首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The quantitative mechanistic acid-base approach to clinical assessment of acid-base status requires species-specific values for [A]tot (the total concentration of nonvolatile buffers in plasma) and Ka (the effective dissociation constant for weak acids in plasma). The aim of this study was to determine [A]tot and Ka values for plasma in domestic pigeons. Plasma from 12 healthy commercial domestic pigeons was tonometered with 20% CO2 at 37 degrees C. Plasma pH, Pco2, and plasma concentrations of strong cations (Na, K, Ca), strong anions (Cl, L-lactate), and nonvolatile buffer ions (total protein, albumin, phosphate) were measured over a pH range of 6.8-7.7. Strong ion difference (SID) (SID5=Na+K+Ca-Cl-lactate) was used to calculate [A]tot and Ka from the measured pH and Pco2 and SID5. Mean (+/-SD) values for bird plasma were as follows: [A]tot=7.76+/-2.15 mmol/l (equivalent to 0.32 mmol/g of total protein, 0.51 mmol/g of albumin, 0.23 mmol/g of total solids); Ka=2.15+/-1.15x10(-7); and pKa=6.67. The net protein charge at normal pH (7.43) was estimated to be 6 meq/l; this value indicates that pigeon plasma has a much lower anion gap value than mammals after adjusting for high mean L-lactate concentrations induced by restraint during blood sampling. This finding indicates that plasma proteins in pigeons have a much lower net anion charge than mammalian plasma protein. An incidental finding was that total protein concentration measured by a multianalyzer system was consistently lower than the value for total solids measured by refractometer.  相似文献   

2.
The pulmonary responses and changes in plasma acid-base status occurring across the inactive forearm muscle were examined after 30 s of intense exercise in six male subjects exercising on an isokinetic cycle ergometer. Arterial and deep forearm venous blood were sampled at rest and during 10 min after exercise; ventilation and pulmonary gas exchange variables were measured breath by breath during exercise and recovery. Immediately after exercise, ventilation and CO2 output increased to 124 +/- 17 1/min and 3.24 +/- 0.195 l/min, respectively. The subsequent decrease in CO2 output was slower than the decrease in O2 intake (half time of 105 +/- 15 and 47 +/- 4 s, respectively); the respiratory exchange ratio was greater than 1.0 throughout the 10 min of recovery. Arterial plasma concentrations of Na+, K+, and Ca2+ increased transiently after exercise. Arterial lactate ion concentration ([La-]) increased to 14-15 meq/l within 1.5 min and remained at this level for the rest of the study. Throughout recovery there was a positive arteriovenous [La-] difference of 4-5 meq/l, associated with an increase in the arteriovenous strong ion difference ([SID]) and by a large increase in the venous Pco2 and [HCO3-]. These findings were interpreted as indicating uptake of La- by the inactive muscle, leading to a fall in the muscle [SID] and increase in plasma [SID], associated with an increase in muscle PCO2. The venoarterial CO2 content difference was 38% greater than could be accounted for by metabolism of La- alone, suggesting liberation of CO2 stored in muscle, possibly as carbamate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
An emerging technique used for the study of metabolic regulation is the elevation of lactate concentration with a sodium-lactate infusion, the lactate clamp (LC). However, hematological and acid-base properties affected by the infusion of hypertonic solutions containing the osmotically active strong ions sodium (Na(+)) and lactate (Lac(-)) are a concern for clinical and research applications of LC. In the present study, we characterized the hematological and plasma acid-base changes during rest and prolonged, light- to moderate-intensity (55% Vo(2 peak)) exercise with and without LC. During the control (Con) trial, subjects were administered an isotonic, isovolumetric saline infusion. During LC, plasma lactate concentration ([Lac(-)]) was elevated to 4 meq/l during rest and to 4-7 meq/l during exercise. During LC at rest, there were rapid and transient changes in plasma, erythrocyte, and blood volumes. LC resulted in decreased plasma [H(+)] (from 39.6 to 29.6 neq/l) at the end of exercise while plasma [HCO(3)(-)] increased from 26 to 32.9 meq/l. Increased plasma strong ion difference [SID], due to increased [Na(+)], was the primary contributor to decreased [H(+)] and increased [HCO(3)(-)]. A decrease in plasma total weak acid concentration also contributed to these changes, whereas Pco(2) contributed little. The infusion of hypertonic LC caused only minor volume, acid-base, and CO(2) storage responses. We conclude that an LC infusion is appropriate for studies of metabolic regulation.  相似文献   

