首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 504 毫秒
1.
In July 1994, we were able to collect airborne fungal spores and pollen grains over the Adriatic Sea from the upper deck of the Oceanographic Ship Urania (CNR). The biological particles were collected using a modified Lanzoni VPPS 1000 sampler (operating at a flux of 10 LPM), on glycerine-gelatine coated microscopic slides. Not only were the airborne concentrations of different organisms estimated, their viability was also tested with a 1% TTC solution. Particles were collected for 60 min (i.e. a volume of 600 liters of air sampled) at every 2 h from 0600–2100 h. Up to 689 pollen grains/m3 and an impressive 48 990 spores/m3 were collected daily. Forty-two fungal taxa were identified and the most abundant spores collected were Cladosporium (82.6%), Smuts (4.8%), Ascospores (2.8%), Basidiospores (2.1%) andAlternaria (1.7%). 20 pollen taxa were identified, and the dominant pollen were Urticaceae (57.9%), Graminaceae (20.7%), Fagaceae (2.4%), Plantaginaceae (1.4%), Pinaceae (1.3%) and Eucalyptus (1.1%). The most abundant captures were done at 0800 and 1000 h (17.8 and 16.7% respectively) and at 1400 and 1600 h (13.2 and 13.8% respectively). Pollen viability per species ranged from 0 to 100%, but for the most abundant taxa, it ranged from 3.8 to 75%, and averaged 27.7%. Maximum viability was found at 0800 and 1200 h. Pollen concentrations were of the same order of magnitude as the ones found on the mainland (Brindisi, Chieti, Matera). However, its specificity was evident. Future work should therefore look more at the pollen transport process which should account for this different assemblage of pollen.  相似文献   

2.
The Coriolis δ air sampler manufactured by Bertin Technologies (France) is a continuous air sampler, dedicated to outdoor monitoring of airborne spores and pollen grains. This high-volume sampler is based on patented Coriolis technology delivering a liquid sample. The air is drawn into a conical vial in a whirling type motion using suction; particles are pulled against the wall by centrifugal force. Airborne particles are separated from the air and collected in a liquid medium. This innovative solution allows rapid analysis by several techniques including PCR assay and serological assay in order to measure the antigenicity/allergenicity of pollen grains and fungal spores. Also, traditional counting of pollen grains or taxa identification by optical microscopy can be done. A study has been carried out by the Health Protection Agency (HPA), Porton Down, UK, to measure the physical efficiency of the Coriolis air sampler. The physical efficiency of the sampler for collection of micro-organism-laden particles of various sizes has been compared with that of membrane filter samplers using the techniques described by ISO 14698-1. The Coriolis was operated simultaneously with membrane filter samplers in a controlled room where they were challenged with uniform-sized particles of different diameters containing bacterial spores. For the larger particle sizes, it was found that the physical efficiency of the Coriolis was 92% for 10-μm particles. The biological performance of the Coriolis in the collection of airborne fungal spores and pollen grains was evaluated in comparison with a Hirst spore trap (one-week tape-on-drum type sampler) which is one of the most frequently used traps in the measurement of outdoor pollen grain concentrations. The advantages and limitations of both technologies are discussed. The Coriolis was operated simultaneously with a Hirst spore trap in the sampling station of Réseau National de Surveillance Aérobiologique, France (RNSA); the pollen grain and fungal spore counts were analysed by optical microscopy. The pollen grain count m−3 collected was compared for both devices. The dispersion values were obtained and statistical analysis was carried out. This study shows that the Coriolis air sampler provided equivalent recovery of pollen grain and fungal spores compared with the volumetric trap standard method (not significantly different, W test, α = 0.05). Nowadays, the French-led project, acronym MONALISA, with financial support from the European Commission––Life-Environment (LIFE05 ENV/F/000068), is testing this innovative air sampler in order to measure the antigenicity/allergenicity of the main aeroallergen particles, i.e. Betula (birch), Poaceae (grasses), Parietaria (pellitory), Olea spp (olive tree), and Artemisia (mugwort) pollen grains, and Alternaria (fungal spores) to validate a new approach of monitoring instead of quantifying pollen grains by their morphology. The robustness and efficiency of the MONALISA system is being demonstrated at a national level throughout Europe in eight different countries with different bio-climatic and topography characteristics: France, UK, Finland, Poland, Spain, Portugal, Switzerland, and Italy.  相似文献   

