首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously reported the characterization of mAb derived against NC-37 target cells. mAb 18C2 and 1E7 inhibit fish cytotoxicity by binding to target cells and thus preventing the formation of conjugates with fish nonspecific cytotoxic cells (NCC). It was therefore presumed that these inhibitory mAb were specific for the target cell Ag necessary for effector cell recognition. mAb 1D4 and 7C6 bind to NC-37 cells but do not inhibit fish cytotoxic activity. We now report the isolation and purification of the Ag recognized by mAb 18C2 (inhibitor) and 1D4 (noninhibitor) by affinity chromatography of solubilized NC-37 target cell extracts. The 18C2-purified soluble target Ag (STAg) caused inhibition of cytotoxicity when preincubated with fish NCC. This inhibitory activity was reversible and dose-dependent ranging from 20 to 70% inhibition with 25 to 100 micrograms 18C2 purified STAg/10(6) NCC. STAg purified by 1D4 affinity chromatography had no effect on fish cytotoxicity. mAb 18C2 and 1E7 preabsorbed with 18C2 STAg lost their inhibitory activity when tested in the fish NCC cytotoxicity assay. Preabsorption of the same mAb with 1D4 STAg had no effect on their activity.  相似文献   

2.
Fish nonspecific cytotoxic cells (NCC)3 recognize and lyse a large variety of human and mouse transformed cells. In an effort to determine the Ag recognized by NCC on these targets, mAb were raised against NC-37 target cells. Four anti-NC-37 mAb were chosen for further characterization based on their effects on NCC lysis of target cells. Purified mAb 18C2 and 1E7 (IgM isotype) inhibited NCC killing of the following targets: U937, MOLT-4, K562, HL-60, DAUDI, NC-37, P815, and YAC-1. The dose-dependent inhibitory activity occurred at the target cell level and ranged from 50 to 70% at a concentration of 50 micrograms/well when compared to noninhibitory mAb 7C6 and 1D4 (IgG isotype). Similarly, mAb 18C2 protected the fish parasite Tetrahymena pyriformis from lysis by NCC when compared to mAb 7C6. Adsorption experiments demonstrated that the inhibitory effect on NC-37 lysis by NCC could be removed in a titratable fashion by incubation of mAb 1E7 with any one of the other target cell lines, but it could not be removed by incubation with effector cells. The inhibitory activity of mAb 1E7 and 18C2 was shown to be caused by the inhibition of conjugate formation between effector and NC-37 target cells. The relative membrane concentration of the antigenic determinants recognized by these mAb on the target cells was studied by flow cytometry using FITC-labeled mAb. These experiments showed that all four mAb bound to the surface of the cells tested. Biochemical analysis with Western blots and immunoprecipitation showed that mAb 18C2 and 1E7 recognize two Ag in NC-37 lysates: a larger protein of around 80 kDa and a smaller one of 42 kDa.  相似文献   

3.
Anti-effector cell mAb 5C6.10.4 (5C6) inhibits cytotoxic activity of fish nonspecific cytotoxic cells (NCC). We now show that 5C6 also inhibits mammalian NK cell activity using fresh and cultured (CRC) leukemic rat NK cells. The inhibitory activity of 5C6 was caused by blocking of conjugate formation between NK cells and YAC-1 targets. Binding studies done by flow cytometry (FCM) showed that mAb 5C6 specifically bound to 8% of unfractionated rat spleen cells. Enrichment by nylon-wool fractionation produced 27.2% specific binding, along with a 3.4-fold enrichment in cytotoxic activity. Tissue distribution studies revealed that the highest number of cells recognized by mAb 5C6 were found in NWNA spleen cells (28.7%), followed by liver (18.9%) and peripheral blood (13.9). Two-color FCM showed that although all 3.2.3 mAb-positive cells were also stained with mAb 5C6, a small percentage of 3.2.3. negative noncytotoxic NWNA spleen T cells were 5C6 positive. Redirected lysis experiments demonstrated that anti-effector mAb-producing myeloma cells could be killed by CRC and NWNA spleen cells. In addition, mAb 5C6 produced specific inhibition of redirected lysis of each myeloma target. Experiments were also conducted to determine the signaling capability of the FAM complex. Binding of the anti-FAM mAbs to NWNA rat spleen cells caused a rapid increase in cytosolic free calcium of approximately 472 nM. Western blot analysis of CRC cell lysates showed that the molecules recognized by anti-FAM mAbs have molecular weights of 38 and 42 kDa. These studies indicate that the anti-effector mAbs recognize a functionally relevant molecule on rat NK cells that is involved in the first steps of cytolysis, i.e., antigen recognition, and which also triggers the activation of signal-transducing events in these cells.  相似文献   

