首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Changes in carbon flow and sink/source activities can affect floral, architectural, and reproductive traits of plants. In potato, overexpression (OE) of the purple acid phosphatase 2 of Arabidopsis (AtPAP2) resulted in earlier flowering, faster growth rate, increased tubers and tuber starch content, and higher photosynthesis rate. There was a significant change in sucrose, glucose and fructose levels in leaves, phloem and sink biomass of the OE lines, consistent with an increased expression of sucrose transporter 1 (StSUT1). Furthermore, the expression levels and enzyme activity of sucrose-phosphate synthase (SPS) were also significantly increased in the OE lines. These findings strongly suggest that higher carbon supply from the source and improved sink strength can improve potato tuber yield.  相似文献   

2.
In many plants, sucrose transporters are essential for both sucrose exports from sources and imports into sinks, indicating a function in assimilate partitioning. To investigate whether sucrose transporters can improve the yield of starch plant, potato plants (Solanum tuberosum L. cv. Désirée) were transformed with cDNAs of the rice sucrose transporter genes OsSUT5Z and OsSUT2M under the control of a tuber-specific, class-I patatin promoter. Compared to the controls, the average fructose content of OsSUT5Z transgenic tubers significantly increased. However, the content of the sugars and starch in the OsSUT2M transgenic potato tubers showed no obvious difference. Correspondingly, the average tuber yield, average number of tubers per plant and average weight of single tuber showed no significant difference in OsSUT2M transgenic tubers with controls. In the OsSUT5Z transgenic lines, the average tuber yield per plant was 1.9-fold higher than the controls, and the average number of tubers per plant increased by more than 10 tubers on average, whereas the average weight of a single tuber did not increase significantly. These results suggested that the average number of tubers per plant showed more contribution than the average weight of a single tuber to the tuber yield per plant.  相似文献   

3.
In response to infestation with larvae of the Guatemalan tuber moth(Tecia solanivora), some Solanum tuberosum(potato) varieties exhibit an overcompensation response, whereby the total dry mass of uninfested tubers is increased. Here, we describe early responses,within the first few days, of T. solanivora feeding, in the Colombian potato variety Pastusa Suprema. Nontargeted metabolite profiling showed significant secondary metabolism changes in T. solanivora-infested tubers,but not in uninfested systemic tubers. In contrast,changes in primary metabolism were greater in uninfested systemic tubers than in the infested tubers, with a notable 80% decline in systemic tuber sucrose levels within 1 d of T. solanivora infestation. This suggested either decreased sucrose transport from the leaves orincreased sink strength, i.e., more rapid sucrose to starch conversion in the tubers. Increased sucrose synthesis was indicated by higher rubisco activase and lower starch synthase gene expression in the leaves of infested plants.Elevated sink strength was demonstrated by 45% more total starch deposition in systemic tubers of T. solanivorainfested plants compared to uninfested control plants.Thus, rather than investing in increased defense of uninfested tubers, Pastusa Suprema promotes deposition of photoassimilates in the form of starch as a response to T. solanivora infestation.  相似文献   

4.
The aim of this work was to investigate the importance of cytosolic phosphorylating glyceraldehyde 3-phosphate dehydrogenase (GAPC) in potato carbohydrate metabolism. For this purpose, the cytosolic isoform of phosphorylating GAPC was cloned and used for an antisense approach to generate transgenic potato plants that exhibited constitutively decreased GAPDH activity. Potato lines with decreased activities of phosphorylating GAPC exhibited no major changes in either whole-plant or tuber morphology. However, the levels of 3-phosphoglycerate were decreased in leaves of the transformants. A broad metabolic phenotyping of tubers from the transformants revealed an increase in sucrose and UDPglucose content, a decrease in the glycolytic intermediates 3-phosphoglycerate and phosphoenolpyruvate but little change in the levels of other metabolites. Moreover, the transformants displayed no differences in cold sweetening with respect to the wild type. Taken together these data suggest that phosphorylating GAPC plays only a minor role in the regulation of potato metabolism. The results presented here are discussed in relation to current models regarding primary metabolism in the potato tuber parenchyma.  相似文献   

