首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marine birds are important predators in the marine ecosystem, and dietary studies can give useful information about their feeding ecology, food webs and oceanographic variability. The aim of this study was to increase our understanding of the diet and trophic level of the seabirds breeding in Kongsfjorden, Svalbard. We have used fatty acids and stable isotopes, both of which integrate diet information over space and time, to determine trophic relationships in marine food webs. Fatty acid compositions of muscle from Little auk (Alle alle), Brünnich’s guillemot (Uria lomvia), Black-legged kittiwake (Rissa tridactyla), Northern fulmar (Fulmarus glacialis) and Glaucous gull (Larus hyperboreus) were determined and compared with their prey species. Canonical analysis (CA) showed that fatty acid composition differed among the five seabird species. Little auk, Black-legged kittiwake and Northern fulmar had high levels of the Calanus markers 20:1n9 and 22:1, indicating that these seabirds are a part of the Calanus food chain. Brünnich’s guillemot differed from the other species with much lower levels of 20:1n9 and 22:1. Brünnich’s guillemot is a pursuit diver feeding on fish and amphipods deeper in the water column, below 30 m. Glaucous gull also differed from the other seabird species, with a larger variation in the fatty acid composition indicating a more diverse diet. Trophic level analysis placed Little auk at the lowest trophic level, Brünnich’s guillemot and Black-legged kittiwake at intermediate levels and Glaucous gull and Northern fulmar at the highest trophic level.  相似文献   

2.
The at-sea distribution of seabirds and marine mammals in the eastern Barents Sea was determined using standardized transect counts during three cruises of RV“Dalnie Zelentsy” (Murmansk) in late summer 1991, 1992 and 1993. Totals of 32,268 seabirds, 485 pinnipeds, 25 cetaceans and 4 polar bears were counted during 554 half-hour counts. Numbers were converted into densities, total biomass and calculated daily food intake. Mean total food intake in kg fresh weight/km2.day was 3.1 for the entire zone and all years; fish eaters dominated the whole region, with an intake of 1.3 (mainly Brünnich’s guillemot, Uria lomvia, and harp seal, Phoca groenlandica), followed by zooplankton eaters (0.85, mainly fulmar, Fulmarus glacialis) and mixed zooplankton and fish feeders (0.75, mainly minke whale, Balaenoptera acutorostrata, and kittiwake, Rissa tridactyla). Year-to-year variations were of little importance, while geographic differences were obvious between Norwegian coastal, Atlantic and Barents Sea water masses, both quantitatively and qualitatively (relative importance of main diets). Within each zone, a strong geographic heterogeneity was noted, with high local concentrations at fronts between water masses and at ice edges.  相似文献   

3.
The distribution at sea of upper trophic levels—seabirds and marine mammals—is depending on their food availability: high concentrations reflect high prey abundance and thus high biological production. Polar marine ecosystems are characterized by low biodiversity and high biological patchiness. The distribution of predators, as a consequence, shows a similar patchiness. During two expeditions of icebreaking RV Polarstern in June–July 2011, biodiversity in the arctic marine zone north of 70°N was very low, with low numbers of species: 20 seabirds, eight cetaceans, five pinnipeds and polar bear. Moreover, a few species accounted for the majority in numbers: four bird species for 95 % of the total of 23,000 seabirds recorded during 700 transect counts: fulmar Fulmarus glacialis, kittiwake Rissa tridactyla, Brünnich’s guillemot Uria lomvia and little auk Alle alle. Among the marine mammals, 250 fin whales Balaenoptera physalus accounted for 80 % of the identified large cetaceans, 270 white-beaked dolphin Lagenorhynchus albirostris for 100 % of the small cetaceans and 180 harp seals Pagophilus groenlandica for 80 % of the identified pinnipeds. Their quantitative distribution was depending on water masses and oceanic fronts, large cetaceans—mainly fin whales—showing an important aggregation on the shelf slope off western Spitsbergen, as well as little auks and Brünnich’s guillemots. So that this zone, shelf slope and front of mixed Arctic/Atlantic Waters, showed unusually high seabird and cetacean concentrations. Seasonal factors possibly influencing their distribution are addressed.  相似文献   

