首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sharp threshold is established that separates disease persistence from the extinction of small disease outbreaks in an S→E→I→R→S type metapopulation model. The travel rates between patches depend on disease prevalence. The threshold is formulated in terms of a basic replacement ratio (disease reproduction number), ?(0), and, equivalently, in terms of the spectral bound of a transmission and travel matrix. Since frequency-dependent (standard) incidence is assumed, the threshold results do not require knowledge of a disease-free equilibrium. As a trade-off, for ?(0)>1, only uniform weak disease persistence is shown in general, while uniform strong persistence is proved for the special case of constant recruitment of susceptibles into the patch populations. For ?(0)<1, Lyapunov's direct stability method shows that small disease outbreaks do not spread much and eventually die out.  相似文献   

2.
A multipatch model is proposed to study the impact of travel on the spatial spread of disease between patches with different level of disease prevalence. The basic reproduction number for the ith patch in isolation is obtained along with the basic reproduction number of the system of patches, ℜ0. Inequalities describing the relationship between these numbers are also given. For a two-patch model with one high prevalence patch and one low prevalence patch, results pertaining to the dependence of ℜ0 on the travel rates between the two patches are obtained. For parameter values relevant for influenza, these results show that, while banning travel of infectives from the low to the high prevalence patch always contributes to disease control, banning travel of symptomatic travelers only from the high to the low prevalence patch could adversely affect the containment of the outbreak under certain ranges of parameter values. Moreover, banning all travel of infected individuals from the high to the low prevalence patch could result in the low prevalence patch becoming diseasefree, while the high prevalence patch becomes even more disease-prevalent, with the resulting number of infectives in this patch alone exceeding the combined number of infectives in both patches without border control. Under the set of parameter values used, our results demonstrate that if border control is properly implemented, then it could contribute to stopping the spatial spread of disease between patches.  相似文献   

3.
In this paper, an SIS patch model with non-constant transmission coefficients is formulated to investigate the effect of media coverage and human movement on the spread of infectious diseases among patches. The basic reproduction number R0 is determined. It is shown that the disease-free equilibrium is globally asymptotically stable if R0?1, and the disease is uniformly persistent and there exists at least one endemic equilibrium if R0>1. In particular, when the disease is non-fatal and the travel rates of susceptible and infectious individuals in each patch are the same, the endemic equilibrium is unique and is globally asymptotically stable as R0>1. Numerical calculations are performed to illustrate some results for the case with two patches.  相似文献   

4.
Boivin G  Fauvergue X  Wajnberg E 《Oecologia》2004,138(4):640-647
Charnovs marginal value theorem predicts that female parasitoids should exploit patches of their hosts until their instantaneous rate of fitness gain reaches a marginal value. The consequences of this are that: (1) better patches should be exploited for a longer time; (2) as travel time between patches increases, so does the patch residence time; and (3) all exploited patches should be reduced to the same level of profitability. Patch residence time was measured in an egg parasitoid Anaphes victus (Hymenoptera: Mymaridae) when patch quality and travel time, approximated here as an increased delay between emergence and patch exploitation, varied. As predicted, females stayed longer when patch quality and travel time increased. However, the marginal value of fitness gain when females left the patch increased with patch quality and decreased with travel time. A. victus females appear to base their patch quality estimate on the first patch encountered rather than on a fixed innate estimate, as was shown for another egg parasitoid Trichogramma brassicae. Such a strategy could be optimal when inter-generational variability in patch quality is high and within-generational variability is low.  相似文献   

5.
We generalize to n patches the Ross-Macdonald model which describes the dynamics of malaria. We incorporate in our model the fact that some patches can be vector free. We assume that the hosts can migrate between patches, but not the vectors. The susceptible and infectious individuals have the same dispersal rate. We compute the basic reproduction ratio R(0). We prove that if R(0)1, then the disease-free equilibrium is globally asymptotically stable. When R(0)>1, we prove that there exists a unique endemic equilibrium, which is globally asymptotically stable on the biological domain minus the disease-free equilibrium.  相似文献   