4.
Nonspecific cytotoxic cells (NCC) obtained from channel catfish (Ictalurus punctatus) kill Tetrahymena pyriformis, an opportunistic parasite in fish. Based upon this fact, a new mechanism for nonspecific cellular anti-parasitic immunity in fish is proposed. Optimum in vitro conditions for NCC killing of deciliated T. pyriformis were first obtained. Lysis of T. pyriformis by NCC occurred by 10 hr of cocultivation of effector and target cells. During this time period, 50 to 60% cytotoxicity occurred. Fish anti-T. pyriformis serum enhanced NCC killing of T. pyriformis either by prolonging immobilization (after the cilia regeneration period) or by delaying cilia regeneration. Shared antigenic determinants between T. pyriformis, Ichthyophthirius multifiliis, and NC-37 target cells were demonstrated by binding-depletion experiments. For these studies, NCC were depleted from anterior kidney cells (the hemopoetic organ in fish) by preincubating formalin-treated T. pyriformis, I. multifiliis, or viable NC-37 target cells with NCC for 3 hr. Conjugates of effector and target cells were removed by overlaying on fetal bovine serum. Unconjugated fish anterior kidney cells were tested for cytotoxic activity against NC-37 or T. pyriformis target cells. Cold target inhibition experiments by using a 4-hr 51chromium cytotoxicity assay also demonstrated these shared antigenic determinants. Target-specific antisera, used to mediate the killing of T. pyriformis by NCC, were required only for immobilizing the targets, and did not function in an antibody-dependent cell-mediated (ADCC)-like mechanism. Scanning electron micrographs of NCC-T. pyriformis conjugates additionally demonstrated NCC binding to both cilia and cell surface determinants.  相似文献   

5.
Monoclonal antibodies were generated against idiotopes on an NK target antigen-specific IgM monoclonal antibody (mab). This mab (18C2) was originally produced against (NC-37) human EBV-transformed B cells. The 18C2 mab inhibits natural killer cell lysis of NC-37 and other target cells by preventing conjugate formation. Anti-18C2(id) mabs were tested for binding to effector cells and screened by ELISA, flow cytometry, and by inhibition of NK cytotoxicity. Two of the anti-18C2(id) (anti-id) mabs (12H1.C5 and 6D9.B11) were chosen for further study. The idiotypic specificity of these anti-id mabs was confirmed by testing their binding to 18C2 hybridoma cells in the presence of homologous and heterologous "cold" inhibitor mabs. Experiments were also conducted to determine the functional properties of these mabs. Anti-18C2(id) mab 12H1.C5 inhibited the cytotoxic activity of rat splenic NK (nylon wool nonadherent cells, NWNA) and rat ALAK cells. Flow cytometric (FCM) analysis of the binding of the anti-18C2(id) mabs demonstrated that mab 12H1.C5 bound 75.43% rat NWNA spleen cells, 43.74% rat ALAK cells, and 74.33% rat CRC- cells. Anti-id mab 6D9.B11 bound 45.20% NWNA cells, 70.45% rat ALAK cells, and 55.86% CRC- cells. Two-color FCM analysis demonstrated that the anti-id mabs not only bound to the same molecule on NK cells, but also these mabs bound to the same molecule as 5C6, an anti-NK cell mab. Biochemical analysis of the antigen recognized by mab 12H1.C5 was determined by Western blotting. The determinant on NWNA cells recognized by mab 12H1.C5 had an M(r) of 40 kDa and appeared to be identical to that recognized by mab 5C6. The same experiment using a transformed rat RNK-16 (CRC-) cell extract and Western blot analysis, demonstrated an M(r) of 42 and 48 kDa in the presence of mabs 5C6 and 12H1.C5. Monoclonal antibody 5C6 was previously shown to recognize a vimentin-like function-associated molecule on NK cell membranes. The anti-id mabs were also shown to have cross-reactivity with the intermediate filament vimentin as determined by Western blot analysis.  相似文献   

