首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
2.
3.
4.
5.
HOX homeodomain proteins bind short core DNA sequences to control very specific developmental processes. DNA binding affinity and sequence selectivity are increased by the formation of cooperative complexes with the PBX homeodomain protein. A conserved YPWM motif in the HOX protein is necessary for cooperative binding with PBX. We have determined the structure of a PBX homeodomain bound to a 14-mer DNA duplex. A relaxation-optimized procedure was developed to measure DNA residual dipolar couplings at natural abundance in the 20-kDa binary complex. When the PBX homeodomain binds to DNA, a fourth alpha-helix is formed in the homeodomain. This helix rigidifies the DNA recognition helix of PBX and forms a hydrophobic binding site for the HOX YPWM peptide. The HOX peptide itself shows some structure in solution and suggests that the interaction between PBX and HOX is an example of "lock and key" binding. The NMR structure explains the requirement of DNA for the PBX-HOX interaction and the increased affinity of DNA binding.  相似文献   

6.
7.
8.
为了探讨人造血相关的PBX相互作用蛋白质基因(HPIP)在肿瘤发生发展中的生物学作用,构建了HPIP小干扰RNA(siRNA)的真核表达载体,验证其敲减效果并观察其对细胞生长增殖的影响.根据人HPIP的cDNA序列,设计了含有小发卡结构的寡核苷酸序列,将其克隆到siRNA表达载体上;将重组质粒转染人胚肾293T细胞,通过实时定量RT-PCR及Western 印迹分析检测HPIP基因的表达水平;结晶紫实验及流式细胞技术检测敲减HPIP基因表达对细胞生长和增殖的影响,软琼脂实验检测对肿瘤细胞非锚定依赖性生长的影响.结果显示,构建的siRNA能够有效抑制HPIP基因的表达;结晶紫实验与细胞周期分析实验显示,siRNA介导的HPIP表达沉默导致细胞生长增殖的显著抑制,软琼脂实验结果表明,稳定转染HPIP siRNA能够抑制肿瘤细胞的锚定非依赖性生长.上述结果初步表明,HPIP siRNA能明显抑制肿瘤细胞的生长与增殖,可能是一个潜在的肿瘤治疗新靶点.  相似文献   

9.
10.
11.
12.
Meis1 and Hoxa9 expression is upregulated by retroviral integration in murine myeloid leukemias and in human leukemias carrying MLL translocations. Both genes also cooperate to induce leukemia in a mouse leukemia acceleration assay, which can be explained, in part, by their physical interaction with each other as well as the PBX family of homeodomain proteins. Here we show that Meis1-deficient embryos have partially duplicated retinas and smaller lenses than normal. They also fail to produce megakaryocytes, display extensive hemorrhaging, and die by embryonic day 14.5. In addition, Meis1-deficient embryos lack well-formed capillaries, although larger blood vessels are normal. Definitive myeloerythroid lineages are present in the mutant embryos, but the total numbers of colony-forming cells are dramatically reduced. Mutant fetal liver cells also fail to radioprotect lethally irradiated animals and they compete poorly in repopulation assays even though they can repopulate all hematopoietic lineages. These and other studies showing that Meis1 is expressed at high levels in hematopoietic stem cells (HSCs) suggest that Meis1 may also be required for the proliferation/self-renewal of the HSC.  相似文献   

13.
14.
The fly homeodomain (HD) protein EXTRADENTICLE (EXD) is dependent on a second HD protein, HOMOTHORAX (HTH), for nuclear localization. We show here that in insect cells the mammalian homolog of EXD, PBX1A, shows a similar dependence on the HTH homologs MEIS1, 2, and 3 and the MEIS-like protein PREP1. Paradoxically, removal of residues N-terminal to the PBX1A HD abolishes interactions with MEIS/PREP but allows nuclear accumulation of PBX1A. We use deletion mapping and fusion to green fluorescent protein to map two cooperative nuclear localization signals (NLSs) in the PBX HD. The results of DNA-binding assays and pull-down experiments are consistent with a model whereby the PBX N-terminus binds to the HD and masks the two NLSs. In support of the model, a mutation in the PBX HD that disrupts contact with the N-terminus leads to constitutive nuclear localization. The HD mutation also increases sensitivity to protease digestion, consistent with a change in conformation. We propose that MEIS family proteins induce a conformational change in PBX that unmasks the NLS, leading to nuclear localization and increased DNA-binding activity. Consistent with this, PBX1 is nuclear only where Meis1 is expressed in the mouse limb bud.  相似文献   

15.
16.
17.
PBX is a member of the three amino acid loop extension (TALE) class of homeodomains. PBX binds DNA cooperatively with HOX homeodomain proteins that contain a conserved YPWM motif. The amino acids immediately C-terminal to the PBX homeodomain increase the affinity of the homeodomain for its DNA site and HOX proteins. We have determined the structure of the free PBX homeodomain using NMR spectroscopy. Both the PBX homeodomain and the extended PBX homeodomain make identical contacts with a 5'-TGAT-3' DNA site and a YPWM peptide. A fourth alpha-helix, which forms upon binding to DNA, stabilizes the extended PBX structure. Variations in DNA sequence selectivity of heterodimeric PBX-HOX complexes depend on the HOX partner; however, a comparison of five different HOX-derived YPWM peptides showed that each bound to PBX in the same way, differing only in the strength of the association.  相似文献   

18.
19.
20.
Protein phosphorylation plays a key regulatory role in a variety of cellular processes. To better understand the function of protein phosphorylation in seed maturation, a PCR-based cloning method was employed and five cDNA clones (pvcipk1-5) for protein kinases were isolated from a cDNA library prepared from immature seeds of kidney bean (Phaseolus vulgaris L.). The deduced amino acid sequences showed that the five protein kinases (PvCIPK1-5) are members of the sucrose non-fermenting 1-related protein kinase type 3 (SnRK3) family, which interacts with calcineurin B-like proteins (CBLs). Two cDNA clones (pvcbl1 and 2) for CBLs were further isolated from the cDNA library. The predicted primary sequences of the proteins (PvCBL1 and 2) displayed significant identity (more than 90%) with those of other plant CBLs. Semi-quantitative RT-PCR analysis showed that the isolated genes, except pvcbl1, are expressed in leaves and early maturing seeds, whereas pvcbl1 is constitutively expressed during seed development. Yeast two-hybrid assay indicated that among the five PvCIPKs, only PvCIPK1 interacts with both PvCBL1 and PvCBL2. These results suggest that calcium-dependent protein phosphorylation-signaling via CBL-CIPK complexes occurs during seed development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号