6.
I analyze the dynamics of predator and prey populations living in two patches. Within a patch the prey grow logistically and the predators have a Holling type II functional response. The two patches are coupled through predator migration. The system can be interpreted as a simple predator-prey metapopulation or as a spatially explicit predator-prey system. Asynchronous local dynamics are presumed by metapopulation theory. The main question I address is when synchronous and when asynchronous dynamics arise. Contrary to biological intuition, for very small migration rates the oscillations always synchronize. For intermediate migration rates the synchronous oscillations are unstable and I found periodic, quasi-periodic, and intermittently chaotic attractors with asynchronous dynamics. For large predator migration rates, attractors in the form of equilibria or limit cycles exist in which one of the patches contains no prey. The dynamical behavior of the system is described using bifurcation diagrams. The model shows that spatial predator-prey populations can be regulated through the interplay of local dynamics and migration.  相似文献   

7.
Sustained and transient oscillations are frequently observed in clinical data for immune responses in viral infections such as human immunodeficiency virus, hepatitis B virus, and hepatitis C virus. To account for these oscillations, we incorporate the time lag needed for the expansion of immune cells into an immunosuppressive infection model. It is shown that the delayed antiviral immune response can induce sustained periodic oscillations, transient oscillations and even sustained aperiodic oscillations (chaos). Both local and global Hopf bifurcation theorems are applied to show the existence of periodic solutions, which are illustrated by bifurcation diagrams and numerical simulations. Two types of bistability are shown to be possible: (i) a stable equilibrium can coexist with another stable equilibrium, and (ii) a stable equilibrium can coexist with a stable periodic solution.  相似文献   

8.
Human habitat connectivity, movement rates, and spatial heterogeneity have tremendous impact on malaria transmission. In this paper, a deterministic system of differential equations for malaria transmission incorporating human movements and the development of drug resistance malaria in an \(n\) patch system is presented. The disease-free equilibrium of the model is globally asymptotically stable when the associated reproduction number is less than unity. For a two patch case, the boundary equilibria (drug sensitive-only and drug resistance-only boundary equilibria) when there is no movement between the patches are shown to be locally asymptotically stable when they exist; the co-existence equilibrium is locally asymptotically stable whenever the reproduction number for the drug sensitive malaria is greater than the reproduction number for the resistance malaria. Furthermore, numerical simulations of the connected two patch model (when there is movement between the patches) suggest that co-existence or competitive exclusion of the two strains can occur when the respective reproduction numbers of the two strains exceed unity. With slow movement (or low migration) between the patches, the drug sensitive strain dominates the drug resistance strain. However, with fast movement (or high migration) between the patches, the drug resistance strain dominates the drug sensitive strain.  相似文献   

9.
A metapopulation malaria model is proposed using SI and SIRS models for the vectors and hosts, respectively. Recovered hosts are partially immune to the disease and while they cannot directly become infectious again, they can still transmit the parasite to vectors. The basic reproduction number R0{\mathcal{R}_0} is shown to govern the local stability of the disease free equilibrium but not the global behavior of the system because of the potential occurrence of a backward bifurcation. Using type reproduction numbers, we identify the reservoirs of infection and evaluate the effect of control measures. Applications to the spread to non-endemic areas and the interaction between rural and urban areas are given.  相似文献   

10.
Persistence and periodic orbits of a three-competitor model with refuges.   总被引:5,自引:0,他引:5  
We consider a model composed of four patches. One patch has three competing species forming a heteroclinic cycle within the patch. The remaining patches are refuges for the three competitors, and each species can diffuse between the competitive patch and its refuge. It is proved that the model can be made persistent by the introduction of the refuges for the competitors even if the isolated competitive patch has an attracting heteroclinic cycle. Further it is shown that Hopf bifurcation is possible when we change the value of the diffusion constant and periodic orbits may exist in a specific case.  相似文献   

11.
A compartmental model is described for the spread of Gambian sleeping sickness in a spatially heterogeneous environment in which vector and human populations migrate between two "patches": the village and the plantations. The number of equilibrium points depends on two "summary parameters": gr the proportion removed among human infectives, and R0, the basic reproduction number. The origin is stable for R0 <1 and unstable for R0 >1. Control strategies are assessed by studying the mix of vector control between the two patches that bring R0 below 1. The results demonstrate the importance of vector control in the plantations. For example if 20 percent of flies are in the village and the blood meal rate in the village is 10 percent, then a 20 percent added vector mortality in the village must be combined with a 9 percent added mortality in the plantations in order to bring R0 below 1. The results are quite insentive to the blood meal rate in the village. Optimal strategies (that minimize the total number of flies trapped in both patches) are briefly discussed.  相似文献   