3.
Airborne pollen and spores, as well as airflow directions, were continuously monitored during a cruise across the East Mediterranean from Tel Aviv, Israel, to Istanbul, Turkey. In spite of the fact that a high-altitude dust cloud moved, at that, time from North Africa, across the East Mediterranean, only a few dust particles were monitored on the boat. The numbers of counted airborne pollen along the cruise path were rather small. This is, in part, because the trip was taken after the main flowering season in the East Mediterranean region. Nevertheless, airborne pollen grains were still found, either as a result of remnant pollen releases by late-flowering plants or because of secondary lift-up of previously settled pollen. The presented pollen counts are average pollen counts /m3 air /6 h. The counts ranged between ∼5 pollen/m3 of air in mid-sea (July 16th–July 17th) or ∼6 pollen/m3 of air on the Israeli coast (July 16–July 17th), and 30 pollen/m3 of air near the coasts of Turkey and of the Greek Islands (July 18th–July 19th) and some 18 taxa of pollen were identified, most of them at the family level. Some 30 taxa of different spores were recorded. The numbers of airborne spores were relatively low in mid-sea (300–750 spores/m3 air), but were high near the coasts of Turkey (1,200–2,400 spores/m3 air) and of Israel (340–1,695 spores/m3 air).  相似文献   

4.
Although exposure to airborne pollen grains and fungal spores has been implicated as a causative factor for acute exacerbation of asthma, the few epidemiologic studies that have attempted to evaluate the relationship between these bioaerosols and asthma have used only total counts (ignoring the relative importance of different taxa) or a few predominant pollen or spore types (ignoring less abundant but potentially relevant groups). This paper reports the development of hypothesis‐driven exposure metrics (based on known aeroallergen associations with allergic asthma and other hypersensitivity diseases, pollen allergen cross‐reactivity, and the presence of local sources in the city of Fresno, California, USA) for a 3.5 year epidemiologic study of childhood asthma. Outdoor regional and neighborhood concentrations of pollen and spores were measured using Hirst‐type, 7‐day samplers. Indoor and outdoor residential concentrations were measured at 84 selected homes with similar 24‐hour slit impactors. All pollen and spore concentrations were recorded in 2‐hour intervals to assist in understanding diurnal fluctuations in aeroallergen concentrations, identify exposures during the time periods that children are outdoors, and study interaction between aeroallergens and other air contaminants, which were the primary focus of the study. The 124 pollen taxa that were observed were reduced to 15 categories and the 66 fungal and algal taxa were reduced to five categories that will be used in microenvironmental models to generate individual daily exposure estimates for each of the 315 children. These new exposure metrics will allow examination of health effects for taxa traditionally associated with allergy and those with locally elevated concentrations in combination with exposures to other indoor and outdoor air contaminants.  相似文献   

5.
Stein Johansen 《Grana》2013,52(2):373-379
A survey of airspora collected on Jan Mayen, an isolated North Atlantic island (71°N, 8°30′W), using a Burkard seven-day volumetric trap from 24th April to 31th August, 1988, revealed only very small concentrations. A total of 10 different pollen types were recorded, constituting a seasonal sum of 29 pollen grains. The local pollen season was confined to July, with Oxyria digna and Salix as the most numerous pollen types recorded. Exotic pollen grains, namely Betula, Pinus and Castanea type, were recorded in three periods during June and July. Studies of back trajectories indicate North America and/or Iceland and Greenland as possible source areas for the Betula pollen. There were more diatoms than pollen in the local airspora. Fungal spores mainly occurred in late July and August. Cladosporium constituted less than 5% of the total seasonal sum of fungal spores, while basidiospores contributed nearly 12%. The highest diurnal average of Cladosporium was 27 spores m?3 air. The seasonal maximum of unidentified fungal spores reached a diurnal average of 639 spores m?1 air on 27th August.  相似文献   

6.
Pollen grains are abundant micro-organisms in the summer or dry season outdoor atmosphere. Moreover, they are fragile organisms, living for only a few days and their constant chemical interactions with their surrounding environment makes them prime candidates as biological indicators of ambient conditions. Volumetric samples were taken at different altitudes (3900–4400 m) on the Popocatepetl volcano (5452 m), 70 km south-east of Mexico City (2240 m). Results from September–October 1992 show that: (1) Local airborne pollen emission is negligible, most plant species found along the altitudinal transect being entomophilous. Indeed, maximum in vivo pollen viability was found at 4100 m a.s.l., where very few total airborne pollens were collected. (2) Regional pollen transport is found under 4000 m a.s.l., where pollen viability is discontinuous, being either below 50% or over 75%. (3) There is a long distance transport layer of pollen and spore dispersal below Mean Cloud Base, but over maximum wind speed, at a height of 4200–4300 m a.s.l., where pollen were found highly viable (>80%). (4) Pollen concentration or viability were not correlated with wind speed, relative humidity or temperature. However, the same factors were all significant regarding spore concentrations.  相似文献   