5.
Transgenic potato plants were created in which the expression of ADP-glucose pyrophosphorylase (AGPase) was inhibited by introducing a chimeric gene containing the coding region of one of the subunits of the AGPase linked in an antisense orientation to the CaMV 35S promoter. Partial inhibition of the AGPase enzyme was achieved in leaves and almost complete inhibition in tubers. This resulted in the abolition of starch formation in tubers, thus proving that AGPase has a unique role in starch biosynthesis in plants. Instead up to 30% of the dry weight of the transgenic potato tubers was represented by sucrose and up to 8% by glucose. The process of tuber formation also changed, resulting in significantly more tubers both per plant and per stolon. The accumulation of soluble sugars in tubers of antisense plants resulted in a significant increase of the total tuber fresh weight, but a decrease in dry weight of tubers. There was no significant change in the RNA levels of several other starch biosynthetic enzymes, but there was a great increase in the RNA level of the major sucrose synthesizing enzyme sucrose phosphate synthase. In addition, the inhibition of starch biosynthesis was accompanied by a massive reduction in the expression of the major storage protein species of potato tubers, supporting the idea that the expression of storage protein genes is in some way connected to carbohydrate formation in sink storage tissues.  相似文献   

6.
Inorganic pyrophosphate (PPi) is an enzyme involved in sugar metabolism in potato tubers. In our previous study, we isolated an inorganic pyrophosphatase (PPase) gene from potato and obtained the transgenic potato plants transformed with the sense and antisense PPase genes respectively. In the present experiment, the physiological indexes, tuber dormancy, and sprouting characteristics of the transgenic potatoes were analyzed and evaluated. The result showed that the PPase activity and the inorganic phosphate content of tubers were lower in the antisense transgenic plant lines but were higher in the sense transgenic plant lines, compared with wild-type tubers. Soluble sugars, such as glucose, fructose and sucrose increased in transgenic plants that had overexpression of the sense PPase gene, but decreased in the antisense transgenic plant lines, compared with wild-type tubers. Tuber sprouting time of the antisense transgenic plants were delayed for 2 and 3 weeks and reached the 100 % sprouting rate only after 14 and 16 weeks storage compared with the wild-type when tubers are stored under 25 and 4 °C, respectively. In contrast, tuber sprouting time of the sense transgenic plants was earlier by approximately 2 weeks than that of wild-type tubers under these storage temperatures.  相似文献   

7.
The sucrose (Suc) H(+)-cotransporter StSUT1 from potato (Solanum tuberosum), which is essential for long-distance transport of Suc and assumed to play a role in phloem loading in mature leaves, was found to be expressed in sink tubers. To answer the question of whether SUT1 serves a function in phloem unloading in tubers, the promoter was fused to gusA and expression was analyzed in transgenic potato. SUT1 expression was unexpectedly detected not in tuber parenchyma but in the phloem of sink tubers. Immunolocalization demonstrated that StSUT1 protein was present only in sieve elements of sink tubers, cells normally involved in export of Suc from the phloem to supply developing tubers, raising the question of the role of SUT1 in tubers. SUT1 expression was inhibited by antisense in transgenic potato plants using a class I patatin promoter B33, which is primarily expressed in the phloem of developing tubers. Reduced SUT1 expression in tubers did not affect aboveground organs but led to reduced fresh weight accumulation during early stages of tuber development, indicating that in this phase SUT1 plays an important role for sugar transport. Changes in Suc- and starch-modifying enzyme activities and metabolite profiles are consistent with the developmental switch in unloading mechanisms. Altogether, the findings may suggest a role of SUT1 in retrieval of Suc from the apoplasm, thereby regulating the osmotic potential in the extracellular space, or a direct role in phloem unloading acting as a phloem exporter transferring Suc from the sieve elements into the apoplasm.  相似文献   

