首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 330 毫秒
1.
2.
3.
4.
Both cisplatin and the estrogen receptor (ER) are known to bend DNA. The influence of the bending of sequences by the d(GpG)cisPt adduct binding of ER to estrogen response element (ERE)-like sequences was examined. Three ERE-like oligonucleotides with different affinities for ER and which include a GG in the linker sequence were designed in order to form a single central d(GpG)cisPt adduct. Using electrophoretic mobility shift assay and Scatchard analysis, it was shown that the presence of a single d(GpG)cisPt adduct in the linker sequence decreases the ER affinity for DNA. These results do not support a critical role of a DNA bend in the initial recognition of ERE by ER. Then, the platination of DNA outside of the ERE half-sites decreases the interaction of ER with ERE.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
In this paper we describe a new surface plasmon resonance (SPR) biosensor dedicated to potential estrogenic compounds prescreening, by developing an estrogen receptor (ER) specific DNA chip. Through the covalent binding of a DNA strain wearing the estrogen response element (ERE) to an activated 6-mercapto-1-hexadecanoic acid and 11-mercapto-1-undecanol self-assembled monolayer on gold surface, the SPR biosensor allows to detect specifically, quickly, and without any labeling the binding of ER in the presence of estrogen. In parallel, we investigated the ER interaction with itself, in order to study the formation of ER dimer apparently needed to activate the gene expression through ERE interaction. For that, we engaged force spectroscopy experiments that allowed us to prove that ER needs estrogen for its dimerization. Moreover, these ER/ER intermolecular measurements enabled to propose an innovative screening tool for anti-estrogenic compounds, molecules of interest for hormono-dependent cancer therapy.  相似文献   

13.
14.
15.
16.
Steroid hormone receptors can be divided into two subfamilies according to the structure of their DNA binding domains and the nucleotide sequences which they recognize. The glucocorticoid receptor and the progesterone receptor (PR) recognize an imperfect palindrome (glucocorticoid responsive element/progesterone responsive element [GRE/PRE]) with the conserved half-sequence TGTYCY, whereas the estrogen receptor (ER) recognizes a palindrome (estrogen responsive element) with the half-sequence TGACC. A series of symmetric and asymmetric variants of these hormone responsive elements (HREs) have been tested for receptor binding and for the ability to mediate induction in vivo. High-resolution analysis demonstrates that the overall number and distribution of contacts with the N-7 position of guanines and with the phosphate backbone of various HREs are quite similar for PR and ER. However, PR and glucocorticoid receptor, but not ER, are able to contact the 5'-methyl group of thymines found in position 3 of HREs, as shown by potassium permanganate interference. The ER mutant HE84, which contains a single amino acid exchange, Glu-203 to Gly, in the knuckle of ER, creates a promiscuous ER that is able to bind to GRE/PREs by contacting this thymine. Elements with the sequence GGTCAcagTGTYCT that represent hybrids between an estrogen response element and a GRE/PRE respond to estrogens, glucocorticoids, and progestins in vivo and bind all three wild-type receptors in vitro. These hybrid HREs could serve to confer promiscuous gene regulation.  相似文献   

17.
F E Murdoch  K A Grunwald  J Gorski 《Biochemistry》1991,30(45):10838-10844
Avidin-biotin complexed with DNA (ABCD) assays were employed to determine the binding affinity of estrogen receptor (ER) to DNA under various salt conditions. Type and concentration of salt in the reaction buffer dramatically affected the ability of the ER to discriminate between DNA sequences. Under appropriate salt conditions, ER was able to bind to the estrogen response element from the Xenopus vitellogenin A2 gene with at least 3 orders of magnitude greater affinity than a two base pair mutant sequence, and 5 orders of magnitude greater affinity than plasmid DNA. In these studies, the best discrimination was observed under conditions of salt type and concentration that more closely approximated intracellular conditions, i.e., 100-150 mM potassium salts. Analysis of the binding affinities for ER to all three types of DNA over a range of KCl concentrations indicated that the ionic interactions upon ER binding were the same for the three DNA molecules tested. Therefore, the additional stability of ER binding to target DNA sequences was contributed by nonionic interactions.  相似文献   

18.
Gel shift assays were employed to distinguish between the contribution of 17 beta-estradiol (E2) and a short heating step to the ability of the rat uterine cytosolic estrogen receptor (ER) to bind to the estrogen response element (ERE) from the vitellogenin A2 gene (vitERE). Despite the popularity of models in which the ER is a ligand-activated DNA-binding protein, these studies find that estrogen does not significantly contribute to receptor-DNA complex formation. An avidin-biotin complex with DNA (ABCD) assay was utilized to obtain quantitative measurement of the affinities of the ER for the vitERE and a mutant sequence. Scatchard analysis gave a dissociation constant of 390 +/- 40 pM for the E2-occupied, heated ER to the vitERE. The data fit a one-site model and evidence for cooperatively was not observed. A dissociation constant of 450 +/- 170 pM was obtained for the unoccupied, heated ER, leading to the conclusion that estrogen was not necessary for specific binding to DNA. The percentage of ER capable of binding vitERE varied with each cytosol preparation, ranging from 60 to 100% and estrogen did not appear to affect this variation. Competition against the vitERE with a 2-bp mutant sequence showed a 250-fold lower relative binding affinity of the receptor for the mutant over the vitERE sequence. This ability of the ER to discriminate between target and nonspecific DNA sequences was also not dependent on the presence of estrogen.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号