4.
Seminal plasma composition was studied in budgerigars. Semen was obtained from adult male budgerigars by applying gentle pressure to both sides of the cloaca. Pooled samples were centrifuged at 15,000 g for 2 min, and the seminal plasma separated for biochemical analysis. Osmolality, Na+, K+, Cl-, pH, glucose and fructose values were determined. The biochemical composition of budgerigar seminal plasma obtained in this study was: Osmolality 329.9 +/- 14.5 mOs/kg; Na+ 158.6 +/- 8.4 mEq/l; K+ 16.39 +/- 6.24 mEq/l; Cl- 109.2 +/- 7.4 mEq/l; pH 8.20 +/- 0.18 glucose 4.25 +/- 0.96 mmol/l; fructose 0.59 +/- 0.29 mmol/l. The results are discussed in relation to the values reported for the domestic fowl. This forms part of a reproductive biology study of non-domesticated avian species.  相似文献   

5.
The strong ion approach provides a quantitative physicochemical method for describing the mechanism for an acid-base disturbance. The approach requires species-specific values for the total concentration of plasma nonvolatile buffers (A(tot)) and the effective dissociation constant for plasma nonvolatile buffers (K(a)), but these values have not been determined for human plasma. Accordingly, the purpose of this study was to calculate accurate A(tot) and K(a) values using data obtained from in vitro strong ion titration and CO(2) tonometry. The calculated values for A(tot) (24.1 mmol/l) and K(a) (1.05 x 10(-7)) were significantly (P < 0.05) different from the experimentally determined values for horse plasma and differed from the empirically assumed values for human plasma (A(tot) = 19.0 meq/l and K(a) = 3.0 x 10(-7)). The derivatives of pH with respect to the three independent variables [strong ion difference (SID), PCO(2), and A(tot)] of the strong ion approach were calculated as follows: dpH/dSID(+) = [1 + 10(pK(a)-pH)](2)/(2.303 x [SPCO(2)10(pH-pK'(1)[1 + 10(pK(a)-pH](2) + A(tot)10(pK(a)-PH]]; dpH/dPCO(2) = S10(-pK'(1)/[2.303[A(tot)10(pH)(10(pH + 10(pK(a))(-2) - SID(+)10(-pH)]], dpH/dA(tot) = -1/[2.303[SPCO(2)10(pH-pK'(1) + SID(+)10(pK(a)-pH)]], where S is solubility of CO(2) in plasma. The derivatives provide a useful method for calculating the effect of independent changes in SID(+), PCO(2), and A(tot) on plasma pH. The calculated values for A(tot) and K(a) should facilitate application of the strong ion approach to acid-base disturbances in humans.  相似文献   