8.
The aim of this work was to establish whether plastidial phosphoglucomutase is involved in the starch biosynthetic pathway of potato tubers and thereby to determine the form in which carbon is imported into the potato amyloplast. For this purpose, we cloned the plastidial isoform of potato PGM (StpPGM), and using an antisense approach generated transgenic potato plants that exhibited decreased expression of the StpPGM gene and contained significantly reduced total phosphoglucomutase activity. We confirmed that this loss in activity was due specifically to a reduction in plastidial PGM activity. Potato lines with decreased activities of plastidial PGM exhibited no major changes in either whole-plant or tuber morphology. However, tubers from these lines exhibited a dramatic (up to 40%) decrease in the accumulation of starch, and significant increases in the levels of sucrose and hexose phosphates. As tubers from these lines exhibited no changes in the maximal catalytic activities of other key enzymes of carbohydrate metabolism, we conclude that plastidial PGM forms part of the starch biosynthetic pathway of the potato tuber, and that glucose-6-phosphate is the major precursor taken up by amyloplasts in order to support starch synthesis.  相似文献   

9.
StubGAL83 is a potato gene that encodes the beta-subunit of a protein kinase complex similar to the yeast SNF1, and the mammalian AMPK complexes that are modulated by changes in the cellular AMP/ATP ratio and are important regulators of metabolic and stress responses. Here we show that the expression of StubGAL83 in potato foliage is much higher in the dark than in the light and can be repressed by metabolisable sugars in the dark. The amounts of StubGAL83 mRNA are higher in sink than in source leaves. To unravel the role of StubGAL83, transgenic potato plants expressing a part of the StubGAL83 cDNA in antisense orientation under the control of the constitutive CaMV35S promoter were generated. Northern analysis revealed a reduction up to 90-95% in StubGAL83 mRNA accumulation in leaves of seven lines. Five out of these seven lines exhibited a reduction of StubGAL83 mRNA levels also in root and tuber tissues. Independent on the type of repression, the transgenic lines showed a delay in rooting and an increased sensitivity to salt stress. The roots were stunted and possessed less pronounced tap roots than the controls albeit with different severity in the different transgenic lines. The root cells were smaller and some of them had irregular shape. Tuberisation of the antisense-StubGAL83 lines was delayed, the size of the tubers was reduced while the number of tubers per plant was increased. These results together suggest that StubGAL83 affects root and tuber development probably by altering the metabolic status of the leaves.  相似文献   

10.
11.
J W Riesmeier  B Hirner    W B Frommer 《The Plant cell》1993,5(11):1591-1598
The major transport form of assimilates in most plants is sucrose. Translocation from the mesophyll into the phloem for long-distance transport is assumed to be carrier mediated in many species. A sucrose transporter cDNA was isolated from potato by complementation of a yeast strain that is unable to grow on sucrose because of the absence of an endogenous sucrose uptake system and the lack of a secreted invertase. The deduced amino acid sequence of the potato sucrose transporter gene StSUT1 is highly hydrophobic and is 68% identical to the spinach sucrose transporter SoSUT1 (pS21). In yeast, the sensitivity of sucrose transport to protonophores and to an increase in pH is consistent with an active proton cotransport mechanism. Substrate specificity and inhibition by protein modifiers are similar to results obtained for sucrose transport into protoplasts and plasma membrane vesicles and for the spinach transporter, with the exception of a reduction in maltose affinity. RNA gel blot analysis shows that the StSUT1 gene is highly expressed in mature leaves, whereas stem and sink tissues, such as developing leaves, show only low expression. RNA in situ hybridization studies show that the transporter gene is expressed specifically in the phloem. Both the properties and the expression pattern are consistent with a function of the sucrose transporter protein in phloem loading.  相似文献   