4.
 We studied the influence of the distribution of prey and hydrographic fronts on the spatial distribution of foraging Brünnich’s guillemots (Uria lomvia) in Storfjorden, southeastern Svalbard in late July 1992. Two large breeding colonies, comprising a total of 540,000 individuals, were located adjacent to the study area, and large numbers of Brünnich’s gullemots from these colonies foraged within the area, as well as to the south, outside of Storfjorden. Within the study area, most guillemots foraged on the west side of the fjord, coincident with a weak subsurface front between warm Atlantic water, which penetrated Storfjorden from the south, and cold Arctic water. Food samples from the guillemots collected in the study area contained primarily crustaceans (Parathemisto spp. and Thysanoessa inermis) and polar cod Boreogadus saida. Acoustic observations of prey were differentiated into two classes of signals, which we interpreted as originating from aggregated and dispersed organisms. The numbers of foraging guillemots were strongly correlated with the strength of echoes of the aggregated type, whereas correlations with dispersed echoes were consistently weaker. The distribution of foraging guillemots showed no significant correlations with either horizontal or vertical gradients of physical properties of the water column. Our finding that guillemots respond differently to aggregated and dispersed prey has important implications both for the interpretation of past work on the foraging ecology of marine birds, and for the management of fisheries. Received: 9 June 1995/Accepted: 5 January 1996  相似文献   

5.
Summary The early spring distribution of seabirds, pinnipeds and cetaceans was quantitatively determined in the northern Weddell Sea during the EPOS 1 cruise of the icebreaking RV Polarstern. Two hundred and ninety-one half hour counts were made in the Antarctic region between October 18 and November 16, 1988 (+94 counts in sub-antarctic and sub-tropical water). The bird populations were dominated by the Adélie Penguin Pygoscelis adeliae, which represented 90% of the birds counted in the closed pack ice (CPI), with a mean density of 31 penguins per km2. Crabeater seal Lobodon carcinophagus, the most common pinniped, had a mean density of 1.2/km2 in the CPI with local concentrations reaching 14/km2. Expressed as biomass, mean values of about 90 kg/km2 were found in the whole Antarctic zone for seabirds, 50 for seals, and 35 for baleen cetaceans. Densities were higher in the CPI: 140, 180 and 115 kg/km2 respectively, were found for birds, pinnipeds and baleen whales, and lowest in open water (8 kg/km2 for the birds, 0.2 for the pinnipeds and no whales). A minimum value of food intake by seabirds and marine mammals was estimated to be 2.7 mg C/m2/day for the Antarctic zone (4.1 in the CPI). Taking into account that pinnipeds density and cetacean food uptake are underestimated, and that Antarctic seabirds consume much more fish than generally suspected, a minimum krill production of 16 mg C/m2/day is proposed for the Antarctic zone: 22.5 in the CPI, 3 in open water, and intermediate values in the marginal ice zones.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

6.
Species associations and affinity to sea ice among arctic marine birds were studied during ship transects in the northern Greenland and Barents Seas in the period 1980–1984. Associations were investigated at the scale of visual contact, and the sampling units were 10-min periods, corresponding to a transect length of 1.5–3 km. In the Greenland Sea, three or four of the most abundant species, fulmar (Fulmarus glacialis), little auk (Alle alle), Brünnich's guillemot (Uria lomvia) and kittiwake Rissa tridactyla, composed a recurrent group in all years. In the Barents Sea, fulmars, Brünnich's guillemots and kittiwakes were most often clustered. A positive association with sea ice was found in more than one cruise in three seabird species: black guillemots, ivory gulls and little auks, whereas seven other species showed negative association with ice in more than one cruise. The observed species associations and affinities to sea ice reflect similarities in diet among the species involved. Received: 23 February 1994 / Accepted: 12 January 1997  相似文献   