6.
The major objective of this study was to test the hypothesis that in ponies the change in plasma [H+] resulting from a change in PCO2 (delta H+/delta PCO2) is less under acute in vivo conditions than under in vitro conditions. Elevation of inspired CO2 and lowering of inspired O2 (causing hyperventilation) were used to respectively increase and decrease arterial PCO2 (Paco2) by 5-8 Torr from normal. Arterial and mixed venous blood were simultaneously sampled in 12 ponies during eucapnia and 5-60 min after Paco2 had changed. In vitro data were obtained by equilibrating blood in a tonometer at five different levels of PCO2. The in vitro slopes of the H+ vs. PCO2 relationships were 0.73 +/- 0.01 and 0.69 +/- 0.01 neq.1-1.Torr-1 for oxygenated and partially deoxygenated blood, respectively. These slopes were greater (P less than 0.001) than the in vivo H+ vs. PCO2 slopes of 0.61 +/- 0.03 and 0.57 +/- 0.03 for arterial and mixed venous blood, respectively. The delta HCO3-/delta pH (Slykes) was 15.4 +/- 1.1 and 17.0 +/- 1.1 for in vitro oxygenated and partially deoxygenated blood, respectively. These values were lower (P less than 0.001) than the in vivo values of 23.3 +/- 2.7 and 25.2 +/- 4.7 Slykes for arterial and mixed venous blood, respectively. In vitro, plasma strong ion difference (SID) increased 4.5 +/- 0.2 meq/l (P less than 0.001) when Pco2 was increased from 25 to 55 Torr. A 3.5-meq/l decrease in [Cl-] (P less than 0.001) and a 1.3 +/- 0.1 meq/l increase in [Na+] (P less than 0.001) accounted for the SID change.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Brown bullhead (Ameiurus nebulosus) blood plasma was found to exhibit an unusually high non-bicarbonate buffer capacity (beta) in relation to that of other teleost fish. In brown bullhead, the non-bicarbonate buffer capacity of plasma (beta(plasma)), at -5.72 +/- 0.34 mmol l(-1) pH unit(-1) (mean +/- S.E.M., N=30), constituted 37% of whole blood beta and was 2.5 times higher than beta(plasma) in rainbow trout (-2.33 +/- 0.42 mmol l(+/-1) pH unit(-1); N=7). The strong buffering power of bullhead plasma was not the result of unusually high plasma protein levels. Size separation chromatography in conjunction with a spectrophotometric assay for buffering capacity were used to isolate a plasma fraction of high buffering power. SDS-polyacrylamide gel electrophoresis revealed that this fraction contained four proteins, but was dominated by a protein of approximately 68-70 kDa molecular mass. On the basis of the amino acid composition of this fraction, the dominant protein was identified as albumin. In comparison to other fish albumins, bullhead albumin appears to be histidine-rich (6.7%). Thus, the unusually high non-bicarbonate buffer capacity of bullhead plasma appears to stem from the presence in the plasma of a histidine-rich albumin.  相似文献   

8.
We hypothesized that, during isosmotic isonatremic HCl acidosis with maintained isocapnia in cisternal cerebrospinal fluid (CSF), acetazolamide, by inhibiting carbonic anhydrase (CA) in the central nervous system (CNS), should produce an isonatric hyperchloric metabolic acidosis in CSF. Blood and CSF ions and acid-base variables were measured in two groups of anesthetized and paralyzed dogs with bilateral ligation of renal pedicles during 5 h of HCl acidosis (plasma [HCO3-] = 11 meq/l). Mechanical ventilation was regulated such that arterial PCO2 dropped and CSF Pco2 remained relatively constant. In group I (control group, n = 6), CSF [Na+] remained unchanged, [HCO3-] and strong ions difference (SID) fell, respectively, 6.1 and 5 meq/l, and [Cl-] rose 3.5 meq/l after 5 h of acidosis. In acetazolamide-treated animals, (group II, n = 7), CSF [Na+] remained unchanged, [HCO3-], and SID fell 11 and 7.1 meq/l, respectively, and [Cl-] rose 7.1 meq/l. We conclude that during HCl acidosis inhibition of CNS CA by acetazolamide induces an isonatric hyperchloric metabolic acidosis in CSF, which is more severe than that observed in controls.  相似文献   