12.
A deterministic model for the transmission dynamics of a strain of dengue disease, which allows transmission by exposed humans and mosquitoes, is developed and rigorously analysed. The model, consisting of seven mutually-exclusive compartments representing the human and vector dynamics, has a locally-asymptotically stable disease-free equilibrium (DFE) whenever a certain epidemiological threshold, known as the basic reproduction number(R(0)) is less than unity. Further, the model exhibits the phenomenon of backward bifurcation, where the stable DFE coexists with a stable endemic equilibrium. The epidemiological consequence of this phenomenon is that the classical epidemiological requirement of making R(0) less than unity is no longer sufficient, although necessary, for effectively controlling the spread of dengue in a community. The model is extended to incorporate an imperfect vaccine against the strain of dengue. Using the theory of centre manifold, the extended model is also shown to undergo backward bifurcation. In both the original and the extended models, it is shown, using Lyapunov function theory and LaSalle Invariance Principle, that the backward bifurcation phenomenon can be removed by substituting the associated standard incidence function with a mass action incidence. In other words, in addition to establishing the presence of backward bifurcation in models of dengue transmission, this study shows that the use of standard incidence in modelling dengue disease causes the backward bifurcation phenomenon of dengue disease.  相似文献   

13.
Predator-prey models with delay and prey harvesting   总被引:1,自引:0,他引:1  
It is known that predator-prey systems with constant rate harvesting exhibit very rich dynamics. On the other hand, incorporating time delays into predator-prey models could induce instability and bifurcation. In this paper we are interested in studying the combined effects of the harvesting rate and the time delay on the dynamics of the generalized Gause-type predator-prey models and the Wangersky-Cunningham model. It is shown that in these models the time delay can cause a stable equilibrium to become unstable and even a switching of stabilities, while the harvesting rate has a stabilizing effect on the equilibrium if it is under the critical harvesting level. In particular, one of these models loses stability when the delay varies and then regains its stability when the harvesting rate is increased. Computer simulations are carried to explain the mathematical conclusions. Received: 1 March 2000 / Revised version: 7 September 2000 /?Published online: 21 August 2001  相似文献   

14.
We model metapopulation dynamics in finite networks of discrete habitat patches with given areas and spatial locations. We define and analyze two simple and ecologically intuitive measures of the capacity of the habitat patch network to support a viable metapopulation. Metapopulation persistence capacity lambda(M) defines the threshold condition for long-term metapopulation persistence as lambda(M)>delta, where delta is defined by the extinction and colonization rate parameters of the focal species. Metapopulation invasion capacity lambda(I) sets the condition for successful invasion of an empty network from one small local population as lambda(I)>delta. The metapopulation capacities lambda(M) and lambda(I) are defined as the leading eigenvalue or a comparable quantity of an appropriate "landscape" matrix. Based on these definitions, we present a classification of a very general class of deterministic, continuous-time and discrete-time metapopulation models. Two specific models are analyzed in greater detail: a spatially realistic version of the continuous-time Levins model and the discrete-time incidence function model with propagule size-dependent colonization rate and a rescue effect. In both models we assume that the extinction rate increases with decreasing patch area and that the colonization rate increases with patch connectivity. In the spatially realistic Levins model, the two types of metapopulation capacities coincide, whereas the incidence function model possesses a strong Allee effect characterized by lambda(I)=0. For these two models, we show that the metapopulation capacities can be considered as simple sums of contributions from individual habitat patches, given by the elements of the leading eigenvector or comparable quantities. We may therefore assess the significance of particular habitat patches, including new patches that might be added to the network, for the metapopulation capacities of the network as a whole. We derive useful approximations for both the threshold conditions and the equilibrium states in the two models. The metapopulation capacities and the measures of the dynamic significance of particular patches can be calculated for real patch networks for applications in metapopulation ecology, landscape ecology, and conservation biology.  相似文献   

15.
We consider a two-patch epidemiological system where individuals can move from one patch to another, and local interactions between the individuals within a patch are governed by the classical SIRS model. When the time-scale associated with migration is much smaller than the time-scale associated with infection, aggregation methods can be used to simplify the initial complete model formulated as a system of ordinary differential equations. Analysis of the aggregated model then shows that the two-patch basic reproduction rate is smaller than the 1 patch one. We extend this result to a linear chain of P patches (P > 2). These results are illustrated by some examples for which numerical integration of the system of ordinary differential equations is performed. Simulations of an individual based model implemented with a multi-agent system are also carried out.  相似文献   