12.
We recently discovered that post-translational redox modulation of ADP-glucose pyrophosphorylase (AGPase) is a powerful new mechanism to adjust the rate of starch synthesis to the availability of sucrose in growing potato tubers. A strong correlation was observed between the endogenous levels of sucrose and the redox-activation state of AGPase. To identify candidate components linking AGPase redox modulation to sugar supply, we used potato tuber discs as a model system. When the discs were cut from growing wild-type potato tubers and incubated for 2 h in the absence of sugars, redox activation of AGPase decreased because of a decrease in internal sugar levels. The decrease in AGPase redox activation could be prevented when glucose or sucrose was supplied to the discs. Both sucrose uptake and redox activation of AGPase were increased when EDTA was used to prepare the tuber discs. However, EDTA treatment of discs had no effect on glucose uptake. Feeding of different glucose analogues revealed that the phosphorylation of hexoses by hexokinase is an essential component in the glucose-dependent redox activation of AGPase. In contrast to this, feeding of the non-metabolisable sucrose analogue, palatinose, leads to a similar activation as with sucrose, indicating that metabolism of sucrose is not necessary in the sucrose-dependent AGPase activation. The influence of sucrose and glucose on redox activation of AGPase was also investigated in discs cut from tubers of antisense plants with reduced SNF1-related protein kinase activity (SnRK1). Feeding of sucrose to tuber discs prevented AGPase redox inactivation in the wild type but not in SnRK1 antisense lines. However, feeding of glucose leads to a similar activation of AGPase in the wild type and in SnRK1 transformants. AGPase redox activation was also increased in transgenic tubers with ectopic overexpression of invertase, containing high levels of glucose and low sucrose levels. Expression of a bacterial glucokinase in the invertase-expressing background led to a decrease in AGPase activation state and tuber starch content. These results show that both sucrose and glucose lead to post-translational redox activation of AGPase, and that they do this by two different pathways involving SnRK1 and an endogenous hexokinase, respectively.  相似文献   

13.
The aim of this work was to investigate the role of cytosolic phosphoglucomutase (PGM; EC 5.4.2.2) in the regulation of carbohydrate metabolism. Many in vitro studies have indicated that PGM plays a central role in carbohydrate metabolism; however, until now the importance of this enzyme in plants has not been subject to reverse-genetics investigations. With this intention we cloned the cytosolic isoform of potato PGM (StcPGM) and expressed this in the antisense orientation under the control of the CaMV 35 S promoter in potato plants. We confirmed that these plants contained reduced total PGM activity and that loss in activity was due specifically to a reduction in cytosolic PGM activity. These plants were characterised by a severe phenotype: stunted aerial growth combined with limited root growth and a reduced tuber yield. Analysis of the metabolism of these lines revealed that leaves of these plants were inhibited in sucrose synthesis whereas the tubers exhibited decreased levels of sucrose and starch as well as decreased levels of glycolytic intermediates but possessed unaltered levels of adenylates. Furthermore, a broader metabolite screen utilising GC-MS profiling revealed that these lines contained altered levels of several intermediates of the TCA cycle and of amino acids. In summary, we conclude that cytosolic PGM plays a crucial role in the sucrose synthetic pathway within the leaf and in starch accumulation within the tuber, and as such is important in the maintenance of sink-source relationships.  相似文献   

14.
Sink strength of growing potato tubers is believed to be limited by sucrose metabolism and/or starch synthesis. Sucrose synthase (Susy) is most likely responsible for the entire sucrose cleavage in sink tubers, rather than invertases. To investigate the unique role of sucrose synthase with respect to sucrose metabolism and sink strength in growing potato tubers, transgenic potato plants were created expressing Susy antisense RNA corresponding to the T-type sucrose synthase isoform. Although the constitutive 35S CaMV promotor was used to drive the expression of the antisense RNA the inhibition of Susy activity was tuber-specific, indicating that independent Susy isoforms are responsible for Susy activity in different potato organs. The inhibition of Susy leads to no change in sucrose content, a strong accumulation of reducing sugars and an inhibition of starch accumulation in developing potato tubers. The increase in hexoses is paralleled by a 40-fold increase in invertase activities but no considerable changes in hexokinase activities. The reduction in starch accumulation is not due to an inhibition of the major starch biosynthetic enzymes. The changes in carbohydrate accumulation are accompanied by a decrease in total tuber dry weight and a reduction of soluble tuber proteins. The reduced protein accumulation is mainly due to a decrease in the major storage proteins patatin, the 22 kDa proteins and the proteinase inhibitors. The lowered accumulation of storage proteins is not a consequence of the availability of the free amino acid pool in potato tubers. Altogether these data are in agreement with the assumption that sucrose synthase is the major determinant of potato tuber sink strength. Contradictory to the hypothesis that the sink strength of growing potato tubers is inversely correlated with the tuber number per plant, no increase in tuber number per plant was found in Susy antisense plants.  相似文献   

