首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Reaction of [Mo2O2(μ-S)2(H2O)6]2+ with Mo(CO)6 or metallic Mo under hydrothermal conditions (140 °C, 4 M HCl) gives oxido-sulfido cluster aqua complex [Mo33-S)(μ-O)2(μ-S)(H2O)9]4+ (1). Similarly, [W33-S)(μ-O)2(μ-S)(H2O)9]4+ (2) is obtained from [W2O2(μ-S)2(H2O)6]2+ and W(CO)6. While reaction of [Mo2O2(μ-S)2(H2O)6]2+ with W(CO)6 mainly proceeds as simple reduction to give 1, [W2O2(μ-S)2(H2O)6]2+ with Mo(CO)6 produces new mixed-metal cluster [W2Mo(μ3-S)(μ-O)2(μ-S)(H2O)9]4+ (3) as main product. From solutions of 1 in HCl supramolecular adduct with cucurbit[6]uril (CB[6]) {[Mo3O2S2(H2O)6Cl3]2CB[6]}Cl2⋅18H2O (4) was isolated and structurally characterized. The aqua complexes were converted into acetylacetonates [M3O2S2(acac)3(py)3]PF6 (M3 = Mo3, W3, W2Mo; 5a-c), which were characterized by X-ray single crystal analysis, electrospray ionization mass spectrometry and 1H NMR spectroscopy. Crystal structure of (H5O2)(Me4N)4[W33-S)(μ2-S)(μ2-O)2(NCS)9] (6), obtained from 2, is also reported.  相似文献   

2.
A novel crown-shaped heteropolytungstate is formed by covalently linking two [PW11O39]7− and two [PW9O34]9− fragments with four WO6 octahedra, which represents not only the largest tungstophosphate constructed from two types of building blocks without considering the 4f lanthanide or other 3d transition metal ion linkers but also the highest degree of aggregation known in the large clusters incorporating monovacant lacunary anions.  相似文献   

3.
Reaction of [Ru2(O2CMe)4]Cl with K3[Cr(CN)5NO] in water forms Hx[RuII/III2(O2CMe)4]3−x-[Cr(CN)5NO]·zH2O (x = 0.2) that magnetically orders at 4.0 K and possesses an interpenetrating body centered cubic [a = 13.2509(2) Å] structure with random locations of the bridging nitrosyl ligands, and x/3 vacant cation sites. Similarly, the aqueous reaction of [Ru2(O2CMe)4]Cl with Na2[Fe(CN)5NO] forms paramagnetic [Ru2(O2CMe)4]2[Fe(CN)5NO]·H2O, which has a similar tetragonal interpenetrating structure [a = 13.0186(1) Å, c = 13.0699(2) Å] where the NO ligands are presumably nonbridging and 1/3 of the expected cation sites are unoccupied. The presence of uncoordinated NO sites in addition to missing neighboring [Ru2(O2CMe)4]+ units, results in significant vacancies (or holes) in the lattice.  相似文献   

4.
The fluorescence spectrum of Eu3+ recorded at a temperature of 12 K between 14.000 and 20.000 cm?1 shows transitions from the excited stare 5Do to the Stark components of the lowest 7Fj. The optical analysis suggests an octahedral site symmetry for the rare earth ion which is confirmed by the three-dimensional crystal determination. The highly disordered crystal structure refined in space group F23 to an R-factor of 13.2%. Both the europium and the arsenic ions are located in special positions of point symmetry 23(T). The EuO bond distance is 2.28 Å. The value of the Bqk parameters was determined.  相似文献   

5.
The thiolate complexes of rare earth metals Ln(SR)3 (La, HSR = 2-mercaptothiazoline (1); La, HSR = 2-mercaptobenzoxazole (2); Y, La, Sm, Eu, Tb, Gd, Er, Tm, HSR = 2-mercaptobenzothiazole (3)) were synthesized in 84-97% yield by the reactions of silylamides Ln[N(SiMe3)2]3 with respective thiols. The products were characterized by elemental analysis, IR and UV/Vis spectroscopy. The structures of 3(Eu) and 3(Er) were determined by single-crystal X-ray diffraction. All obtained compounds revealed efficient luminescence in the region 400-550 nm at 293 K assigned to the ligands emission. Besides, the luminescent spectra of thiolates 3 at 77 K displayed the phosphorescent band of the ligand at 550 nm and in the cases of 3(Eu) and 3(Tb) the sets of emissions bands characteristic for Eu3+ and Tb3+ ions.  相似文献   

