleases. The plasmid is cut only once by XbaI and twice by HpaI. Hybridization analysis shows that pAgK84 is closely related to pAtBo542a, a 25-Mdal plasmid from a virulent, agrocinogenic A. tumefaciens strain of European origin. Similar analyses indicate, however, that pAgK84 shows no detectable homology to octopine or nopaline-type Agrobacterium plasmids.  相似文献   

10.
B G Clare  A Kerr  D A Jones 《Plasmid》1990,23(2):126-137
Wild-type Agrobacterium radiobacter strain 84 and its Tra- derivative K1026, used for biological control of crown gall disease, each contain the plasmid pAtK84b. It confers incompatibility to tumor-inducing (Ti) plasmids of pathogenic A. tumefaciens, thus preventing transfer of Ti plasmids into K84 and K1026, and the consequent development of pathogens resistant to the specific antibiotic, agrocin 84 produced by K84 and K1026. pAtK84b also resembles one group of Ti plasmids in its capacity for directing nopaline catabolism. A study of the DNA homology among pAtK84b, pTiC58, and pTiAch5 was carried out. pAtK84b was transferred by conjugation to a plasmidless recipient and, after isolation, was hybridized with Ti plasmid DNA. Areas of DNA homology were located on published maps of pTiC58 and pTiAch5, a restriction enzyme map of pAtK84b was constructed, and areas of homology with DNA of known genetic function were located on the map. Strong and extensive (over 50%) homology was found between pAtK84b and pTiC58 (nopaline catabolic, Noc), but much less between pAtK84b and pTiAch5 (octopine catabolic). There was no detectable homology between pAtK84b and the oncogenic T-DNA and virulence (Vir) regions of either Ti plasmid. The size of pAtK84b was 173 kb and the orientation of regions of identified gene function (Noc, incompatability/origin of replication, and conjugal transfer) on pTiC58 was matched by the locations of homologous areas on pAtK84b. It is concluded that pAtK84b may be a deletion product of a pTiC58-type plasmid which has been disarmed in the oncogenic T-DNA and Vir regions.  相似文献   

11.
Agrobacterium radiobacter strains K84, K1026 and K84 Agr produced in vitro an antibiotic‐like substance (ALS 84), different from agrocin 84 and observed in mannitol‐glutamate medium. Twenty five out of 39 A. tumefaciens strains of biovars 1, 2 and 3 were sensitive to ALS 84 regardless of their sensitivity to agrocin 84. Sensitivity in A. tumefaciens strain C58 was not encoded by the Ti‐plasmid. Most isolates tested of Erwinia carotovora subsp. carotovora E. carotovora subsp. atroseptica, Pseudomonas corrugata P. cichorii and unidentified isolates from galls were also sensitive to this substance. ALS 84 was not affected by the proteases studied, nor by treatment at 62°C for 30 min and had a bacteriostatic effect. The production of ALS 84 might play a role in the complex mechanism of biological control of crown gall, especially in strains resistant to agrocin 84 and sensitive to ALS 84, and by the creation of an ecological niche favourable to A. radiobacter strains K84, K1026 or K84 Agr.  相似文献   

12.
The efficacies of Agrobacterium radiobacter K84 and K1026 in root colonization, crown gall control, and plasmid transfer were compared. Levels of root colonization by K84 and K1026 of Montclar and Nemaguard peach seedlings were similar during the 21 days of the experiment. Four strains of A. tumefaciens bv. 1 were used for soil inoculations in biological control experiments on GF677 and Adafuel peach × almond rootstocks; two were sensitive and two were resistant to agrocin 84. Both strains K84 and K1026 were very efficient in controlling the sensitive strains, but some tumors appeared with both treatments. In the biocontrol of resistant strains, no galls were observed in K1026-treated plants, but some K84-treated plants had galls. Recovery of agrobacteria from galls in experiments with sensitive and resistant strains showed that all of the isolates from the controls or K1026-treated plants and most of the isolates from K84-treated plants had the same characteristics as the inoculated strains. Nine isolates from the K84-treated plants growing in soil inoculated with one resistant strain were virulent and produced agrocin 84. These isolates had a plasmid that hybridized with a probe prepared with the BamHI C fragment from pAgK84. These results show the efficiency of K1026 in biocontrol of agrocin 84-sensitive and -resistant strains of A. tumefaciens and suggest the use of K1026 as a safer organism than K84 for biological control of crown gall.  相似文献   