15.
The metabolic function of the plastidic ATP/ADP transporter (AATP) in heterotrophic plastids was examined in transgenic potato plants that exhibited increased or decreased amounts of the protein. Altered mRNA levels correlated with activities of the plastidic ATP/ADP transporter. Potato tubers with decreased plastidic ATP/ADP transporter activities exhibited reduced starch contents whereas sense lines accumulated increased amounts of tuber starch. Starch from wild-type tubers had an amylose content of 18.8%, starch from antisense plants contained 11.5–18.0% amylose, whereas starch from sense plants had levels of 22.7–27.0%. The differences in physiological parameters were accompanied with altered tuber morphology. These changes are discussed with respect to the stromal ATP supply during starch biosynthesis.  相似文献   

16.
Differential expression of potato tuber protein genes   总被引:2,自引:1,他引:1       下载免费PDF全文
  相似文献   

17.
The potato tuber moth, Phthorimaea operculella (Zeller), in tropical and subtropical countries, is the most destructive pest of potato, Solanum tuberosum L. The larvae attack foliage and tubers in the field and in storage. The purpose of this study was to evaluate the efficacy of a Bt-cry5 transgene to control the potato tuber moth in tuber tissues. Tuber bioassays using stored (11-12 mo old) and newly harvested tubers of Bt-cry5-Lemhi Russet and Bt-cry5-Atlantic potato lines showed up to 100% mortality of 1st instars. Mortality was lowest in the newly harvested tubers of Bt-cry5-Atlantic lines (47.1-67.6%). Potato tuber moth mortality was 100% in the Bt-cry5-Spunta lines that were transformed with Bt-cry5 gene controlled by the CaMV 35S promoter (pBIML5 vector) and in 2 of 3 lines transformed with Bt-cry5 gene controlled by the Gelvin super promoter (pBIML1 vector). The transgenic Spunta lines expressing Bt-cry5 controlled by the patatin promoter (pBMIL2 vector) showed the lowest tuber moth mortality (25.6 and 31.1%). The Bt-cry5 transgenic lines with high tuber expression of B. thuringiensis have value in an integrated pest management system to control potato tuber moth.  相似文献   

18.
The aim of this work was to evaluate the extent to which plastidial phosphoglucomutase (PGM) activity controls starch synthesis within potato (Solanum tuberosum L. cv. Desirée) tubers. The reduction in the activity of plastidial PGM led to both a correlative reduction in starch accumulation and an increased sucrose accumulation. The control coefficient of plastidial PGM on the accumulation of starch was estimated to approximate 0.24. The fluxes of carbohydrate metabolism were measured by investigating the metabolism of [U-14C]glucose in tuber discs from wild-type and transgenic plants. In tuber discs the control coefficient of plastidial PGM over starch synthesis was estimated as 0.36, indicating that this enzyme exerts considerable control over starch synthesis within the potato tuber.  相似文献   

19.
PPi has previously been implicated specifically in the co-ordination of the sucrose–starch transition and in the broader context of its role as co-factor in heterotrophic plant metabolism. In order to assess the compartmentation of pyrophosphate (PPi) metabolism in the potato tuber we analysed the effect of expressing a bacterial pyrophosphatase in the amyloplast of wild type tubers or in the cytosol or amyloplast of invertase-expressing tubers. The second and third approaches were adopted since we have previously characterized the invertase expressing lines to both exhibit highly altered sucrose metabolism and to contain elevated levels of PPi (Farré et al. (2000a) Plant Physiol 123:681) and therefore this background rendered questions concerning the level of communication between the plastidic and cytosolic pyrophosphate pools relatively facile. In this study we observed that the increase in PPi in the invertase expressing lines was mainly confined to the cytosol. Accordingly, the expression of a bacterial pyrophosphatase in the plastid of either wild type or invertase-expressing tubers did not lead to a decrease in total PPi content. However, the expression of the heterologous pyrophosphatase in␣the cytosol of cytosolic invertase-expressing tubers led to strong metabolic changes. These results are discussed both with respect to our previous hypotheses and to current models of the compartmentation of potato tuber metabolism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号