9.
To assess the importance of factors influencing the resolution of exercise-associated acidosis, measurements of acid-base variables were made in nine healthy subjects after 30 s of maximal exercise on an isokinetic cycle ergometer. Quadriceps muscle biopsies (n = 6) were taken at rest, immediately after exercise, and at 3.5 and 9.5 min of recovery; arterial and femoral venous blood were sampled (n = 3) over the same time. Intracellular and plasma inorganic strong ions were measured by neutron activation and ion-selective electrodes, respectively; lactate concentration ([La-]) was measured enzymatically, and plasma PCO2 and pH were measured by electrodes. Immediately after exercise, intracellular [La-] increased to 47 meq/l, almost fully accounting for a reduction in intracellular strong ion difference ([SID]) from 154 to 106 meq/l. At the same time, femoral venous PCO2 increased to 100 Torr and plasma [La-] to 9.7 meq/l; however, plasma [SID] did not change because of a concomitant increase in inorganic [SID] secondary to increases in [K+], [Na+], and [Ca2+]. During recovery, muscle [La-] fell to 26 meq/l by 9.5 min; [SID] remained low (101 and 114 meq/l at 3.5 and 9.5 min, respectively) due almost equally to the elevated [La-] (30 and 26 meq/l) and reductions in [K+] (from 142 meq/l at rest to 123 and 128 meq/l). Femoral venous PCO2 rose to 106 Torr at 0.5 min postexercise and fell to resting values at 9.5 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Constable, Peter D. A simplified strong ion model foracid-base equilibria: application to horse plasma. J. Appl. Physiol. 83(1): 297-311, 1997.TheHenderson-Hasselbalch equation and Stewart's strong ion model arecurrently used to describe mammalian acid-base equilibria. Anomaliesexist when the Henderson-Hasselbalch equation is applied to plasma,whereas the strong ion model does not provide a practical method fordetermining the total plasma concentration of nonvolatile weak acids([Atot]) and theeffective dissociation constant for plasma weak acids(Ka). Asimplified strong ion model, which was developed from the assumptionthat plasma ions act as strong ions, volatile buffer ions(HCO3), or nonvolatile buffer ions,indicates that plasma pH is determined by five independent variables:PCO2, strong ion difference, concentration of individual nonvolatile plasma buffers (albumin, globulin, and phosphate), ionic strength, and temperature. The simplified strong ion model conveys on a fundamental level the mechanism for change in acid-base status, explains many of the anomalies when the Henderson-Hasselbalch equation is applied to plasma,is conceptually and algebraically simpler than Stewart's strong ionmodel, and provides a practical in vitro method for determining[Atot] andKa of plasma.Application of the simplified strong ion model toCO2-tonometered horse plasmaproduced values for[Atot] (15.0 ± 3.1 meq/l) and Ka(2.22 ± 0.32 × 107 eq/l) that weresignificantly different from the values commonly assumed for humanplasma ([Atot] = 20.0 meq/l, Ka = 3.0 × 107 eq/l).Moreover, application of the experimentally determined values for[Atot] andKa to publisheddata for the horse (known PCO2,strong ion difference, and plasma protein concentration) predictedplasma pH more accurately than the values for[Atot] andKa commonlyassumed for human plasma. Species-specific values for[Atot] andKa should beexperimentally determined when the simplified strong ion model (orstrong ion model) is used to describe acid-base equilibria.

  相似文献   

11.
We altered the concentration of plasma proteins in human blood in vitro by adding solutions with [Na+], [K+], and [Cl-] resembling those in normal blood plasma, either protein-free or with a high concentration of human albumin. After equilibrating the samples with a gas containing 5% CO2-12% O2-83% N2 at 37 degrees C, we measured pH, PCO2, and PO2; in separated plasma, we determined the concentrations of total plasma proteins and albumin and of the completely dissociated electrolytes (strong cations Na+, K+, Mg2+ and anions Cl-, citrate3-). With PCO2 nearly constant (mean = 35.5 Torr; coefficient of variation = 0.02), lowering plasma protein concentration produced a metabolic alkalosis, whereas increasing plasma albumin concentration gave rise to a metabolic acidosis. These acid-base disturbances occurred independently of a minor variation in the balance between the sums of strong cations and anions. We quantified the dependence of several acid-base variables in plasma on albumin (or total protein) concentration. Normal plasma proteins are weak nonvolatile acids. Although their concentration is not regulated as part of acid-base homeostasis, hypoproteinemia and hyperalbuminemia per se produce alkalosis and acidosis, respectively.  相似文献   