6.
The isotypic layered transition metal borophosphates MII(H2O)2[B2P2O8(OH)2]·H2O (MII = Fe, Co, Ni) were prepared under hydrothermal conditions. Their crystal structures were determined by single-crystal X-ray diffraction data and revealed an isotypic relationship to Mg(H2O)2[B2P2O8(OH)2]·H2O, a structure containing wavy 63 nets formed by tetrahedral phosphate and hydrogenborate groups interconnected in an alternating fashion by sharing common apices. The crystalline compounds were also characterized by chemical analyses, scanning electron microscopy, energy dispersive X-ray analyses, thermal analyses, IR-spectroscopy and magnetic susceptibility measurements.  相似文献   

7.
The orthorhombically crystallizing salts Rb2[B12(OH)12]·2H2O (= 1576.81(9), b = 813.08(5), c = 1245.32(7) pm) and Rb2[B12(OH)12]·2H2O2 (= 1616.54(9), b = 814.29(5), c = 1260.12(7) pm) could be prepared from Rb2[B12H12] and hydrogen peroxide. Both crystal structures were determined by X-ray single crystal diffraction and refined in the space group Cmce. They are not isostructural to the other compounds containing icosahedral dodecahydroxo-closo-dodecaborate dianions [B12(OH)12]2− and potassium, rubidium or cesium cations already known to literature, but both title compounds crystallize quasi-isotypically exhibiting Rb+ cations in 10-fold oxygen coordination. The hydrogen peroxide adduct (Rb2[B12(OH)12]·2H2O2) is explosive on shock and heat, while the hydrate (Rb2[B12(OH)12]·2H2O) is not.  相似文献   

8.
The hydrothermal reaction of a solution of Ni(CH3CO2)2 · 4H2O, MoO3, tetra-4-pyridylpyrazine, H2O3PCH3, and HF at 200 °C for 96 h yields orange crystals of [Ni(tpyrpyz)2]2[Mo4O12F2][Mo6O17] · 2H2O (1 · 2H2O). The structure consists of discrete {Ni(tpyrpyz)2}2+ cations and {Mo6O19}2− and {Mo4O12F2}2− anionic clusters. The hexamolybdate is the well-documented octahedron of octahedra, that is, six {MoO6} octahedra in a compact edge-sharing arrangement. The novel oxyfluoride cluster {Mo4O12F2}2− features two {MoO4F2} octahedra, sharing the edge defined by the fluoride ligands; the octahedral Mo sites corner-share to two {MoO4} tetrahedra in the μ2-O, O bridging mode.  相似文献   

9.
Reaction of [Ru2(O2CMe)4]Cl and K2[Ni(CN)4] forms [Ru2(O2CMe)4]2[Ni(CN)4] with the targeted layered structure possessing Ru-NCNi linkages, albeit strained, with Ru-NC and Ni-CN angles in the range of 147-167°. The magnetic properties of [Ru2(O2CMe)4]2[Ni(CN)4] can be fit to a zero-field splitting model with D/kB = 95 K (66 cm−1).  相似文献   

10.
1:1 and 1:2 cobalt complexes of bis(benzimidazol-2-ylmethyl)amine (bbma) bis(benzimidazol-2-ylmethyl)sulfide (bbms), bis(benzimidazol-2-ylethyl)sulfide (bbes) and diethylenetriamine (dien) were prepared and their spectral and redox behavior studied. Two geometrical isomers pink-[Co(bbes)2]2+ and blue-[Co(bbes)2]2+ were obtained when the complexes were prepared by using with bbes and they were separated manually and recrystallized. The octahedral structure of pink-[Co(bbes)2]2+ was resolved by X-ray analysis. The electronic spectra show the presence of two geometrical isomers for Co(bbes)22+ in the solid state; for example, the spectral bands of pink-[Co(bbes)2]2+ differs markedly with those of blue-[Co(bbes)2]2+. This is consistent with the results obtained from magnetic measurements (5.10 BM for pink-Co(bbes)22+ and 4.72 BM for blue-[Co(bbes)2]2+). Further, the behavior of the ligands (bbma, bbms, bbes) at different pH conditions was determined on the basis of 13C NMR studies. The redox potentials [Co(II)/Co(I)] of the complexes follow the trend [Co(bbma)2]2+ < [Co(bbms)2]2+ ≈ [Co(bbes)2]2+ which demonstrates the stabilization of the Co(II) ion is more by both weak σ-donor and weak π-acceptor ligands rather than by σ-donor ligand.  相似文献   