7.
In a changing environment, the maintenance of communities is subject to many constraints (phenology, resources, climate, etc.). One such constraint is the relationship between conspecifics and competitors. In mixed colonies, seabirds may have to cope with interspecific and intraspecific competition for both space and food resources. We applied competitive interaction models to data on three seabird breeding populations: black-legged kittiwake (Rissa tridactyla), common guillemot (Uria aalge) and Brünnich's guillemot (Uria lomvia) collected over 27-years at Kharlov Island in the Barents Sea. We found a competitive effect only for the kittiwake breeding population size on the common guillemot breeding population size when kittiwakes were abundant. The timing of kittiwake breeding negatively affected the number of breeding Brünnich's guillemots. The timing of breeding was negatively correlated to biomass of the main pelagic fish in the Barents Sea, the capelin (Mallotus villosus), which suggests an indirect action. The community matrix shows that the community was not stable. The kittiwake population did not decrease as seen in north Norwegian populations. Likewise, the common guillemot population, after a crash in 1985, was recovering at Kharlov while Norwegian populations were decreasing. Only the Brünnich's guillemot showed a decrease at Kharlov until 1999. We suggest that the stability of the kittiwake and common guillemot populations at Kharlov is due to better feeding conditions than in colonies of the Norwegian coast, linked to a possible eastward shift of the capelin population with the temperature increase of the Barents Sea.  相似文献   

8.
At the onset of winter, warm‐blooded animals inhabiting seasonal environments may remain resident and face poorer climatic conditions, or migrate towards more favourable habitats. While the origins and evolution of migratory choices have been extensively studied, their consequences on avian energy balance and winter survival are poorly understood, especially in species difficult to observe such as seabirds. Using miniaturized geolocators, time‐depth recorders and a mechanistic model, we investigated the migratory strategies, the activity levels and the energy expenditure of the closely‐related, sympatrically breeding Brünnich's guillemots Uria lomvia and common guillemots Uria aalge from Bjørnøya, Svalbard. The two guillemot species from this region present contrasting migratory strategies and wintering quarters: Brünnich's guillemots migrate across the North Atlantic to overwinter off southeast Greenland and Faroe Islands, while common guillemots remain resident in the Barents, the Norwegian and the White Seas. Results show that both species display a marked behavioural plasticity to respond to environmental constraint, notably modulating their foraging effort and diving behaviour. Nevertheless, we provide evidence that the migratory strategy adopted by guillemots can have important consequences for their energy balance. Overall energy expenditure estimated for the non‐breeding season is relatively similar between both species, suggesting that both southward migration and high‐arctic winter residency are energetically equivalent and suitable strategies. However, we also demonstrate that the migratory strategy adopted by Brünnich's guillemots allows them to have reduced daily energy expenditures during the challenging winter period. We therefore speculate that ‘resident’ common guillemots are more vulnerable than ‘migrating’ Brünnich's guillemots to harsh winter environmental conditions.  相似文献   

9.
(1) Seabird-cetacean associations involve many genera.
(2) Some seabirds/cetaceans associate with more species than others, e.g. minke and pilot whales, Common dolphins and porpoises amongst cetaceans, and gannet & kittiwake amongst seabirds. Killer whale, sperm whale, shag and cormorant have not been recorded in associations, in the N.E. Atlantic.
(3) All observed associations would be predicted on the basis of the diets of the associated species.
(4) Most associations are probably opportunistic or incidental, as a result of concentration of shared prey.
(5) Some species, however, may associate more regularly, e.g. minke & pilot whales, Common dolphin and porpoise amongst cetaceans and gannet amongst seabirds. It is not possible to say which derives benefit from the association, but on theoretical grounds it is most likely to be the seabird.
(6) Minke and pilot whales may drive towards the surface food normally out of reach of seabirds, particularly Procellariformes. Common dolphins feed by herding fast-moving fish shoals into tight groups which will be a more concentrated food source for diving sea-birds, such as gannets, and make food more accessible to other species. Porpoises may achieve the same result with inshore shoals of sprats and sand eels, particularly for auks and kittiwakes, and terns.  相似文献   