13.
14.
Broad-Host-Range Agrocin of Agrobacterium tumefaciens   总被引:5,自引:2,他引:3       下载免费PDF全文
Eighteen strains of Agrobacterium tumefaciens isolated from crown galls were tested for agrocin production. Of six agrocin-producing strains, one (D286) produced a broad-host-range agrocin active against strains carrying nopaline, octopine, and agropine type Ti plasmids. Sensitivity to agrocin D286 was found to map in the 11- to 18-megadalton region of the nopaline Ti plasmid pTiC58. The agrocin was partially purified, and its physical characteristics were consistent with its being a nucleotide, as is agrocin 84. Agrocin D286 was shown to inhibit DNA, RNA, and protein syntheses. Strain D286 spontaneously lost its pathogenicity, and its potential for use in the biological control of crown gall is discussed.  相似文献   

15.
Summary Agrobacterium tumefaciens strains C58, T37, K827 and J73, A. rhizogenes strains A4 and 15834, and A. radiobacter strain K299 were all susceptible to agrocin 84 and this sensitivity was enhanced in each case by addition of agrocinopines A and B. Analysis of transconjugants showed that sensitivity of strain A4 to agrocin 84 was encoded by pArA4a and not by the rhizogenic plasmid, pRiA4. The acc region of the A. tumefaciens nopaline-type Ti plasmid pTiC58, contained on the recombinant plasmid pTHH206, hybridized strongly to restriction fragments of plasmids from strains T37, K827, J73 and K299. Hybridizing fragment patterns generated with BamHI and EcoRI were identical among the four Ti plasmids while pAtK299 showed restriction fragment length polymorphisms at acc with the two enzymes. At moderate stringency, the pTiC58 acc region hybridized weakly to a single restriction fragment from the Ar plasmid of A. rhizogenes strain A4, but not to pTiBo542, which encodes catabolism of the closely related opines agrocinopines C and D. Plasmid pAtK84b of A. radiobacter strain K84 is induced for conjugal transfer by agrocinopines A and B. However, no hybridization was detected between this plasmid and acc from pTiC58 under conditions of moderate stringency. Like pTiC58, pAtK84b conferred transport of agrocinopines A and B on its host bacteria despite the absence of detectable sequence homology with the pTiC58-derived acc probe. However, unlike pTiC58, pAtK84b failed to confer sensitivity to or uptake of agrocin 84 on its bacterial host. These results indicate that at least four distinguishable systems exist for catabolism of the two agrocinopine opine families with the prototype locus, exemplified by acc from pTiC58, being strongly conserved among nopaline-type Ti plasmids.  相似文献   

16.
Abstract From a secondary tumor in a bean stem we have isolated a Gram-negative bacteria, named by us T.2. These bean stems had crown gall tumors induced by the ATV strain of Agrobacterium tumefaciens . This bacterium was classified as belonging to the genus Aeromonas and possesses the capacity of inducing overgrowths in plants, synthesizing indole acetic acid (IAA). The codified phenotypic characteristics of bacterium T.2. via the Ti-plasmid of A. tumefaciens , such as opine utilization and sensitivity to agrocin 84, have been studied. Neither octopine nor nopaline is utilized by T.2. and it is resistant to agrocin 84, whereas the strain ATV of A. tumefaciens utilizes nopaline, and is sensitive to agrocin 84.  相似文献   

17.
Agrobacterium tumefaciens C58 forms “plaques” during layer cultivation. The “plaques” were shown not to be caused by the presence of a temperate bacteriophage or by random contamination. The “plaques” and their central microcolonies were used to repeatedly isolate cultures producing an antibiotic substance against the original strainA. tumefaciens C58, other nopaline strains, some octopine strains ofA. tumefaciens and some strains of the related genusRhizobium. The substance is thus a bacteriocin; in analogy to agrocins 84 and D286 it was named agrocin C58. The agrocin is not inactivated by trypsin. Its production by strain C58 was found only on cultivation on solid but not liquid media. The producing isolate ofA. tumefaciens C58 (strain C58i2) contains neither plasmid pTiC58 nor the plasmid analogous to pAgK84 which controls the production of agrocin 84 inA. radiobacter K84.  相似文献   