11.
A new halophosphor K3Ca2(SO4)3 F activated by Eu or Ce and K3Ca2(SO4)3 F:Ce,Eu co‐doped halosulfate phosphor has been synthesized by the co‐precipitation method and characterized for its photoluminescence (PL). The PL emission spectra of the K3Ca2(SO4)3 F :Ce phosphor show emission at 334 nm when excited at 278 nm due to 5d → 4f transition of Ce3+ ions. In the K3Ca2(SO4)3 F:Eu lattice, Eu2+ (440 nm) as well as Eu3+ (596 nm and 615 nm) emissions have been observed showing 5D07 F1 and 5D07 F2 transition of the Eu3+ ion, which is in the blue and red region of the visible spectrum respectively. The trivalent europium ion is very useful for studying the nature of metal coordination in various systems owing to its non‐degenerate emitting 5D0 state. K3Ca2(SO4)3 F:Ce,Eu is suitable for Ce3+ → Eu2+ → Eu3+ energy transfer in which Ce3+and Eu2+ play the role of sensitizers and Eu2+ and Eu3+ act as the activators. The observations presented in this paper are relevant for lamp phosphors. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The crystalline compounds (Hbipy)2[Ge(C2O4)3] (1) and (Hphen)2[Ge(C2O4)3] · 2(H2O) (2) [Hbipy+ is the 2,2′-bipyridinium cation (C10H9N2), and Hphen+ is the 1,10′-phenathrolinium cation (C12H9N2)] were isolated from mild hydrothermal syntheses and their structures were elucidated from single-crystal X-ray diffraction. The two compounds were further characterised by vibrational spectroscopy (FT-IR and FT-Raman), thermogravimetric analysis (TGA) and CHN elemental composition. Compounds 1 and 2 comprise the tris(oxalato-O,O′)germanate dianion complex, [Ge(C2O4)3]2−, which co-crystallises with Hbipy+ (in 1), or Hphen+ and water molecules (in 2). In 1, the germanium oxalate anionic complex, [Ge(C2O4)3]2−, and the Hbipy+ organic residues interact mutually via N-H?O hydrogen bonding interactions, leading to supramolecular discrete hydrogen-bonded units which are further interconnected via π-π stacking. Compound 2, on the other hand, exhibits a more complex hydrogen bonding network due to the presence of the water molecules of crystallisation which, along with π-π stacking between neighbouring Hphen+ residues, mediate the crystal packing.  相似文献   

13.
The novel ferromagnetic coupling one-dimensional complex {Cu(NIT3Py)2[N(CN)2]2(H2O)2} (NIT3Py=2-(3-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) was synthesized and characterized structurally and magnetically. It crystallizes in the monoclinic space group C2/c. The Cu(II) ion is in a distorted octahedral environment. The units of {Cu(NIT3Py)2[N(CN)2]2(H2O)2} were connected as one-dimensional structure by the intermolecular hydrogen bonds. Magnetic measurements show that there are intramolecular ferromagnetic interactions and intermolecular antiferromagnetic interactions within the chain.  相似文献   

14.
The wet chemical synthesis, X‐ray diffraction and photoluminescence characteristics in alkaline halosulfate phosphors such as LiMgSO4Cl:Eu and LiZnSO4Cl:Eu are reported in this paper. The effect of Li ion on Eu3+ luminescence (5D07F2 electronic transition) and incorporation of Eu3+ ion in lithium base alkaline halosulfate phosphor has been studied. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
K. N. Shinde  K. Park 《Luminescence》2013,28(5):793-796
A series of efficient Li3Al2(PO4)3:Eu2+ novel phosphors were synthesized by the facile combustion method. The effects of dopant on the luminescence behavior of Li3Al2(PO4)3 phosphor were also investigated. The phosphors were characterized by X‐ray diffraction, field emission scanning electron microscope and photoluminescence techniques. The result shows that all samples can be excited efficiently by near‐ultraviolet excitation under 310 nm. The emission was observed for Li3Al2(PO4)3:Eu2+ phosphor at 425 nm, which corresponded to the d → f transition. The concentration quenching of Eu2+ was observed in Li3Al2(PO4)3:Eu2+ when the Eu concentration was at 0.5 mol%. The prepared powders exhibited intense blue emission at the 425 nm owing to the Eu2+ ion by Hg‐free excitation at 310 nm (i.e., solid‐state lighting excitation). Consequently, the availability of such a phosphor will significantly help in the development of blue‐emitting solid‐state lighting applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
The Eu2+/Eu3+ mixed valence phosphor Ca2SiO2F2:Eu2+/Eu3+ was prepared using a solid‐state reaction synthesis method in a CO atmosphere, and the optical properties were investigated. The spectroscopic properties revealed that Ca2+ ions were occupied by both Eu2+ and Eu3+ ions in Ca2SiO2F2, and both ions were able to generate their characteristic emissions. A broad 5d → 4f Eu2+ band at ~470 nm and narrow 4f → 4f Eu3+ peaks upon excitation with n‐UV light were observed. The ratio between Eu2+ and Eu3+ emissions changed regularly, and the relative intensity of the red component from Eu3+ became systematically stronger with increasing overall Eu content. As a result, the emission color of these phosphors can be tunable from blue to pink under n‐UV light excitation.  相似文献   