10.
Analysis of synchrony in population fluctuations is a central topic in ecology. It can help identify factors that regulate populations, and also the scales at which these factors exert their influence. Using long-term data from seven Brünnich’s guillemot colonies in Svalbard, Norway, we determined that year to year population fluctuations were synchronized in six of the seven colonies. The seventh colony was located farther away and in a different oceanographic system. Moreover, all seven colonies have declined significantly since the late 1990s following a very similar pattern. If the rate of population decline does not change, Brünnich’s guillemots in Svalbard have a high probability of becoming quasi-extinct within the next 50 years. The high synchrony between the different colonies could further increase this risk of extinction. Our results indicate that environmental forcing plays a role in the colony size fluctuation of Brünnich’s guillemot (i.e., a Moran effect). These fluctuations are well explained by changes in the subpolar gyre in the region where Brünnich’s guillemots overwinter. This subpolar gyre weakened in the mid-1990s, leading to a warming of the North Atlantic. Our study indicates that this basin-scale shift in the subpolar gyre is closely related to the decline in Brünnich’s guillemot in Svalbard. Our results suggest that the causal mechanism linking changes in oceanographic conditions in the North Atlantic and Brünnich’s guillemot population dynamics are likely mediated, at least partly, by changes in recruitment.  相似文献   

11.
Summary I describe the winter diets (early March) of four seabird species, black-legged kittiwake (Rissa tridactyla), northern fulmar (Fulmarus glacialis), glaucous gull (Larus hyperboreus) and Brüinnich's guillemot (Uria lomvia) collected in the south eastern Barents Sea, in open water approximately 70 km from the ice edge. All species preyed heavily on commercial fish species such as cod (Gadus morrhua), polar cod (Boreogadus saida) and redfish (Sebastes marinus/S. mentella). The median total length of fish eaten ranged from 51 mm in fulmars to 88 mm in Brünnich's guillemots and differed significantly among all species pairs except kittiwake and glaucous gull. Although the size of fish eaten differed among the four bird species they all fed upon much the same age categories of fish. Cod and redfish eaten were almost exclusively one year old, whereas polar cod was 1–4 years old. Other important food items were crustaceans (B unnich's guillemots), and squid Gonatus sp. (fulmars); the glaucous gull also preyed on other birds. Body weights and amounts of stored fat suggest that individuals of all species except Brüinnich's guillemots were in good physical condition. The diets described here differed substantially from those of birds caught mainly during the prelaying season near the colonies in this area. Some of these differences may be attributed to the very low density of capelin (Mallotus villosus) when this study was conducted.  相似文献   

12.
The boreal Northeast Atlantic is strongly affected by current climate change, and large shifts in abundance and distribution of many organisms have been observed, including the dominant copepod Calanus finmarchicus, which supports the grazing food web and thus many fish populations. At the same time, large‐scale declines have been observed in many piscivorous seabirds, which depend on abundant small pelagic fish. Here, we combine predictions from a niche model of C. finmarchicus with long‐term data on seabird breeding success to link trophic levels. The niche model shows that environmental suitability for C. finmarchicus has declined in southern areas with large breeding seabird populations (e.g. the North Sea), and predicts that this decline is likely to spread northwards during the 21st century to affect populations in Iceland and the Faroes. In a North Sea colony, breeding success of three common piscivorous seabird species [black‐legged kittiwake (Rissa tridactyla), common guillemot (Uria aalge) and Atlantic puffin (Fratercula arctica)] was strongly positively correlated with local environmental suitability for C. finmarchicus, whereas this was not the case at a more northerly colony in west Norway. Large seabird populations seem only to occur where C. finmarchicus is abundant, and northward distributional shifts of common boreal seabirds are therefore expected over the coming decades. Whether or not population size can be maintained depends on the dispersal ability and inclination of these colonial breeders, and on the carrying capacity of more northerly areas in a warmer climate.  相似文献   

13.
Combined effects of heavy-metal contamination (Cu, Zn, and CH3Hg) and starvation were tested on common quails (Coturnix coturnix japonica) and used as a model for comparison with a wild common guillemot (Uria aalge) population found stranded at the Belgian coast. Appropriate heavy-metal levels were given to the quails to obtain concentrations similar to those found in the seabirds’s tissues. The contaminated animals were then starved for 4 d to simulate the evident malnutrition symptoms observed at the guillemot’s level. In such conditions, food intake and total-body weight are shown to decrease in contaminated individuals with simultaneous significant hepatic and renal increase of the heavy-metal concentrations. Like guillemots, higher heavy-metal levels were observed in those contaminated quails that had also developed a cachectic status characterized by a general atrophy of their pectoral muscle and complete absence of subcutaneous and/or abdominal fat depots. Although likely the result of a general protein catabolism during starvation, it is suggested that these higher metal levels could as well enhance a general muscle wasting process (cachectic status).  相似文献   