18.
Agrobacterium tumefaciens NT1 harboring pSaB4, which contains the 14-kb BamHI fragment 4 from the octopine/mannityl opine-type Ti plasmid pTi15955, grew well with agropine (AGR) but slowly with mannopine (MOP) as the sole carbon source. When a second plasmid encoding a dedicated transport system for MOP was introduced, these cells grew well with both AGR and MOP. Transposon insertion mutagenesis and subcloning identified a 5.7-kb region of BamHI fragment 4 that encodes functions required for the degradation of MOP. DNA sequence analysis revealed seven putative genes in this region: mocD (moc for mannityl opine catabolism) and mocE, oriented from right to left, and mocRCBAS, oriented from left to right. Significant identities exist at the nucleotide and derived amino acid sequence levels between these moc genes and the mas genes that are responsible for opine biosynthesis in crown gall tumors. MocD is a homolog of Mas2, the anabolic conjugase encoded by mas2'. MocE and MocC are related to the amino half and the carboxyl half, respectively, of Mas1 (MOP reductase), the second enzyme for MOP biosynthesis. These results indicate that the moc and mas genes evolved from a common origin. MocR and MocS are related to each other and to a putative repressor for the AGR degradation system encoded by the rhizogenic plasmid pRiA4. MocB and MocA are homologs of 6-phosphogluconate dehydratase and glucose-6-phosphate dehydrogenase, respectively. Mutations in mocD and mocE, but not mocC, are suppressed by functions encoded by the chromosome or the 450-kb megaplasmid present in many Agrobacterium isolates. We propose that moc genes derived from genes located elsewhere in the bacterial genome and that the tumor-expressed mas genes evolved from the bacterial moc genes.  相似文献   

19.
It was shown for some oncogenic Agrobacterium tumefaciens strains that agrocin 84 sensitivity is determined by the presence of a large closed circular DNA plasmid, called the Ti-plasmid. Whereas wild-type strain C58 is agrocin 84 sensitive, all Ti-plasmid cured derivatives were found to be fully resistant. Moreover all independently isolated agrocin 84 resistant colonies were stably non-oncogenic and plasmid negative. In a growth experiment carried out at 37 degrees C it was shown that the kinetics of appearance of non-oncogenic cells on the one hand and of agrocin 84 resistant cells on the other were identical. The fact that not all oncogenic, plasmid harbouring, Agrobacterium tumefaciens strains are sensitive to agrocin 84, points to the possibility that the genes determining agrocin 84 sensitivity are not essential for tumor-inducing ability.  相似文献   

20.
Plasmids in avirulent strains of Agrobacterium.   总被引:6,自引:4,他引:2       下载免费PDF全文
Twelve strains of Agrobacterium radiobacter isolated from naturally occurring crown galls or soil were found to be avirulent on sunflower, tomato, Kalanchoe, and carrot. Eleven strains contained plasmids of molecular weights 77 X 10(6) to 182 X 10(6) as determined by electron microscopy. One strain contained only a smaller plasmid (50 X 10(6) daltons). Several strains had both large and small (ca. 11 X 10(6) daltons) plasmids; one strain contained two large plasmids (112 X 10(6) and 136 X 10(6) daltons). Hybridization reactions of virulence plasmids from Agrobacterium tumefaciens strains C58 and A6 with plasmids from each of the A. radiobacter strains revealed that some A. radiobacter plasmids had less than 10% homology to either the C58 or A6 plasmids. Plasmids from some strains had approximately 50% homology with the C58 plasmid, but only one A. radiobacter plasmid contained more than 10% homology to the A6 plasmid. The presence of large plasmids in A. radiobacter strains did not correlate with sensitivity to agrocin 84; however, the utilization of the amino acid derivatives octopine and nopaline was generally correlated to partial base sequence homology to the C58 plasmid. We conclude that all large plasmids found in Agrobacterium strains are not virulence associated, although they may share base sequence homology with a virulence-associated plasmid. Further, plasmids from tumorigenic strains may be more closely related by base sequence homology to plasmids from nonpathogenic strains than to plasmids from other pathogenic strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号