首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Tissue blocks 2 × 2 × 0.4 cm were fixed 6-24 hr in phosphate-buffered 5% glutaraldehyde then sliced to 2 × 2 × 0.1 cm and soaked in 0.1 phosphate-buffer (pH 7.3) for at least 12 hr. Fixation was continued for 2 hr in phosphate-buffered 1-2% OsO4. The slices were dehydrated, infiltrated with Araldite, and embedded in flat-bottomed plastic molds. Sectioning at 1-8 μ with a sliding microtome was facilitated by addition of 10% dibutylphthalate to the standard epoxy mixture. The sections were spread on warm 1% gelatin and attached to glass slides by drying, baking at 60 C, fixing in 10% formalin or 5% glutaraldehyde and baking again. Sections were mordanted in 5% KMnO4 (5 min), bleached with 5% oxalic acid (5 min) and neutralized in 1% Li2CO3 (1 min). Several stains could then be applied: azure B, toluidine blue, azure B-malachite green, Stirling's gentian violet, MacCallum's stain (modified), tribasic stain (modified) and phosphotungstic acid-hematoxylin. Nuclei, mitochondria, specific granules, elastic tissue or collagen were selectively emphasized by appropriate choice of staining procedures, and cytologic detail in 1-3 μ sections was superior to that shown by conventional methods. Selected areas from adjacent 4-8 μ sections could be re-embedded for ultramicrotomy and electron microscopy.  相似文献   

2.
Representative pieces of human brain were fixed in 10% formalin, embedded in paraffin and sectioned at 5 μ. Paired sections were used, one of which was oxidized in equal parts of 0.5% potassium permanganate and 0.5% sulfuric acid for 1-2 min, while the other was left unoxidized. Both the oxidized and unoxidized sections were impregnated with silver diamine. The lipofuscin granules in the nerve cells appeared as small intensely stained black dots, surrounded by a clear unstained zone, in the unoxidized sections, while in the oxidized sections there was an outer ring of intensely blackened material surrounding a central unstained dot.  相似文献   

3.
Brains of rat with surgical lesions 3-5 days old are fixed in 10% neutralized formalin (excess of CaCO3), 20 μ serial frozen sections cut therefrom and kept in neutralized formalin for an additional 24-48 hr. The sections are soaked in distilled water 12-24 hr, transferred to 50% alcohol containing 0.75 ml of concentrated NH4OH (sp. gr. 0.91) per 100 ml 12-24 hr, placed in distilled water 2-3 hr and then in silver-pyridine solution (AgNO3 3% aq., 20 ml; pyridine, 1 ml) for 48 hr. Test sections are transferred directly to each one of 3 ammoniated silver-solutions, pH 12.8, 13.0 and 13.2, made as follows: To 200 ml of solution 1 (silver nitrate, 6.4 gm; alcohol 96%, 220 ml; NH4OH (sp. gr. 0.91), 28 ml and distilled water, 440 ml) is added respectively 8-12 ml, 12-16 ml and 16-20 ml of solution 2 (2% NaOH) to give the pH desired. The test sections are studied and the optimal ammoniated silver solution chosen. Two baths of ammoniated silver are used, the section placed with continuous agitation into the first bath for 30 sec and the second bath for 60 sec. The sections are then transferred directly into a reducing bath (formalin 10%, 2ml; alcohol 96%, 5 ml; citric acid 1%, 1.5 ml and distilled water, 4.5 ml) for 2 min and from there to 5% Na2S2O3 for 1 min, rinsed in 3 changes of distilled water, dehydrated and mounted.  相似文献   

4.
Summary Identification of argyrophilic cells, in pancreatic islets of normal rabbits, is accomplished by light and electron microscopy in osmium-fixed plastic-embedded tissues.Fixative, pretreatment and pH of silver nitrate solution were essential for the light microscopic study to reveal argyrophilic cells in osmium-fixed plastic-embedded pancreatic islet tissue. The best result was obtained with Dalton's osmium fixation and buffered silver nitrate methanamine solution at pH 9.O. The cytoplasmic granules of argyrophilic cells generally are densely packed but some of the cells show only sparse silver impregnated granules in the cytoplasm. Occasionally there are some non-argyrophilic granular cells in which, after silver impregnation, the cytoplasm appears clear. There are three kinds of cells in the pancreatic islets, i.e., argyrophilic granular cells, non-argyrophilic granular (clear) cells, and beta cells (situated centrally in the islet and stained light yellow in silver impregnated sections).The cells known as argyrophilic cells in light microscopy can be identified as alpha cells in electron micrographs by comparison of consecutive sections of the same cell.The author would like to express his appreciation to professor Roy C. Swan for his generous guidance.  相似文献   