14.
Rod and cone visual pigments of 11 marine carnivores were evaluated. Rod, middle/long-wavelength sensitive (M/L) cone, and short-wavelength sensitive (S) cone opsin (if present) sequences were obtained from retinal mRNA. Spectral sensitivity was inferred through evaluation of known spectral tuning residues. The rod pigments of all but one of the pinnipeds were similar to those of the sea otter, polar bear, and most other terrestrial carnivores with spectral peak sensitivities (λmax) of 499 or 501 nm. Similarly, the M/L cone pigments of the pinnipeds, polar bear, and otter had inferred λmax of 545 to 560 nm. Only the rod opsin sequence of the elephant seal had sensitivity characteristic of adaptation for vision in the marine environment, with an inferred λmax of 487 nm. No evidence of S cones was found for any of the pinnipeds. The polar bear and otter had S cones with inferred λmax of ∼440 nm. Flicker-photometric ERG was additionally used to examine the in situ sensitivities of three species of pinniped. Despite the use of conditions previously shown to evoke cone responses in other mammals, no cone responses could be elicited from any of these pinnipeds. Rod photoreceptor responses for all three species were as predicted by the genetic data.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

15.
We investigated the impact of foraging location (nearshore vs offshore) and foraging latitude (high vs middle) on the carbon (δ13C) and nitrogen (δ15N) isotope compositions of bone collagen of northern fur seals (Callorhinus ursinus), harbor seals (Phoca vitulina), California sea lions (Zalophus californianus), and northern elephant seals (Mirounga angustirostris). Nearshore-foraging harbor seals from California had δ13C values 2.0‰ higher than female northern elephant seals foraging offshore at similar latitudes. Likewise, nearshore-foraging harbor seals from Alaska had values 1.7‰ higher than male northern fur seals, which forage offshore at high latitudes. Middle-latitude pinnipeds foraging in either the nearshore or offshore were 13C enriched by ∼1.0‰ over similar populations from high latitudes. Male northern elephant seals migrate between middle and high latitudes, but they had δ13C values similar to high-latitude, nearshore foragers. Female northern fur seal δ13C values were intermediate between those of high- and middle-latitude offshore foragers, reflecting their migration between high- and middle-latitude waters. The δ13C values of California sea lions were intermediate between nearshore- and offshore-foraging pinnipeds at middle latitudes, yet there was no observational support for the suggestion that they use offshore food webs. We suggest that their “intermediate” values reflect migration between highly productive and less-productive, nearshore ecosystems on the Pacific coasts of California and Mexico. The relative uniformity among all of these pinnipeds in δ15N values, which are strongly sensitive to trophic level, reveals that the carbon isotope patterns result from differences in the δ13C of organic carbon at the base of the food web, rather than differences in trophic structure, among these regions. Finally, the magnitude and direction of the observed nearshore-offshore and high-to middle-latitude differences in δ13C values suggest that these gradients may chiefly reflect differences in rates and magnitudes of phytoplankton production as well as the δ13C value of inorganic carbon available for photosynthesis, rather than the input of 13C-enriched macroalgal carbon to nearshore food webs. Received: 8 September 1998 / Accepted: 24 February 1999  相似文献   

16.

Background

Diversity of hair in marine mammals was suggested as an evolutionary innovation to adapt aquatic environment, yet its genetic basis remained poorly explored. We scanned α-keratin genes, one major structural components of hair, in 16 genomes of mammalian species, including seven cetaceans, two pinnipeds, polar bear, manatee and five terrestrial species.