7.
A small assemblage of macro- and micro floral remains comprising fossil leaf impressions, silicified wood, spores, and pollen grains is reported from the Paleocene–lower Eocene Vagadkhol Formation (=Olpad Formation) exposed around Vagadkhol village in the Bharuch District of Gujarat, western India. The fossil leaves are represented by five genera and six species, namely, Polyalthia palaeosimiarum (Annonaceae), Acronychia siwalica (Rutaceae), Terminalia palaeocatapa and T. panandhroensis (Combretaceae), Lagerstroemia patelii (Lythraceae), and a new species, Gardenia vagadkholia (Rubiaceae). The lone fossil wood has been attributed to a new species, Schleicheroxylon bharuchense (Sapindaceae). The palynological assemblage, consisting of pollen grains and spores, comprises eleven taxa with more or less equal representation of pteridophytes, gymnosperms, and angiosperms. Angiospermous pollen grains include a new species Palmidites magnus. Spores are mostly pteridophytic but some fungal spores were also recovered. All the fossil species have been identified in the extant genera. The present day distribution of modern taxa comparable to the fossil assemblage recorded from the Vagadkhol area mostly indicate terrestrial lowland environment. Low frequency of pollen of two highland temperate taxa (Pinaceae) in the assemblage suggests that they may have been transported from a distant source. The wood and leaf taxa in the fossil assemblage are suggestive of tropical moist or wet forest with some deciduousness during the Paleocene–early Eocene. The presence of many fungal taxa further suggests the prevalence of enough humidity at the time of sedimentation.  相似文献   

8.
In this exploratory study, indoor and outdoor airborne fungal spores, pollen, and (1→3)-β-D-glucan levels were determined through long-term sampling (24-h) using a Button Personal Inhalable Aerosol Sampler. The air samples were collected in five Cincinnati area homes that had no visible mold growth. The total count of fungal spores and pollen in the collected samples was conducted under the microscope and Limulus Amebocyte Lysate (LAL) chromogenic assay method was utilized for the determination of the (1→3)-β-D-glucan concentration. For the combined number concentration of fungal spores and pollen, the indoor and outdoor geometric mean values were 573 and 6,435 m−3, respectively, with a geometric mean of the Indoor/Outdoor (I/O) ratio of .09. The geometric means of indoor and outdoor (1→3)-β-D-glucan concentrations were .92 and 6.44 ng m−3, respectively, with a geometric mean of the I/O ratio equal to .14. The I/O ratio of (1→3)-β-D-glucan concentration was found to be marginally greater than that calculated based on the combined number concentration of fungal spores and pollen. This suggests that (1→3)-β-D-glucan data are affected not only by intact spores and pollen grains but also by the airborne fragments of fungi, pollen, and plant material, which are ignored by traditional enumeration methodologies. Since the (1→3)-β-D-glucan level may elucidate the total exposure to fungal spores, pollen, and fungal fragments, its I/O ratio may be used as a risk marker for mold and pollen exposure in indoor environments.  相似文献   

9.
Summary A study of concentration of airborne pollen grains and fungal spores has been carried out in Barcelona (Spain) during 1989–90. The volumetric method of filtration, previously described for airborne pollen analysis (Suarez-Cervera and Seoane-Camba, 1983) has been used. In this case, the filters have also been cultivated in Czapecdox-agar, Sabouraud-agar and Sabouraud-agar with streptomycin for the identification of the fungal colonies. Analysis of the number of fungal spores growing on the filter shows that the maxima of colonies of spores developed in culture per m3 of air filtered, correspond to September–December. Pollen and spore concentrations start from November–December, reach a maximum in March–April and decline progressively until September–October. Therefore, in the city of Barcelona, the greatest concentration occurs in spring and the lowest in autumn.  相似文献   

10.
A two-year aeropalynological study performed during January 14, 1993 to December 31, 1994 in Taipei City revealed 154 different pollen taxa, with the most frequent beingBroussonetia (31.3%),Trema (15%),Bischofia (6.9%),Mallotus (6.8%),Cyathea (3.8%),Morus (3.7%),Fraxinus (2.9%) and Gramineae (2.8%), respectively. Two quantitative peaks of pollen grains appeared in March and in September in 1993, but only one peak in 1994. The dominant pollen taxa during these two peaks wereBroussonetia andMallotus. The heavy rain in February 1994 seemed to have delayed the first pollen peak to April, butBroussonetia was still the most frequent taxon. After July 1994, six typhoons brought heavy precipitation to northern Taiwan. Different weather types might have an effect on the concentration of airborne pollen grains, so that the timing of quantitative peaks was different in the two studied years. Arboreal pollen (AP), non-arboreal pollen (NAP) and fern spores (FS) constituted 81.7%, 7.7% and 7.8% of the two-year sum, respectively. AP dominated from January to June, NAP in November and fern spores in July. Native species in the Taipei Basin and trees along urban roadsides were the common sources of airborne pollen. The pollen calendar of two years in Taipei City was submitted.  相似文献   