5.
Glycogen synthesis was investigated by giving tritium (H3)-labeled glucose with carrier to fasted rats in vivo or incubating liver slices from fasted rats in vitro using a glucose-H3-containing medium. After 15 min or 1 hr, pieces of liver were fixed and radioautographed for light and electron microscopy. In vivo and in vitro, radioautographic reactions appeared over "glycogen areas" and over zones transitional between these areas and ergastoplasm. Treatment of sections by alpha amylase removed all but about 5% of the radioactivity, so that about 95% of it consisted of glycogen (synthesized during the 15 min or 1 hr elapsing after administration of glucose-H3). Within glycogen areas and transitional zones, most silver grains were over or very close to glycogen granules and smooth (or partly smooth) vesicles. Presumably, much of the label was added onto growing glycogen granules, in accord with the biochemical view that glycogen may serve as substrate for further glycogen synthesis. The few silver grains located far from glycogen granules—15% at the 15 min interval in vivo—approximated smooth (or partly smooth) vesicles of endoplasmic reticulum. This observation raised the possibility that smooth membranes play a role in glucose uptake at an early stage in de novo formation of glycogen granules.  相似文献   

6.
Sections of 6 μ from tissues fixed in Susa or in Bouin's fluid (without acetic acid) and embedded in paraffin were attached to slides with Mayer's albumen, dried at 37 C for 12 hr, deparaffinized and hydrated. The sections fixed in Susa were transferred to a I2-K1 solution (1:2:300 ml of water); rinsed in water, decolorized in 5% Na2S2O3; washed in running water, and rinsed in distilled water. Those fixed in Bouin's were transferred to 80% alcohol until decolorized, then rinsed in distilled water. All sections were stained in 1% aqueous phloxine, 10 min; rinsed in distilled water and transferred to 3% aqueous phosphotungstic acid, 1 min; rinsed in distilled water; stained 0.5 min in 0.05 azure II (Merck), washed in water; and finally, nuclear staining in Weigert's hematoxylin for 1 min was followed by a rinse in distilled water, rapid dehydration through alcohols, clearing in xylene and covering in balsam or a synthetic resin. In the completed stain, islet cells appear as follows: A cells, purple; B cells, weakly violet-blue; D cells, light blue with evident granules; exocrine cells, grayish blue with red granules.  相似文献   

7.
Pituitaries are fixed for 24 hr. in Bouin's fluid containing 0.5% trichloroacetic acid instead of 5% acetic acid, or in a mixture of 9 parts SUSA and 1 part saturated aqueous solution of picric acid. They are embedded in paraffin and horizontal sections are cut at 3-4 μ. The staining method consists of 3 phases: (a) immersion in aldehyde-fuchsin for the selective demonstration of the beta cell granules, (b) staining of the nuclei with Ehrlich's hematoxylin and (c) a rapid one-step counterstain with light green and orange G dissolved in a phosphotungstic-acetic acid mixture for the differentiation of the acidophilic and the delta cell granules.  相似文献   

8.
Summary This ultrastructural study demonstrates that the vasopressin immunoreactivity found in the occasional, densely stained cells in the hypothalamus of the homozygous Brattleboro rat is localized in the rough endoplasmic reticulum. 50-m Vibratome sections were stained with anti-vasopressin serum by use of a peroxidase method with 3,3-diaminobenzidine as chromogen. The diaminobenzidine end-product has a specific capability to bind gold particles from a chloroauric acid solution and the bound gold was used to precipitate silver grains from a silver developer. The stained sections were flat embedded in resin and ultrathin sections were cut of areas containing the immuno-identified occasional cells. In these densely stained, vasopressin-immunoreactive cells of homozygous Brattleboro rats the rough endoplasmic reticulum was dilated. The lumen of the reticulum contained both end-products of diaminobenzidine and gold/silver grains, but some parts of the reticulum appeared unstained. No other cell organelles were immunostained and no secretory granules were found. In control rats, gold/silver deposits were found throughout the cytoplasm of vasopressin-immunoreactive cells. In these immunostained cells secretory granules were seen.  相似文献   