17.
A robust and easily reproducible one-pot synthetic method for the preparation of [N(CH3)4]6[Nb10O28] · 6H2O is introduced.  相似文献   

18.
Potassium fluoro‐phosphate (KFP) glass singly doped with different concentrations of europium (Eu3+) or samarium (Sm3+) or co‐doped (Sm3+/Eu3+) was prepared, and their luminescence spectra were investigated. The phase composition of the product was verified by X‐ray diffraction analysis. Optical transition properties of Eu3+ in the studied potassium phosphate glass were evaluated in the framework of the Judd–Ofelt theory. The radiative transition rates (AR), fluorescence branching ratios (β), stimulated emission cross‐sections (σe) and lifetimes (τexp) for certain transitions or levels were evaluated. Red emission of Eu3+ was exhibited mainly by the 5D07F2 transition located at 612 nm. Concentration quenching and energy transfer were observed from fluorescence spectra and decay curves, respectively. It was found that the lifetimes of the 5D0 level increased with increase in concentration and then decreased. By co‐doping with Sm3+, energy transfer from Sm3+ to Eu3+ occurred and contributed to the enhancement in emission intensity. Intense orange‐red light emission was obtained upon sensitizing with Sm3+ in KFP glass. This approach shows significant promise for use in reddish‐orange lighting applications. The optimized properties of the Sm3+/Eu3+ co‐doped potassium phosphate glass might be promising for optical materials.  相似文献   

19.
Eu‐doped aluminum nitride phosphors were successfully prepared using simple direct nitridation of a metallic aluminum and Eu2O3 powder mixture in flowing ammonia. AlN formed at reaction temperatures >900°C, and Eu3+ transformed into the secondary oxide phase EuAl2O4 in the nitridation condition. Phase pure AlN was obtained by post‐heat treatment of the nitridated product at 1600°C for 3 h in a nitrogen atmosphere, with an Eu2+ doping concentration < 0.5%. The phosphors exhibited broad green emission centered at 521 nm under 363 nm excitation. The luminescence of the phosphor was significantly influenced by the post‐heat treatment temperature, which affected the dissolution of Eu2+, phase purity, crystallinity, and particle size of the AlN host.  相似文献   

20.
Eu2+ and Tb3+ singly doped and co‐doped LaAl11O18 phosphors were prepared by a combustion method using urea as a fuel. The phase structure and photoluminescence (PL) properties of the prepared phosphors were characterized by powder X‐ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence excitation and emission spectra. When the content of Eu2+ was fixed at 0.01, the emission chromaticity coordinates could be adjusted from blue to green region by tuning the contents of Tb3+ ions from 0.01 to 0.03 through an energy transfer (ET) process. The fluorescence data collected from the samples with different contents of Tb3+ into LaAl11O18: Eu, show the enhanced green emission at 545 nm associated with 5D47F5 transitions of Tb3+. The enhancement was attributed to ET from Eu2+ to Tb3+, and therefore Eu2+ ion acts as a sensitizer (an energy donor) while Tb3+ ion as an activator. The ET from Eu2+ to Tb3+ is performed through dipole–dipole interaction. The ET efficiency and critical distance were also calculated. The present Eu2+–Tb3+ co‐doped LaAl11O18 phosphor will have potential application for UV convertible white light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号