6.
Nonspecific cytotoxic cells (NCC) are the teleost equivalent of mammalian lymphokine-activated natural killer cells. The cytotoxic activities of NCC are enhanced by stress-activated serum factors (SASF) present in tilapia acute-phase serum. In the present study purified NCC and xenogeneic target HL-60 tumor cells and nuclei were distinguishable in mixtures determined by flow cytometry. NCC activated by target HL-60 cells undergo activation-induced programmed cell death (AIPCD) during 12- to 16-h killing assays as shown by Annexin-V binding and nuclear DNA fragmentation results. Annexin-V binding studies also demonstrated that NCC kill HL-60 cells by an apoptotic mechanism. NCC are protected from AIPCD by 4-h preincubation in 50% SASF. Pretreatment also produced more than a fourfold increase in NCC cytotoxicity (effector/target (E:T) ratio = 100:1). In the absence of SASF preincubation, the percentage of apoptotic NCC increased from 8 to 91% at E:T ratios of 1:0 and 1:1, respectively. Kinetic studies (E:T = 10:1) demonstrated that the percentage of NCC exhibiting HL-60-dependent AIPCD increased between 0.1 and 12 h and then decreased inversely with total cell necrosis over the next 60 h. Preincubation of NCC with SASF protected NCC from AIPCD for over 72 h. Crosslinkage of the NCCRP-1 receptor with monoclonal antibody (mab) 5C6 produced AIPCD between 1 and 100 microg/mL mab concentrations. Preincubation with SASF completely protected NCC from mab 5C6-dependent AIPCD. SASF-mediated protection of NCC from AIPCD was dependent upon divalent cations, as demonstrated by increases in DNA hypoploidy of 38, 67, and 88% following preincubation in the presence of 10, 100, and 1000 microM EDTA, respectively. SASF also protected NCC from glucocorticoid- (i. e., dexamethasone) induced apoptosis. Combined, these results demonstrated that NCC activity is down-regulated by AIPCD. Release of SASF into the peripheral circulation may prevent negative regulation of NCC by AIPCD by increasing recycling capacity. Results are discussed in the context of the effects of acute stressors on innate immunity.  相似文献   

7.
Nonspecific cytotoxic cells (NCC) may comprise an important effector population specific for recognition of aberrant (tumour) cells, regulation of cell interactions including antibacterial action and lysis of protozoan parasites. In the present study, peptides were synthesized based on the amino acid sequence of a novel protein (Natural Killer cell Target Antigen, NK Tag) found on the protozoan parasite Tetrahymena pyriformis and on NCC-sensitive tumour target cells. Partially purified NK Tag was obtained from Tetrahymena. It inhibited NCC lysis of a large variety of mammalian tumour target cells. Synthetic peptides composed of short 20 mer sequences obtained from the N-terminal and midregion portions of NK Tag were tested for their ability to inhibit NCC cytotoxicity. Synthetic peptide comprised of aa # 55-74 significantly inhibited NCC lysis of IM-9 target cells. A monoclonal antibody generated against an N-terminal dodecapeptide of NK Tag bound to Tetrahymena and to several mammalian NK-sensitive target cells including K562, YAC-1, U937, NC-37, EL-4, IM-9, HL-60 and MOLT-4. NK Tag sequence comparisons using Swisspro database revealed no significant homologies except in a restricted domain region of several glycolytic pathway enzymes. A supergene family relationship was indicated because of these similarities.  相似文献   