9.
Two standard cytological techniques have heen modified to stain specifically the interstitial cells of the testis. In Method 1, the tissue is fixed in Zenker-formol or Regaud's fluid for several hours or overnight and subsequently postchromed in 3% K2Cr2O7 for 72 hr at 37°C. After paraffin embedding, sections are cut at 5μ, dewaxed, brought down to 70% alcohol and stained in an unfiltered saturated solution of Sudan black in 70% alcohol for 10-30 min. Sections are washed briefly in 70% alcohol to remove all excess dye, differentiated, if necessary, in 50% alcohol, downgraded to water and mounted in Farrants' medium or glycerol jelly. Interstitial cells: deep blue black; remainder of testicular tissue: light blue. Method 2 is essentially the Champy-Kull technique but specific staining for mitochondria is omitted and the sections are downgraded to water; then they are mounted in Farrants' medium or glycerol jelly without further treatment. In this way osmicated lipoids are preserved. Interstitial cells: conspicuous due to the variable number of black granules in their cytoplasm; the remainder of the tissue: yellow.  相似文献   

10.
K Gorgas  P B?ck 《Histochemistry》1976,50(1):17-31
Semithin sections (Araldite) of mouse adreno-medullary tissue were examined in the light microscope after perfusion fixation with glutaraldehyde, glutaraldehyde/formaldehyde or after freeze-drying followed by a treatment with hot formaldehyde gas. The following methods were employed: (i) aldehyde-induced fluorescence of catecholamines, (ii) Schmorl's ferric ferricyanide reaction, (iii) argentaffin reaction, and (iiii) staining with alkaline lead citrate followed by Timm's silver sulphide reaction. The correspondence of results obtained by the various methods was proven in consecutive sections or by successively applying different methods to identical sections. Four types of primary catecholamine-storing cells were identified. NA1 cells contain cytoplasmic granules up to 0.3 mum in diameter which stain black with ammoniacal silver and display a bright white to yellow fluorescence. NA2 cells show smaller cytoplasmic granules which stain brown with the argentaffin method and give white catecholamine fluorescence. NA3 cells appear yellow-earth after applying the argentaffin reaction and show greenish fluorescence. NA4 cells are hardly identified in the light microscope. These cells are significantly smaller than the above mentioned cells and characterized by a high nucleo-cytoplasmic ratio. They become straw coloured with ammoniacal silver and show greenish fluorescence. The argentaffin reaction was also used to identify these cells in semithin sections of glutaraldehyde/osmium tetroxide fixed material. The fine structure of the various noradrenalin-storing cells was studied in consecutive thin sections. NA1 cells were found to contain two populations of granules, the larger ones measuring between 300 and 350 nm, the smaller ones about 175 nm. The granules in NA2 cells correspond to this latter population (175 nm). NA3 cells contain an uniform granule population with a main diameter of 120 nm. The smallest granules are seen in NA4 cells being in the dimension of 80 nm. Granules in NA1 and NA2 cells show uniformly high density, whereas those in NA3 and NA4 cells display cores of varying density. Granules with moderately dense cores in NA3 and NA4 cells may represent partially emptied sites of noradrenalin storage or dopamin containing particles.  相似文献   

11.
A simple method for the demonstration of juxtaglomerular granules in Epon embedded semithin (0.5-1 μm) sections has been developed as follows: sections are prepared as for routine electron microscopy except that before dehydration, the tissues are immersed in 0.5% uranyl acetate in Veronal acetate buffer (pH 5.0) overnight at room temperature. After sectioning on an ultramicro-tome, the semithin sections are briefly stained with toluidine blue-pyronin Y. After staining, the section is rinsed in running tap water and then air dried. Under a light microscope with a 40 × or a 100 × objective, the juxtaglomerular granules appear as deep purple particles and are thus easily separated from the bluish cytoplasm of the juxtaglomerular cells. Cellular organelles in other cells of the kidney were also clearly stained and their fine structure distinguishable.  相似文献   

12.
Summary By light and electron microscopy investigation of the human gastric mucosa five types of ultrastructurally different endocrine cells have been detected: 5-hydroxytryptamine storing enterochromaffin (EC) cells, gastrin storing G cells, and functionally undefined ECL, D and D1 cells. By direct application of Masson's argentaffin reaction as well as of Sevier-Munger's and Grimelius' argyrophil method to electron microscopy specimens, selective deposition of silver grains upon the endocrine granules of such cells was obtained. In particular, only EC cell granules reacted to the argentaffin method, granules of both EC and ECL cells heavily reacted to Sevier-Munger's technique, granules of EC, ECL, G and D1 cells reacted to Grimelius' technique, while D cell granules failed to react either to argentaffin or argyrophil methods. By the application of the same silver methods to paraffin sections as well as by other selective staining methods for endocrine granules (5-hydroxytryptamine techniques, lead-haematoxylin, HCl-basic dye method), at least four of the above cell types were also identified under light microscope. This opens the way for extensive studies of such cells in conventional histologie specimens.This investigation was supported in part by grant N.70.01022.04 from the Italian Consiglio Nazionale delle Ricerche.  相似文献   