12.
Currently, three strong ion models exist for the determination of plasma pH. Mathematically, they vary in their treatment of weak acids, and this study was designed to determine whether any significant differences exist in the simulated performance of these models. The models were subjected to a "metabolic" stress either in the form of variable strong ion difference and fixed weak acid effect, or vice versa, and compared over the range 25 < or = Pco(2) < or = 135 Torr. The predictive equations for each model were iteratively solved for pH at each Pco(2) step, and the results were plotted as a series of log(Pco(2))-pH titration curves. The results were analyzed for linearity by using ordinary least squares regression and for collinearity by using correlation. In every case, the results revealed a linear relationship between log(Pco(2)) and pH over the range 6.8 < or = pH < or = 7.8, and no significant difference between the curve predictions under metabolic stress. The curves were statistically collinear. Ultimately, their clinical utility will be determined both by acceptance of the strong ion framework for describing acid-base physiology and by the ease of measurement of the independent model parameters.  相似文献   

13.
We designed experiments to evaluate changes in ventral medullary (VM) extracellular fluid (ECF) PCO2 and pH during hypoxemia-induced ventilatory depression (VD). Our aim was to investigate effects of aminophylline on VD and VM ECF acid-base variables. We used aminophylline because it inhibits adenosine, which is released within the brain during hypoxemia and could mediate VD. Experiments were performed in seven cats with acute bilateral denervation of carotid sinus nerves and vagi. Cats were anesthetized with chloralose-urethan and breathed spontaneously at a regulated and elevated arterial PCO2 (PaCO2). Measurements were made during normoxemia, hypoxemia, and recovery before (phase I) and after (phase II) aminophylline. By use of strict criteria for definition of VD, during phase II two kinds of responses were observed. Aminophylline prevented VD in five cats. In these cats in phase I, with mean arterial PO2 (PaO2) = 105 and PaCO2 = 42.2 Torr, VM ECF PCO2, [H+], and [HCO3-] were 59.5 +/- 8.6 Torr (mean +/- SD), 60.2 +/- 9.4 neq/l, and 23.1 +/- 3.7 meq/l, respectively. When mean PaO2 dropped to 49 Torr, ventilation decreased 21%, with only small changes in VM ECF acid-base variables. Studies were repeated 30 min after aminophylline (17 mg/kg iv). In phase II, during normoxemia (PaO2 = 110 Torr) VM ECF Pco2, [H+], and [HCO3-] were 55.4 +/- 8.1 Torr, 62.0 +/- 8.0 neq/l and 20.7 +/- 2.5 meq/l, respectively. During hypoxemia (PaO2 = 48 +/- 4 Torr) mean ventilation, VM ECF PCO2, [H+], and [HCO3-] did not change significantly.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
To determine the factors responsible for changes in [H+] during and after sprint exercise in the racing greyhound, Stewart's quantitative acid-base analysis was applied to arterial blood plasma samples taken at rest, at 8-s intervals during exercise, and at various intervals up to 30 min after a 402-m spring (approximately 30 s) on the track. [Na+], [K+], [Cl-], [total Ca], [lactate], [albumin], [Pi], PCO2, and pH were measured, and the [H+] was calculated from Stewart's equations. This short sprint caused all measured variables to change significantly. Maximal changes were strong ion difference decreased from 36.7 meq/l at rest to 16.1 meq/l; [albumin] increased from 3.1 g/dl at rest to 3.7 g/dl; PCO2, after decreasing from 39.6 Torr at rest to 27.9 Torr immediately prerace, increased during exercise to 42.8 Torr and then again decreased to near 20 Torr during most of recovery; and [H+] rose from 36.6 neq/l at rest to a peak of 76.6 neq/l. The [H+] calculated using Stewart's analysis was not significantly different from that directly measured. In addition to the increase in lactate and the change in PCO2, changes in [albumin], [Na+], and [Cl-] also influenced [H+] during and after sprint exercise in the running greyhound.  相似文献   