11.
The diversity of airborne pollen grains in El-Hadjar town (northeast Algeria) was measured for 1 year, from July 1, 2012 to June 30, 2013, by means of the gravimetric method using Durham apparatus. The total number of pollen grains/cm2 was calculated from slides that were changed daily. This aerobiological study documented the air concentration of pollen from 50 taxa, where 28 belonged to arboreal and 22 to non-arboreal taxa. The percentage of pollen from arboreal and non-arboreal taxa was 56 and 44 %, respectively. From the list, the major collected taxa causing allergy in humans dominant in the Mediterranean area were Cupressaceae (14.86 %), Olea sp. (7.18 %), Casuarina sp. (6.44 %), and Fraxinus sp. (3.83 %) among arboreal plants, whereas for the non-arboreal plants Poaceae (23.20 %), Mercurialis sp. (12.58 %), Plantago sp. (1.69 %), Urticaceae (0.95 %), and Chenopodiaceae (0.85 %). The highest pollen counts occurred in the period from February to April. The pollen calendar for the region presented in this paper may be a useful tool for allergologists and botanical awareness.  相似文献   

12.
In this study, airborne pollen grains of Yalova province were investigated using VPSS 2000 from January to December 2004. During studying period, a total of 22409 pollen grains/m3 which belonged to 46 taxa and 74 unidentified pollen grains were recorded. From the identified taxa, 26 belong to arboreal and 20 to non-arboreal plants. Total pollen grains consist of 80.50% arboreal, 19.17% non-arboreal plants and 0.33% unidentified pollen grains. In the investigated region, from arboreal plant taxa Platanus spp. (29.08%), Cupressaceae/Taxaceae (21.22%), Pinus spp. (7.34%), Alnus spp. (4.75%), Castanea spp. (3.03%), Quercus spp. (3.07%), Olea spp. (2.50%), Acer spp. (2.21%), Corylus spp. (1.41%) and Fagus spp. (1.15%), and from non-arboreal plant taxa Poaceae (10.01%), Asteraceae (2.86%), Plantago spp. (1.47%) and Artemisia spp. (1.11%) were responsible for the greatest amounts of pollen.  相似文献   

13.
We studied airborne pollen along an elevation gradient of Mt Olympos (Greece). Samples were collected on a regular basis, over the period March–October 2009, in eight elevation-different stations, by use of a portable Hirst-type volumetric sampler. Concurrently, we studied pollen production in Quercus coccifera, Q. ilex, Pinus heldreichii and P. nigra, which are dominant species in the main vegetation types of the mountain. Of the 35 pollen taxa detected in the air, 18 account for 99.1 % of the total airborne pollen. These are the main pollen taxa each contributing by at least 0.5 %. Pinaceae (32 %) followed by Quercus (24 %) and Urticaceae (18 %) are the most abundantly represented taxa. Duration of the pollen season decreases with elevation by on average 3 days for every 100 m of elevation increase or by 5 days for every Celsius-degree of temperature decrease. Pollen concentration in the air decreases with elevation for the lowland taxa; with the exception of Cupressaceae, no pattern is observed for the other main taxa. The pine and oak species studied carry comparable amounts of pollen, approximately 104 grains per flower, 108–109 per m2 of crown surface and 1010–1011 per individual; pollen production, primarily of the two Quercus species, is not responsive to environmental changes associated with elevation. Results provide evidence that, within a margin of error, airborne pollen reflects the distributions of pollen taxa on the mountain; regarding abundance, airborne pollen is representative of Quercus, but under-representative of Pinaceae. Ambrosia pollen is found at all elevations examined, although plants producing it have not been recorded on or around Mt Olympos.  相似文献   

14.
Volumetric data on airborne pollen have been gathered for two consecutive years at a neotropical location (Caracas). Among the 65 taxa which were identified, pollen from aCupressus species (introduced) and from aCecropia species (indigenous) were dominant. Less numerous but also abundant (daily averages ≥5 grains/m3 air) were pollen from Gramineae, Urticaceae,Alcalypha, Pinus, Piperaceae andMimosa. Pollen grains were recorded daily throughout the year. They increased in numbers during April–May and again during November–December. The first peak was contributed mainly by indigenous species, the second peak mainly by introduced species.  相似文献   