8.
BACKGROUND: The nonradiometric assays previously developed to detect cellular cytotoxic activity have been hindered by many difficulties. Among the problems are the requirement for expensive commercial kits and the use of techniques that produce high background noise and decreased sensitivity. In addition, these assays did not account for bidirectional apoptosis (activation-induced cell death [AICD]). Most attempts to derive cytometry-based cytotoxicity assays have been unsuccessful because individual effectors and targets could not be identified (i.e., "separated") using gating techniques. METHODS: In the present study, teleost nonspecific cytotoxic (NCC) and mammalian target cells were each sufficiently different in size to identify them by flow cytometry (FCM). Using appropriate gating and discriminator techniques, these two cell populations were differentiated based on scatter properties and propidium iodide (PI) binding. Total capacity for PI binding was obtained by permeabilization of the targets with ice-cold acetone. Spontaneous PI binding was relatively low. This technique detected cytotoxicity at effector-to-target ratios (E:T) of 1:1 and after only 30 min cocultivation. RESULTS: Tilapia NCC from peripheral blood kill human transformed target cells by necrosis and apoptosis as identified by PI binding. Maximum killing of HL-60 targets (approximately 100%) occurred by 180 min cocultivation. For the same time, the killing of IM-9 did not exceed 60%. Almost 90% of IM-9 targets are lysed following 14 h of cocultivation. The maximum killing of both HL-60 and IM-9 targets was observed at a 25:1 E:T ratio after 14 h. Comparisons of the chromium(>51) release assay with flow detection of cytotoxicity revealed that FCM detected 55% lysis of the target cells compared with 2% cytotoxicity by chromium release, after a cocultivation time of 240 min. DISCUSSION: FCM detection of (teleost) NCC lysis of target cells using PI uptake is more sensitive than standard chromium release assays. This level of sensitivity was observed because NCC and targets were sufficiently different in size such that they could be resolved by scatter plots. Using FCM, cytotoxicity was detected earlier and at lower E:T ratios than previously reported for chromium release assays. Although tilapia were reported previously to be not capable of lysing IM-9 targets by chromium release detection, the more sensitive method of FCM detected cytotoxicity using PI uptake. HL-60 lysis by tilapia NCC exhibited saturable kinetics but occurred at different times post-cocultivation.  相似文献   

9.
A non-specific cytotoxic cell assay for fish is presented that is based on the release of the activated fluorochrome calcein AM from lysed carp epithelioma papulosum cyprini (EPC) cells. To establish the suitability of treating EPC cells with calcein AM the uptake and spontaneous release of the calcein AM by the EPC cells was evaluated. Incubation of 5 microM calcein AM in culture medium with 1x10(5)EPC cells well(-1)for a minimum of 3 h provided sufficient labelling. Spontaneous release of fluorescence from the labelled EPC cells during 10 h of post labelling incubation ranged from 30 to 39% of the total observed fluorescence. Cytotoxic activity of trout leucocytes was evaluated at three leucocyte to target cell ratios (10:1, 2:1 and 1:1) following incubation (4, 6, 8, and 10 h) with calcein AM-labelled EPC cells at 15 degrees C. In some instances, the monoclonal antibody specific for the NCC surface receptor NCCRP-1 (MAb5C.6) was included in the cultures. The activity of NCC cells was significantly inhibited in the presence of 0.25 microg well(-1)of MAb5C.6 relative to no antibody (P相似文献   

10.
Primary infection with EBV during acute infectious mononucleosis (IM) is associated with a cytotoxic response against allogeneic target cells. C depletion with anti-CD3 (OKT3) and anti-CD8 (OKT8) mAb decreased the allogeneic cytolysis of two EBV-infected lymphoblastoid cell lines (LCL) by 96% and 89%, respectively. Complement depletion with the NK cell-specific mAb Leu-11b and NKH-1a resulted in only a slight decrease (less than 35%) in the lysis of these LCL. mAb inhibition studies with OKT3 and OKT8 inhibited the allogeneic lysis of two LCL by 87% and 82%, respectively. The alloreactive cytotoxic response was strongly inhibited by mAb specific for MHC class I determinants (W6/32, 65% inhibition and BBM.1, 58% inhibition). Acute IM lymphocytes lysed the allogeneic EBV-negative cell lines HSB2 (45%) and HTLV-1 T cell lines (16%). NK cell-depleted lymphocytes from an acute IM patient demonstrated preferential lysis of K562 transfected with human HLA-A2 (73%) compared with the K562 transfected control (20%). Cold target competition studies with allogeneic and autologous target and competitor LCL demonstrated no significant competitive inhibition between allogeneic and autologous cells. We interpret these results as evidence that 1) the acute IM-alloreactive cytotoxic response is mediated primarily by CTL; 2) these alloreactive CTL lyse allogeneic target cells irrespective of EBV antigenic expression; 3) MHC class I expression is sufficient for allogeneic recognition and lysis of target cells; 4) distinct effector CTL populations mediate lysis of autologous and allogeneic target cells; and 5) during acute IM, EBV infection results in the induction of both virus-specific and alloreactive CTL populations.  相似文献   