13.
Deparaffinized, 3-5μ, sections are brought to water, oxidized 3.5 min in an equal-parts mixture of 0.3% H2SO4 and 0.3% KMnO4, and decolorized with 4% K2S2O5. Nuclei are stained with Gomori's (1939) chromium-hematoxylin, and cell granules with Cason's (1950) mixture. The eosinophilic cells of the hypophysis and the alpha cells of pancreatic islets (of Langerhans) stain carmine red; basophilic and beta cells stain dark blue. Heidenhain's susa is the most suitable fixative for hypophysis, Bouin's fluid for pancreas; but a satisfactory result is obtainable after formalin-sublimate or plain formalin. Besides studying the ratio of the cell types in the hypophysis or in pancreatic islets, it is possible to estimate the granule content of the cells. The method works on human autopsy material provided fixation of hypophysis occurs within 24 hr, and. pancreas, 12 hr post mortem, and it is suitable also for quite fresh organs.  相似文献   

14.
Radioactive tissue sections covered with the film from Kodak Fine-Grain Autoradiographic Stripping Plate AR. 10 were stained with Ehrlich's hematoxylin or gallocyanin-chrome alum after exposure and photographic processing. Staining with gallocyanin-chrome alum at pH 1.7 and 2.4 dissolved the silver grains completely or almost completely in 1 to. Grains were quite visible after a 3 hr staining at pH 3.4, but a statistical analysis revealed a loss of grains, compared with unstained controls. Grains were also lost in slides immersed in solutions of gallocyanin alone at pH 2.5 for 24 hr but not in solutions of chrome alum alone, nor in some other alums. In sections stained 1 hr with Ehrlich's hematoxylin, the grains were not dissolved.  相似文献   

15.
Fresh frozen sections of liver and duck salt gland, 20 μ thick were attached to slides and immersed for 20 min in Carnoy's 6:3:1 fixative; washed 3 times with 0.9% NaCl; placed in M/15 phosphate buffer, pH 7.0 for 20 min; then incubated for 5 hr at 37 C in a 0.1% solution of collagenase (Koch-Light Laboratories) in the phosphate buffer. After washing in 0.9% NaCl the slides were immersed for at least 24 hr in 4% formaldehyde (10% formol-saline). Slides were examined for morphological detail after haematoxylin and eosin staining, for nerve fibres after silver impregnation, and for connective tissue fibres. Attempts to use papain and pepsin digestion on sections after similar fixation were not successful, as much of the tissue was destroyed.  相似文献   

16.
17.
Tissues were fixed at 20° C for 1 hr in 1% OsO4, buffered at pH 7.4 with veronal-acetate (Palade's fixative), soaked 5 min in the same buffer without OsO4, then dehydrated in buffer-acetone mixtures of 30, 50, 75 and 90% acetone content, and finally in anhydrous acetone. Infiltration was accomplished through Vestopal-W-acetone mixtures of 1:3, 1:1, 3:1 to undiluted Vestopal. After polymerisation at 60° C for 24 hr, 1-2 μ sections were cut, dried on slides without adhesive, and stained by any of the following methods. (1) Mayer's acid hemalum: Flood the slides with the staining solution and allow to stand at 20°C for 2-3 hr while the water of the solution evaporates; wash in distilled water, 2 min; differentiate in 1% HCl; rinse 1-2 sec in 10% NH,OH. (2) Iron-trioxyhematein (of Hansen): Apply the staining solution as in method 1; wash 3-5 min in 5% acetic acid; restain for 1-12 hr by flooding with a mixture consisting of staining solution, 2 parts, and 1 part of a 1:1 mixture of 2% acetic acid and 2% H2SO4 (observe under microscope for staining intensity); wash 2 min in distilled water and 1 hr in tap water. (3) Iron-hematoxylin (Heidenhain): Mordant 6 hr in 2.5% iron-alum solution; wash 1 min in distilled water; stain in 1% or 0.5% ripened hematoxylin for 3-12 br; differentiate 8 min in 2.5%, and 15 min in 1% iron-alum solution; wash 1 hr in tap water. (4) Aceto-carmine (Schneider): Stain 12-24 hr; wash 0.5-1.0 min in distilled water. (5) Picrofuchsin: Stain 24-48 hr in 1% acid fuchsin dissolved in saturated aqueous picric acid; differentiate for only 1-2 sec in 96% ethanol. (6) Modified Giemsa: Mix 640 ml of a solution of 9.08 gm KH2PO4 in 1000 ml of distilled water and 360 ml of a solution of 11.88 gm Na2HPO4-2H2O in 1000 ml of distilled water. Soak sections in this buffer, 12 hr. Dissolve 1.0 gm of azur I in 125 ml of boiling distilled water; add 0.5 gm of methylene blue; filter and add hot distilled water until a volume of 250 ml is reached (solution “AM”). Dissolve 1.5 gm of eosin, yellowish, in 250 ml of hot distilled water; filter (solution “E”). Mix 1.5 ml of “AM” in 100 ml of buffer with 3 ml of “E” in 100 ml of buffer. Stain 12-24 hr. Differentiate 3 sec in 25 ml methyl benzoate in 75 ml dioxane; 3 sec in 35 ml methyl benzoate in 65 ml acetone; 3 sec in 30 ml acetone in 70 ml methyl benzoate; and 3 sec in 5 ml acetone in 95 ml methyl benzoate. Dehydrated sections may be covered in a neutral synthetic resin (Caedax was used).  相似文献   