15.
昆明市区气传致敏孢粉研究   总被引:5,自引:0,他引:5  
  相似文献   

16.
The characteristics of a pollen season, such as timing and magnitude, depend on a number of factors such as the biology of the plant and environmental conditions. The main aim of this study was to develop mathematical models that explain dynamics in atmospheric concentrations of pollen and fungal spores recorded in Rzeszów (SE Poland) in 2000–2002. Plant taxa with different characteristics in the timing, duration and curve of their pollen seasons, as well as several fungal taxa were selected for this analysis. Gaussian, gamma and logistic distribution models were examined, and their effectiveness in describing the occurrence of airborne pollen and fungal spores was compared. The Gaussian and differential logistic models were very good at describing pollen seasons with just one peak. These are typically for pollen types with just one dominant species in the flora and when the weather, in particular temperature, is stable during the pollination period. Based on s parameter of the Gaussian function, the dates of the main pollen season can be defined. In spite of the fact that seasonal curves are often characterised by positive skewness, the model based on the gamma distribution proved not to be very effective.  相似文献   

17.
An aerobiological study has been carried out in the region of Caxias do Sul in southern Brazil. Pollen monitoring was performed from January 1, 2001 through to December 31, 2002. A total of 30,469 pollen grains were collected during this period, and 40 pollen types were identified; of these, 23,389 pollen grains, representing 29 pollen types, originated from tree and shrub taxa. The maximum pollen concentration was registered in August 2001 and October 2002. In the study area, the pollen type Mimosa scabrella (18.8%) was much more abundant than all of the pollen types from tree and shrub taxa, such as: Urticaceae (18.4%), Myrtaceae (10.2%), Cupressaceae (7.7%), Myrsine (4.8%), Sorocea (3.9%), Pinaceae (2.9%), Asteraceae (2.2%) and Ricinus (2.1%). These nine pollen types accounted for the largest pollen concentrations of all the tree and shrub taxa. The pollen types Carya, Melastomataceae, Mimosa scabrella, Myrsine and Sorocea are reported for the first time in an aerobiological study in Brazil.  相似文献   

18.
We analysed 30 samples of Galician honey with the aim of quantifying and identifying the fungal spores contained in them. Using an optical microscope, we could identify 40 different types, among them Cladosporium, Penicillium/Aspergillus and the Basidiospores, which were identified in more than 80% of the samples. We calculated the relationship between fungal spores and amount of pollen grains in the samples. The maximum values were obtained in samples 21 (more than 208/100 grains of pollen) and 5 (153 spores/100 grains of pollen).  相似文献   

19.
Monosulcate pollen was produced by at least six plant orders in the Mesozoic. Megafossils of these orders are abundant in many Mesozoic sediments, but dispersed monosulcate pollen grains are commonly less than 10% of total sporomorphs (spores and pollen) in a sample. This paper presents possible explanations for the different relative frequencies of megafossils and pollen grains of monosulcate-producing plants (some of the explanations apply to only a few taxa): fragility of the pollen exines, destruction of the pollen on the plant by insects, poor pollen dispersal because of zoophily and small plant size, and, probably most importantly, overrepresentation of the plants by their generally deciduous leaves. Mesozoic monosulcate pollen was different in several ways from pollen of modern gymnosperms; furthermore, monosulcate-producing plants were not as abundant in the Mesozoic vegetation as has been generally thought.  相似文献   

20.
Persistent allergies are common in workers in florist shops but little research has been done on the reasons for this. This paper reports an investigation of occupational exposure of florists to pollen and spores in three florist shops over a 2-week period in the autumn of 2000. In each shop three sampling methods were used: Burkard continuous volumetric samplers, deposition plates and low-tac tape for surface samples, including hands of the florists and leaves of a selection of the plants. The florists kept a record of the type of work they undertook each day and of the stock amounts of flowers in the shops. The volumetric traps collected 80 pollen and spore taxa. The average concentrations recorded through the working day were generally low but short-term peak (one hour mean) concentrations of some types were found to be relatively high or very high. For a few taxa these concentrations equalled or exceeded those typical for short-term peaks in wind dispersed pollen types in the ambient air. Fungal spore concentrations of several known allergenic types were also very high for peak periods. This was most notable for Aspergillus spp. which reached extremely high concentrations in one shop, compared with typical peak concentrations in the ambient atmosphere. Low-tac tape leaf samples demonstrated that the flowers' foliage is a major source of the fungal spores. Few pollen grains or fungal spores were found on the hands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号