11.
Cytokines as soluble mediators of immunity are important in understanding immunological mechanisms against infectious organisms and during stress conditions. In the present study, the role of protein tyrosine phosphorylation is assessed in the activation of nonspecific cytotoxic cells (NCC) from tilapia Oreochromis niloticus by cytokine-like serum factors. NCC are the teleost equivalent of mammalian natural killer (NK) cells. In teleost fish, NCC are important mediators of innate immunity against bacterial and parasite insult and tumor growth. We have previously shown that exposure of tilapia (a tropical fish) to cold water temperatures (3 to 5 min at 5 to 10 degrees C) produces physiological stress responses characterized by immediate phenotypic and immunological changes. The serum obtained from stressed tilapia contains a 'stress activating serum factor' (SASF) which passively increases in vitro naive NCC cytotoxicity 2- to 4-fold over control levels. In an effort to identify the mechanisms of activation of cytotoxicity by SASF, the phosphorylation status of tyrosine residues in proteins from treated NCC was determined. NCC were incubated with heat-inactivated or untreated stress serum and Western blots of the cell lysates were probed with anti-phosphotyrosine monoclonal antibodies (mabs). The levels of tyrosine phosphorylation in several proteins of the SASF-activated NCC were higher than in control cells. Increased tyrosine phosphorylation was also induced by incubation of NCC in the presence of the tyrosine phosphatase inhibitor Na orthovanadate (vanadate). In every case, an increase in phosphorylation status shown by Western blotting was correlated with increases in cytotoxic activity of NCC against HL-60 target cells. The enzyme inhibitor Herbimycin A (HA) has been previously used to inhibit the activity of the src-family of tyrosine kinases. In the present study, a 4 h pretreatment of NCC with HA (2 microM), followed by treatment with SASF blocked the activation of cytotoxicity produced by SASF. These results suggested that activation of NCC by cytokine-like factors is mediated through activation of the src family of protein tyrosine kinases. Activation was associated with increased phosphorylation and higher cytotoxic effector functions.  相似文献   

12.
Nonspecific cytotoxic cells (NCC) may be the teleost fish equivalent of mammalian natural killer (NK) cells. Although significant differences exist between species regarding many characteristics of these cells, both NCC and NK cells share similarities: in the types of target cells sensitive to lysis; in mechanisms of target cell recognition; in the requirements for a competent lytic cycle; and both types of effectors participate in mediating the lysis of infectious microorganisms. A putative antigen binding receptor obtained from catfish NCC has now been characterized using monoclonal antibodies (mabs). This receptor is a vimentin-like protein. Preliminary studies indicate that NCC recognize a 40 kD protein on the membranes of susceptible target cells. Solubilized target cell protein can specifically bind to NCC and inhibit killing.Similar to NK cells, NCC require cell contact with the target cell to deliver the lethal cytotoxic hit. NCC appear to be the more potent cytotoxic cells because fewer are required to kill an individual target cell and less time is required for this action to occur than for NK cells. Unlike NK cells, NCC do not recycle under experimental conditions. Preliminary studies were also reviewed to characterize signal transduction responses. Monoclonal antibody against the vimentin-like protein receptor activates NCC cytotoxicity, initiates the production of significant increased levels of free cytoplasmic calcium, and causes the production of inositol lipid intermediates (specifically phosphotidylinositol 1, 4–5 trisphosphate). NCC may be important effectors of anti-parasite immunity. Although these cells probably do not elicit memory responses, data suggest that they do recognize antigen and can be activated and recruited into peripheral tissue where they mediate cytolytic responses.  相似文献   