15.
To determine the origins of the arteriovenous [H+] difference of muscle during contractions, arterial and muscle venous blood sample pairs were taken before and after 0.5, 5.0, and 30.0 min of 4/s isometric twitches of the gastrocnemius-plantaris muscle group of anesthetized dogs. These samples were analyzed for PO2, PCO2, and pH, the concentrations of O2, CO2, K+, Na+, La-, and Cl- in whole blood, and La-, K+, Na+, and Cl- in plasma. Whole blood was hemolyzed and analyzed for PO2, PCO2, and pH. Net O2 uptake, CO2 output, L, K+, Na+, and Cl- were calculated in addition to net output of non-CO2 acid (HA) and strong ion difference ([SID]) and common ion [SID] ([K+] + [Na+] - [Cl-] - [La-]). From these data we partitioned the origins of the arteriovenous [H+] difference via the common PCO2-pH diagram and via a [H+]-PCO2 diagram and determined whether true plasma arteriovenous [H+] differences reflect plasma and cell arteriovenous [H+] differences. The arteriovenous [H+] differences of plasma and hemolyzed blood were the same, showing that true plasma does reflect plasma and cells. K+ showed a small significant but transient output. Na+ was not significant, whereas Cl- showed a significant transient uptake. Lactate output and HA, calculated for dog blood acid-base, showed transient outputs and were the same. At 5.0 min when the arteriovenous difference was largest, CO2 alone would have increased [H+] 15.9 nmol/l whereas desaturation of Hb would have decreased [H+] 4.2 nmol/l and lactate could have raised [H+] 1.0 nmol/l.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
With the ferret in vitro tracheal preparation, we measured the electrolyte and chemical composition of airway surface liquid (ASL) under control conditions and when drugs were added to promote submucosal gland secretion and to change epithelial ion transport. Control ASL was hyperosmolar (342 +/- 2.8 mosmol/kg) compared with ferret plasma and surrounding buffer. Higher values were also found for sodium (167 +/- 1.7 mmol/l), potassium (9.0 +/- 0.05 mmol/l), total calcium (3.46 +/- 0.11 mmol/l), and ionized calcium (2.55 +/- 0.18 mmol/l). pH was lower (7.12 +/- 0.03) than in plasma or buffer. Addition of methacholine to the surrounding buffer increased flow of ASL and potential difference across the mucosa and lowered pH, calcium, sodium, and chloride concentrations. Potassium concentration was increased. Phenylephrine increased flow and decreased calcium concentrations. Salbutamol (albuterol) had no effect on flow but decreased pH and increased calcium and potassium concentrations. Histamine increased flow and calcium concentrations and decreased pH. These changes are presumably due to changes in gland secretion and epithelial transport. Methacholine and phenylephrine increased the sugar content of the secretions, the changes with phenylephrine being larger. Thus resting ASL is hyperosmolar and relatively acid, with high cation contents, and administration of drugs changes its composition by actions on submucosal glands and epithelium.  相似文献   

17.
This paper describes and quantifies acute responses of the kidneys in correcting plasma volume, acid-base, and ion disturbances resulting from NaHCO(3) and KHCO(3) ingestion. Renal excretion of ions and water was studied in five men after ingestion of 3.57 mmol/kg body mass of sodium bicarbonate (NaHCO(3)) and, in a separate trial, potassium bicarbonate (KHCO(3)). Subjects had a Foley catheter inserted into the bladder and indwelling catheters placed into an antecubital vein and a brachial artery. Blood and urine were sampled in the 30-min period before, the 60-min period during, and the 210-min period after ingestion of the solutions. NaHCO(3) ingestion resulted in a rapid, transient diuresis and natriuresis. Cumulative urine output was 44 +/- 11% of ingested volume, resulting in a 555 +/- 119 ml increase in total body water at the end of the experiment. The cumulative increase (above basal levels) in renal Na(+) excretion accounted for 24 +/- 2% of ingested Na(+). In the KHCO(3) trial, arterial plasma K(+) concentration rapidly increased from 4.25 +/- 0.10 to a peak of 7.17 +/- 0.13 meq/l 140 min after the beginning of ingestion. This increase resulted in a pronounced, transient diuresis, with cumulative urine output at 270 min similar to the volume ingested, natriuresis, and a pronounced kaliuresis that was maintained until the end of the experiment. Cumulative (above basal) renal K(+) excretion at 270 min accounted for 26 +/- 5% of ingested K(+). The kidneys were important in mediating rapid corrections of substantial portions of the fluid and electrolyte disturbances resulting from ingestion of KHCO(3) and NaHCO(3) solutions.  相似文献   

