首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
J Du  I Nasir  B K Benton  M P Kladde  B C Laurent 《Genetics》1998,150(3):987-1005
The essential Sth1p is the protein most closely related to the conserved Snf2p/Swi2p in Saccharomyces cerevisiae. Sth1p purified from yeast has a DNA-stimulated ATPase activity required for its function in vivo. The finding that Sth1p is a component of a multiprotein complex capable of ATP-dependent remodeling of the structure of chromatin (RSC) in vitro, suggests that it provides RSC with ATP hydrolysis activity. Three sth1 temperature-sensitive mutations map to the highly conserved ATPase/helicase domain and have cell cycle and non-cell cycle phenotypes, suggesting multiple essential roles for Sth1p. The Sth1p bromodomain is required for wild-type function; deletion mutants lacking portions of this region are thermosensitive and arrest with highly elongated buds and 2C DNA content, indicating perturbation of a unique function. The pleiotropic growth defects of sth1-ts mutants imply a requirement for Sth1p in a general cellular process that affects several metabolic pathways. Significantly, an sth1-ts allele is synthetically sick or lethal with previously identified mutations in histones and chromatin assembly genes that suppress snf/swi, suggesting that RSC interacts differently with chromatin than Snf/Swi. These results provide a framework for understanding the ATP-dependent RSC function in modeling chromatin and its connection to the cell cycle.  相似文献   

7.
8.
9.
10.
The ubiquitin-targeting pathway is evolutionarily conserved and critical for many cellular functions. Recently, we discovered a role for two ubiquitin-protein ligases (E3s), Rsp5p and the Apc5p subunit of the anaphase-promoting complex (APC), in mitotic chromatin assembly in Saccharomyces cerevisiae. In the present study, we investigated whether Rsp5p and Apc5p interact in an intracellular pathway regulating chromatin remodeling. Our genetic studies strongly suggest that Rsp5p and Apc5p do interact and that Rsp5p acts upstream of Apc5p. Since E3 enzymes typically require the action of a ubiquitin-conjugating enzyme (E2), we screened E2 mutants for chromatin assembly defects, which resulted in the identification of Cdc34p and Ubc7p. Cdc34p is the E2 component of the SCF (Skp1p/Cdc53p/F-box protein). Therefore, we analyzed additional SCF mutants for chromatin assembly defects. Defective chromatin assembly extracts generated from strains harboring a mutation in the Cdc53p SCF subunit or a nondegradable SCF target, Sic1(Deltaphos), confirmed that the SCF was involved in mitotic chromatin assembly. Furthermore, we demonstrated that Ubc7p physically and genetically interacts with Rsp5p, suggesting that Ubc7p acts as an E2 for Rsp5p. However, rsp5CA and Deltaubc7 mutations had opposite genetic effects on apc5CA and cdc34-2 phenotypes. Therefore, the antagonistic interplay between Deltaubc7 and rsp5CA, with respect to cdc34-2 and apc5CA, indicates that the outcome of Rsp5p's interaction with Cdc34p and Apc5p may depend on the E2 interacting with Rsp5p.  相似文献   

11.
12.
13.
14.
15.
The mitochondrial protein Bcs1p is conserved from Saccharomyces cerevisiae to humans and its C-terminal region exhibits an AAA (ATPases associated with diverse cellular activities) domain. The absence of the yeast Bcs1p leads to an assembly defect of the iron-sulfur protein (ISP) subunit within the mitochondrial respiratory complex III, whereas human point mutations located all along the protein cause various pathologies. We have performed a structure-function analysis of the yeast Bcs1p by randomly generating a collection of respiratory-deficient point mutants. We showed that most mutations are in the C-terminal region of Bcs1p and have localized them on a theoretical three-dimensional model based on the structure of several AAA proteins. The mutations can be grouped into classes according to their respiratory competence and their location on the three-dimensional model. We have further characterized five mutants, each substituting an amino acid conserved in yeast and mammalian Bcs1 proteins but not in other AAA proteins. The effects on respiratory complex assembly and Bcs1p accumulation were analyzed. Intragenic and extragenic compensatory mutations able to restore complex III assembly to the mutants affecting the AAA domain were isolated. Our results bring new insights into the role of specific residues in critical regions that are also conserved in the human Bcs1p. We show that (1) residues located at the junction between the Bcs1p-specific and the AAA domains are important for the activity and stability of the protein and (2) the residue F342 is important for interactions with other partners or substrate proteins.  相似文献   

16.
17.
18.
19.
20.
The gene encoding the SNF5/Ini1 core subunit of the SWI/SNF chromatin remodeling complex is a tumor suppressor in humans and mice, with an essential role in early embryonic development. To investigate further the function of this gene, we have generated a Cre/lox-conditional mouse line. We demonstrate that Snf5 deletion in primary fibroblasts impairs cell proliferation and survival without the expected derepression of most retinoblastoma protein-controlled, E2F-responsive genes. Furthermore, Snf5-deficient cells are hypersensitive to genotoxic stress, display increased aberrant mitotic features, and accumulate phosphorylated p53, leading to elevated expression of a specific subset of p53 target genes, suggesting a role for Snf5 in the DNA damage response. p53 inactivation does not rescue the proliferation defect caused by Snf5 deficiency but reduces apoptosis and strongly accelerates tumor formation in Snf5-heterozygous mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号