13.
NK cells lyse certain tumor cell targets but the effector cell surface molecules responsible for this reactivity remain uncertain. The allotypic NK1.1 Ag is the most specific serologic marker on murine cells that display non-MHC-restricted cytolysis of tumor cell targets, but no function has been previously ascribed to this Ag. In this report, we demonstrate that, in the presence of a mAb specific for the NK1.1 Ag (mAb PK136), freshly isolated and IL-2-activated NK cells from C57BL/6 mice can be induced to lyse an otherwise resistant target cell, Daudi. This phenomenon is effector and mAb specific because NK cells derived from BALB/c mice do not express the NK1.1 Ag and cannot be triggered by mAb PK136. We demonstrate that IL-2 activated but not freshly isolated NK cells express the Ly-6 and VEA Ag, originally described as T cell activation Ag. Moreover, mAb specific for Ly-6 and VEA induce target cell lysis by IL-2 activated but not freshly isolated NK cells. These mAb effects are specific, concentration dependent, and display kinetics that are similar to spontaneous cytolysis of NK-sensitive targets. The Fc portion of the activating antibodies and only FcR bearing target cells participate in mAb-induced activation, consistent with the mechanism of redirected lysis. Finally, analysis of Daudi cells transfected with beta 2-microglobulin gene demonstrate that the expression of MHC class I Ag by the target cell does not affect its sensitivity to mAb-induced lysis by NK cells. These data demonstrate that the NK1.1 Ag is functionally active on both freshly isolated and IL-2-activated NK cells and that IL-2-activated NK cells possess additional pathways of specific stimulation.  相似文献   

14.
Blast natural killer (NK) cells were elicited in the spleens of mice by treatments with the interferon inducers lymphocytic choriomeningitis virus (LCMV) or polyinosinic-polycytidylic acid (poly I:C). The blast-NK cells, separated on the basis of size by centrifugal elutriation, were compared with blast cytotoxic T lymphocytes (CTL) generated during infection with LCMV. In vivo treatments with antibody to asialo GM1 (AGM1) blocked the appearance of blast-NK cells but not blast-CTL. Antibody and complement depletion experiments indicated that the blast-NK cells were AGM1+, NK 1.2+/-, Lyt-5+/-, Thy+/-, Qa-5/NK 1.1+, Lyt-2-, B23.1-, and J11d-. Blast-NK cells could be unequivocally distinguished from blast-CTL, because the blast-CTL were completely sensitive to treatments with anti-Lyt-2 and complement, whereas the blast-NK cells were completely resistant. The blast-NK cells were purified from populations of large-size cells by antibody and complement treatments that depleted the co-eluting monocyte/macrophages and polymorphonuclear leukocytes. The population resulting after separation from dead cells over Percoll gradients represented approximately 1% of the total spleen cells, contained greater than 60% large granular lymphocytes and mediated greater than 15% killing of YAC-1 target cells in a 4-hr 51Cr release assay at an effector to target cell ratio of 1:1. The purified blast-NK cells lysed a broad range of target cells at relatively low effector to target cell ratios. The order of sensitivity of the target cells was YAC-1 much greater than K562 approximately equal to L-929 much greater than P815, consistent with that reported for NK cell-mediated lysis. The ability of the blast-NK cells to mediate lysis of NK cells also was examined. The purified NK cells mediated significant levels of lysis against the NK-like cloned line, NK1B6B10, in a 51Cr release assay. Furthermore, the purified blast-NK cells mediated lysis of bound blast-NK cells in a single-cell agarose assay. These results indicate that highly purified blast-NK cells are exceptionally efficient at mediating lysis and suggest that NK cells may act to negatively regulate the proliferation of NK cells by lysing other NK cells.  相似文献   