Results

Extensive gene loss and high pseudogenization rate of α-keratin genes were identified in cetaceans when compared to terrestrial artiodactylans (average number of α-keratins 37.29 vs. 58.33; pseudogenization rate 29.89% vs. 8.00%), especially of hair follicle-specific keratin genes (average pseudogenization rate in cetaceans of 43.88% relative to 3.80% artiodactylian average). Compared to toothed whale, the much more number of intact functional α-keratin genes was examined in the baleen whale that had specific keratinized baleen. In contrast, the number of keratin genes in pinnipeds, polar bear and manatee were comparable to those of their respective terrestrial relatives. Additionally, four keratin genes (K39, K9, K42, and K74) were found to be pseudogenes or lost uniquely in cetaceans and manatees.

Conclusions

Species-specific evolution of α-keratin gene family identified in the marine mammals might be responsible for their different hair characteristics. Increased gene loss and pseudogenization rate identified in cetacean lineages was likely to contribute to hair-less phenotype to adaptation for complete aquatic environment. However, the fully aquatic manatee still remained the comparable number of intact genes to its terrestrial relative, probably due to its perioral bristles and bristle-like hairs on the oral disk. By contrast, similar evolution pattern of α-keratin gene repertoire in the pinnipeds, polar bear and their terrestrial relatives was likely due to abundant hair to keep warm when they went ashore. Interestingly, some keratin genes were exclusively lost in cetaceans and manatees, likely as a result of convergent hair-loss phenotype to inhabit completely aquatic environment in both groups.
  相似文献   

17.
The Barents Sea system is often depicted as a simple food web in terms of number of dominant feeding links. The most conspicuous feeding link is between the Northeast Arctic cod Gadus morhua, the world''s largest cod stock which is presently at a historical high level, and capelin Mallotus villosus. The system also holds diverse seabird and marine mammal communities. Previous diet studies may suggest that these top predators (cod, bird and sea mammals) compete for food particularly with respect to pelagic fish such as capelin and juvenile herring (Clupea harengus), and krill. In this paper we explored the diet of some Barents Sea top predators (cod, Black-legged kittiwake Rissa tridactyla, Common guillemot Uria aalge, and Minke whale Balaenoptera acutorostrata). We developed a GAM modelling approach to analyse the temporal variation diet composition within and between predators, to explore intra- and inter-specific interactions. The GAM models demonstrated that the seabird diet is temperature dependent while the diet of Minke whale and cod is prey dependent; Minke whale and cod diets depend on the abundance of herring and capelin, respectively. There was significant diet overlap between cod and Minke whale, and between kittiwake and guillemot. In general, the diet overlap between predators increased with changes in herring and krill abundances. The diet overlap models developed in this study may help to identify inter-specific interactions and their dynamics that potentially affect the stocks targeted by fisheries.  相似文献   

18.
19.
When species competing for the same resources coexist, some segregation in the way they utilize those resources is expected. However, little is known about how closely related sympatric breeding species segregate outside the breeding season. We investigated the annual segregation of three closely related seabirds (razorbill Alca torda , common guillemot Uria aalge and Brünnich’s guillemot U . lomvia ) breeding at the same colony in Southwest Greenland. By combining GPS and geolocation (GLS) tracking with dive depth and stable isotope analyses, we compared spatial and dietary resource partitioning. During the breeding season, we found the three species to segregate in diet and/or dive depth, but less in foraging area. During both the post-breeding and pre-breeding periods, the three species had an increased overlap in diet, but were dispersed over a larger spatial scale. Dive depths were similar across the annual cycle, suggesting morphological adaptations fixed by evolution. Prey choice, on the other hand, seemed much more flexible and therefore more likely to be affected by the immediate presence of potential competitors.  相似文献   

20.
Two kekurs on Cape Delil-de-la-Kroiera (east coast of Sakhalin Island, to the north of Cape Ratmanova) were surveyed on July 16, 2003. Nesting of six species of sea birds was observed: slaty-backed gull (Larus schistisagus), black-legged kittiwake (Rissa tridactyla), common murre (Uria aalge), spectacled guillemot (Cepphus carbo), horned puffin (Fratercula corniculata), and tufted puffin (Lunda cirrhata).Original Russian Text Copyright © 2005 by Biologiya Morya, Blokhin, Tiunov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号