18.
Stewart's model of plasma acid-base balance (Can. J. Physiol. Pharmacol. 61: 1444-1461, 1983) has three weaknesses in the treatment of weak acids: 1) the combination of all weak acids into one entity, 2) inappropriate chemistry for the protein combination with H+, and 3) undocumented values for the dissociation parameters. The present study models serum albumin acid-base properties by fixed negative charges and the association of H+ with the imidazole side chain of histidine. This model has three parameters: 1) the net negative fixed charge (21 eq/mol), 2) the number of histidine residues (16/mol), and 3) the association constant for the imidazole side chain (1.77 x 10(-7) eq/l), all determined from published values. The model was compared with that of Figge, Mydosh, and Fencl (J. Lab. Clin. Med. 120: 713-719, 1992) and with the pH data of Figge, Rossing, and Fencl (J. Lab. Clin. Med. 117: 453-467, 1991). The predictions of pH were excellent, comparable to those found by Figge, Mydosh, and Fencl. The model has the advantages that its structure and parameter values are supported by the literature and that the acid-base effects of factors modifying protein can be investigated.  相似文献   

19.
We explored the effects of 12-hour infusion of atrial natriuretic peptide (alpha-rANP:rat, 1-28) on arterial acid-base balance, using 5/6 nephrectomized rats with chronic renal failure. Before the infusion, nephrectomized rats had a higher mean arterial blood pressure, greater urine volume, and lower creatinine clearance than the normal controls, but they did not show a significant difference in arterial hydrogen ion concentration (pH), plasma bicarbonate concentration (HCO3-), partial pressure of carbon dioxide (PCO2), plasma base excess (BE), or plasma ANP concentration. alpha-rANP infusion produced a continuous blood pressure reduction in both nephrectomized and control rats. Urine volume and urinary sodium and potassium excretion tended to increase at 2-hour infusion, but not at 12-hour infusion. In the controls alpha-rANP significantly increased pH from 7.47 to 7.50, and decreased PCO2 by 14%. In contrast, in nephrectomized rats alpha-rANP significantly decreased pH from 7.48 to 7.44, HCO3- by 13%, and BE from -0.07 to -3.22 meq/l. Rats with chronic renal failure had greater reduction in HCO3- than the controls (p less than 0.05). There was no difference in plasma ANP level between the two groups. Thus, it is indicated that the long-term infusion of alpha-rANP reduces pH in rats with chronic renal failure, thereby adversely affecting the acid-base balance.  相似文献   

20.
Biosorption is potentially an attractive technology for treatment of wastewater for retaining heavy metals from dilute solutions. This study investigated the feasibility of anaerobic granules as a novel type of biosorbent, for lead, copper, cadmium, and nickel removal from aqueous solutions. Anaerobic sludge supplied from a wastewater treatment plant in the province of Quebec was used. Anaerobic granules are microbial aggregates with a strong, compact and porous structure and excellent settling ability. After treatment of the biomass with Ca ions, the cation exchange capacity of the biomass was approximately 111 meq/100 g of biomass dry weight which is comparable to the metal binding capacities of commercial ion exchange resins. This work investigated the equilibrium, batch dynamics for the biosorption process. Binding capacity experiments using viable biomass revealed a higher value than those for nonviable biomass. Binding capacity experiments using non-viable biomass treated with Ca revealed a high value of metals uptake. The solution initial pH value affected metal sorption. Over the pH range of 4.0-5.5, pH-related effects were not significant. Meanwhile, at lower pH values the uptake capacity decreased. Time dependency experiments for the metal ions uptake showed that adsorption equilibrium was reached almost 30 min after metal addition. It was found that the q(max) for Pb2+, Cd2+, Cu2+, and Ni2+ ions, were 255, 60, 55, and 26 mg/g respectively (1.23, 0.53, 0.87, and 0.44 mmol/g respectively). The data pertaining to the sorption dependence upon metal ion concentration could be fitted to a Langmiur isotherm model. Based on the results, the anaerobic granules treated with Ca appear to be a promising biosorbent for removal of heavy metals from wastewater due to its optimal uptake of heavy metals, its particulate shape, compact porous structure, excellent settling ability, and its high mechanical strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号