15.
The role of FasL/FasR pathways of immunoregulation of programmed cell death in teleost cytotoxic innate immunity has not been previously examined. In the present study, constitutive cytosolic soluble FasL (sFasL) was detected in anterior kidney (AK), peripheral blood (PBL) and liver NCC obtained from tilapia. Ligation of NCC by tumour cells caused the release of sFasL that was associated with lysis of HL-60 targets in 14 h killing assays. Evidence that sFasL mediated this activity was that anti-(human) FasL inhibited tilapia and catfish (cf.) NCC lysis of FasR+ HL-60 tumour cells. Inhibition was concentration dependent. Lysis of IM-9 targets (12% positive for FasR) by (cf.) anterior kidney and PBL NCC was only partially inhibited by anti-FasL mab. Activated NCC from both species were negative for the expression of membrane FasL and FasR. These data confirmed that NCC lyse sensitive tumour cells by multiple effector pathways. Pretreatment of (FasR+) HL-60 cells with anti-FasR mab completely inhibited cf. cytotoxicity at low (100:1) E:T ratios. Anti-FasR mab did not inhibit the lysis of IM-9 targets by cf. NCC. This study demonstrated that for catfish and tilapia, initial target cell conjugate formation was required; however, the terminal killing mechanism depended on at least two different pathways of cytotoxicity. One pathway depended on the release of preformed soluble FasL by activated NCC in the presence of FasR positive target cells. A second pathway has yet to be determined.  相似文献   

16.
Experiments are described for the partial purification of the 80-kDa LPS binding protein expressed on macrophages and lymphocytes. This partially purified Ag was used to immunize adult Armenian hamsters and splenocytes from immunized animals were fused with murine myeloma cell lines. Hybridoma cell culture supernatants containing mAb were screened by ELISA for positive binding to the immunizing Ag, murine splenocytes and the murine 70Z/3 pre B cell and for an absence of binding to sheep E. Positive clones were further screened for reciprocal competitive binding with LPS on spleen cells and ability to modulate B lymphocyte mitogenic activity. Two hybridoma cell lines secreting IgM monoclonals, termed mAb3D7 and mAb5D3, were identified that satisfied all of the selection criteria. These hybridoma cell lines were subcloned and expanded. Binding of one (mAb3D7) was abrogated by treatment of Ag with mild periodate; binding of the second (mAb5D3) was destroyed by digestion of Ag with proteinase K. Binding specificity for mAb5D3 has been confirmed by ELISA using highly purified 80-kDa protein. These mAb have been of value in establishing that the 80-kDa LPS binding protein previously identified may serve as a specific functional receptor for LPS.  相似文献   

17.
Impaired cell-mediated immunity predisposes individuals to severe systemic HSV infections. A potential approach for enhancing antiviral immunity is to alter the specificity of T cells and NK cells so that they become cytotoxic against HSV. We describe here the use of heteroconjugate antibodies to augment the killing of HSV-infected cells. Two different types of heteroconjugate antibodies were used: 1) CD3-specific mAb, covalently linked to HSV-specific mAb (e.g., anti-CD3 x anti-HSV-1 glycoprotein C); 2) FcR-specific mAb linked to HSV-specific mAb (e.g., anti-Fc gamma RIII x anti-HSV-1 glycoprotein D). Whereas freshly isolated, PBL were not cytotoxic against HSV-infected target cells in a 5-h 51Cr-release assay, co-incubation with either heteroconjugate resulted in significant cytotoxicity. In vitro activated PBL (anti-CD3 + IL-2) also became more potent killers of HSV-infected cells in the presence of each heteroconjugate. The specificity of anti-CD3 x anti-HSV-1 and anti-Fc gamma RIII x anti-HSV-1 gD for enhancing T cell and NK cell immunity, respectively, was confirmed by using cloned, homogeneous human T cell and NK cell lines as effectors. Kinetic analysis demonstrated that as soon as the infected cells began to express HSV glycoproteins on their surface they became susceptible to this enhanced killing. Prolonged culture of HSV-infected cells with heteroconjugate antibodies and effector cells also decreased the amount of viral replication that occurred, as measured in a plaque inhibition assay. These results suggest that heteroconjugate antibodies are potent immunotherapeutic tools that enhance anti-HSV immunity.  相似文献   