16.
We consider a predator-prey model in a two-patch environment and assume that migration between patches is faster than prey growth, predator mortality and predator-prey interactions. Prey (resp. predator) migration rates are considered to be predator (resp. prey) density-dependent. Prey leave a patch at a migration rate proportional to the local predator density. Predators leave a patch at a migration rate inversely proportional to local prey population density. Taking advantage of the two different time scales, we use aggregation methods to obtain a reduced (aggregated) model governing the total prey and predator densities. First, we show that for a large class of density-dependent migration rules for predators and prey there exists a unique and stable equilibrium for migration. Second, a numerical bifurcation analysis is presented. We show that bifurcation diagrams obtained from the complete and aggregated models are consistent with each other for reasonable values of the ratio between the two time scales, fast for migration and slow for local demography. Our results show that, under some particular conditions, the density dependence of migrations can generate a limit cycle. Also a co-dim two Bautin bifurcation point is observed in some range of migration parameters and this implies that bistability of an equilibrium and limit cycle is possible.  相似文献   

17.
Multiple limit cycles in the chemostat with variable yield   总被引:21,自引:0,他引:21  
The global asymptotic behavior of solutions of the variable yield model is determined. The model generalizes the classical Monod model and it assumes that the yield is an increasing function of the nutrient concentration. In contrast to the Monod model, it is demonstrated that the variable yield model exhibits sustained oscillations. Moreover, it is shown that the variable yield model may undergo a subcritical Hopf bifurcation and feature at least two distinct limit cycles. Implications for the coexistence of competing populations are discussed.  相似文献   

18.
Mathematical analysis is carried out that completely determines the global dynamics of a mathematical model for the transmission of human T-cell lymphotropic virus I (HTLV-I) infection and the development of adult T-cell leukemia (ATL). HTLV-I infection of healthy CD4(+) T cells takes place through cell-to-cell contact with infected T cells. The infected T cells can remain latent and harbor virus for several years before virus production occurs. Actively infected T cells can infect other T cells and can convert to ATL cells, whose growth is assumed to follow a classical logistic growth function. Our analysis establishes that the global dynamics of T cells are completely determined by a basic reproduction number R(0). If R(0)< or =1, infected T cells always die out. If R(0)>1, HTLV-I infection becomes chronic, and a unique endemic equilibrium is globally stable in the interior of the feasible region. We also show that the equilibrium level of ATL-cell proliferation is higher when the HTLV-I infection of T cells is chronic than when it is acute.  相似文献   

19.
A general mathematical model of anthrax (caused by Bacillus anthracis) transmission is formulated that includes live animals, infected carcasses and spores in the environment. The basic reproduction number \(\mathcal {R}_0\) is calculated, and existence of a unique endemic equilibrium is established for \(\mathcal {R}_0\) above the threshold value 1. Using data from the literature, elasticity indices for \(\mathcal {R}_0\) and type reproduction numbers are computed to quantify anthrax control measures. Including only herbivorous animals, anthrax is eradicated if \(\mathcal {R}_0 < 1\). For these animals, oscillatory solutions arising from Hopf bifurcations are numerically shown to exist for certain parameter values with \(\mathcal {R}_0>1\) and to have periodicity as observed from anthrax data. Including carnivores and assuming no disease-related death, anthrax again goes extinct below the threshold. Local stability of the endemic equilibrium is established above the threshold; thus, periodic solutions are not possible for these populations. It is shown numerically that oscillations in spore growth may drive oscillations in animal populations; however, the total number of infected animals remains about the same as with constant spore growth.  相似文献   

20.
Impulsive control strategies in biological control of pesticide   总被引:10,自引:0,他引:10  
By presenting and analyzing the pest-predator model under insecticides used impulsively, two impulsive strategies in biological control are put forward. The first strategy: the pulse period is fixed, but the proportional constant E(1) changes, which represents the fraction of pests killed by applying insecticide. For this scheme, two thresholds, E(1)(**) and E(1)(*) for E(1) are obtained. If E(1)>or=E(1)(*), both the pest and predator (natural enemies) populations go to extinction. If E(1)(**)相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号