18.
Frozen sections of formalin-fixed brains containing surgical lesions, were treated with 15% ethanol for 0.5 hr., soaked in 0.5% phosphomolybdic acid for 0.25-1.0 hr., and subsequently treated with 0.05% potassium permanganate for 4-10 min. (The duration of the latter treatment is critical and individually variable). Subsequent procedure is as follows: decolorize in a mixture of equal parts of 1% hydroquinone and 1% oxalic acid; wash thoroughly and soak sections in 1.5% silver nitrate for 20-30 min.; ammoniacal silver nitrate (silver nitrate 0.9 g., distilled water 20 ml., pure ethanol 10 ml., strong ammonia 1.8 ml., 2.5% sodium hydroxide 1.5 ml.) 0.5-1.0 min.; reduce in acidified formalin (distilled water 400 ml., pure ethanol 45 ml., 1% citric acid 13.5 ml., 10% formalin 13.5 ml.) 1 min.; wash, and pass section through 1 % sodium thiosulf ate (0.5-1.0 min.); wash thoroughly and pass sections through graded alcohols and xylene (3 changes); cover in neutral synthetic resin.  相似文献   

19.
Frozen sections of avian tissue fixed 7 days or longer in 10% formalin or formol-saline are cut at 20-50 μ, left in distilled water for 2 hr, and placed in 0.002% aqueous AgNO3 for 3-4 days. Subsequent procedure is essentially that of Weddell and Glees. Sections are placed in 20% AgNO3 for 30 min, then carried through 3 baths of 3% formalin in less than 10 min. Immediately thereafter they are washed 1-2 sec in a 0.1% solution of NH4OH (cone) and placed in the ammoniacal silver solution (made with 20% AgNO3) until the nerves become distinct, as seen under a microscope; usually, in about 15 min. After washing briefly, the sections are fixed in 5% Na2S2O3 for 3-10 min, dehydrated, cleared, and mounted in the usual way.  相似文献   

20.
Mitochondria were stained in liver, kidney, pancreas, adrenal and intestinal mucosa of rat and mouse. Tissues 1 mm thick, were fixed in a mixture of saturated aqueous HgCl2, 90 ml; formalin (37-38% HCHO), 10 ml, at room temperature (25°C) for 1 hr. Deparaffinized sections 3-4μ thick were treated with Lugol's iodine (U.S.P.) followed by Na2S2O3 (5%), rinsed in water and the ribonucleic acid removed by any of the following procedures: 0.2 M McIlavaine's buffer, pH 7.0, 2 hr, or 0.2 M phosphate buffer, pH 7.0, 2 hr at 37°C; 0.1% aqueous ribonuclease, 2 hr at 37°C; 5% aqueous trichloracetic acid overnight at 37°C; or 1% KOH at room temperature for 1 hr. After washing in water, sections were treated with a saturated solution of ferric ammonium alum at 37°C for 8-12 hr and colored by Regaud's ripened hematoxylin for 18 hr. They were then differentiated in 1% ferric ammonium alum solution while under microscopic observation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号