18.
19.
The antigen on the protozoan parasite Tetrahymena pyriformis recognized by catfish nonspecific cytotoxic cells (NCC) is a 46- to 48-kDa protein referred to as NKTag. The complete cDNA-derived amino acid sequence of NKTag has been obtained. The antigenic determinant of NKTag corresponding to the NCC binding site has been determined with synthetic peptides in target cell competition experiments. To more directly characterize the mechanism of parasite:effector cell interaction, we applied NKTag sequence-specific antisense oligodeoxynucleotides to Tetrahymena in vitro. NKTag mRNA translation by Tetrahymena was blocked by specific antisense (AS) oligodeoxynucleotides. 5′-3′ sense (S) oligodeoxynucleotide sequences were synthesized corresponding to the first 17 N-terminal amino acids of NKTag (in addition to −2 untranslated codons plus the start codon). Complimentary AS oligodeoxynucleotides were likewise synthesized. To determine the optimum in vitro conditions for AS treatment, we tested parasites at various phases of their growth cycle for the effects of a single AS treatment. At 9 h post-AS treatment (during the linear phase of the growth curve), maximum reduction in membrane expression of NKTag was observed. Eighty-five percent of Tetrahymena were positive for expression of NKTag at 0 time post-AS treatment versus 13% positive at 9 h. Membrane expression of AS-treated parasites returned to normal levels by 24 h post-treatment. In cold target inhibition experiments, the reduced NKTag expression by Tetrahymena at 9 h AS treatment was confirmed by observing a complete inability (compared with S-treated parasites) to compete with IM-9 cells for binding with NCC. These data demonstrated a unique experimental in vitro system to define the antigen determinant on target cells responsible for recognition by cytotoxic effector cells that participate in innate immune responses. Received: 14 June 1999 / Accepted: 4 September 1999  相似文献   

20.
The Entamoeba histolytica galactose-binding lectin is a surface glycoprotein composed of 170- and 35-kDa subunits. Inhibition of this lectin with galactose or anti-170 kDa subunit polyclonal antibody blocks amebic adherence to target cells and colonic mucin glycoproteins. We describe the properties of 10 mAb with specificity for the 170-kDa subunit. Based on competitive binding studies, six nonoverlapping antigenic determinants on the lectin were identified. The effect of the mAb on adherence of amebic trophozoites to both Chinese hamster ovary (CHO) cells and human colonic mucins was measured. Antilectin antibodies directed against epitopes 1 and 2 enhanced adherence, with the number of amebae having at least three adherent CHO cells increasing with the addition of epitope 1 mAb from 26 +/- 9 to 88 +/- 2% and the binding of colonic mucins increasing from 34 +/- 1 to 164 +/- 3 pg/10(5) amebae. Antibody-enhanced adherence remained 90 to 100% galactose inhibitable, occurred at 4 degrees C and was not Fc mediated. Univalent Fab fragments of epitope 1 mAb augmented mucin binding by 238% and CHO cell adherence by 338%. The binding of purified lectin to CHO cells was increased from 1.1 +/- 0.1 to 2.4 +/- 0.3 ng/10(3) CHO cells by mAb directed to epitope 1, demonstrating that enhanced adherence was due to direct activation of the lectin. mAb to epitope 3 bound to the lectin only upon its solubilization from the membrane and had no effect on adherence. Adherence to CHO cells and mucins was inhibited from 50 to 75% by mAb to epitopes 4 and 5; epitope 6 mAb inhibited amebic adherence to CHO cells but not mucins. The pooled sera from 10 patients with amebic liver abscess blocked the binding to the 170-kDa subunit of mAb directed to all six epitopes. Striking individual variations in the effects of immune sera on adherence were observed. Although the sera of all 44 South African patients with amebic liver abscess had high titer anti-lectin antibodies, 16 patients' sera significantly (more than 3 SEM) enhanced adherence whereas 25 patients' sera significantly inhibited adherence. Antilectin antibodies exert profound functional effects on the interaction of E. histolytica with target cells and human colonic mucins. Exploration of the clinical consequences of adherence-enhancing and inhibitory antibody responses may give insight into the role of antilectin antibodies in immunity to invasive amebiasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号