首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Guttenberger  M.  Zick  H.  Thelen  H.  Wallenda  T.  Hampp  R. 《Plant and Soil》1998,199(1):71-81
The aim of our investigations was to elucidate the effects of acid precipitation on some enzymes of the primary metabolism of ectomycorrhizas. Mycorrhizas of the type of Piceirhiza nigra Gronbach and of Russula ochroleuca (Pers.) Fr. and Tuber puberulum Berk. and Br. were collected from a stand of Norway spruce (Picea abies [L.] Karst.) during the growing seasons of 1991 and 1992. The experimental plots had been limed (Ca: 22 kmol ha-1, Mg: 20 kmol ha-1) in 1984 and exposed to acid irrigation (pH 2.7–2.8, H2SO4: 2 kmol ha-1 a-1) from 1984 to 1990. Crude extracts of mycorrhizas were assayed for the activities of glucose-6-phosphate dehydrogenase (G6P-DH, EC 1.1.1.49), 6-phosphogluconate dehydrogenase (EC 1.1.1.44), NADP-dependent isocitrate dehydrogenase (EC 1.1.1.42) and NAD-dependent glutamate dehydrogenase (EC 1.4.1.2). The influence of the experimental treatments on these enzyme activities of the primary metabolism was generally low. For P. nigra, the activity of G6P-DH was decreased on the irrigated plot (photometric determinations). This seems to be a selective effect on the fungal partner, since quantitative enzyme electrophoresis revealed a decrease in the percentage of the fungal enzyme activity in relation to the total enzyme activity, whereas the content of the fungal compound ergosterol was not affected. A decrease in the fungal G6P-DH activity could also be detected in mycorrhizas of Tuber puberulum. There was also a seasonal variation in the proportion of fungal activity of G6P-DH in relation to the total G6P-DH activity. In the photometric assay (total activity) the effect was not discernible. This is indicative of a degree of regulation between the two partners, which could only be detected by quantitative enzyme electrophoresis. In addition, it could be deduced from the electrophoretograms, that in the case of G6P-DH and 6PG-DH the fungal enzyme activity was dominating in all mycorrhizas studied whereas in the case of ICA-DH the fungal band varied from being conspicuous to absent in different species of mycorrhizas. The banding pattern of G6P-DH was reproducibly different for all investigated species of mycorrhizas.  相似文献   

2.
The enzyme glucose-6-phosphate dehydrogenase (G6P-DH, EC.1.1.1.49) catalyzes the oxidation of glucose-6-phosphate in 6-phosphogluconat which is indispensable in the defence of erythrocytes from oxidative insult. The aim of this study was to examine the influence of commonly used drugs in our medical practice, amoxiclav (amoxicillin-clavulanate combination) and lidaprim (trimethoprim-sulfamethrole combination) respectively, upon the erythrocyte G6P-DH activity in experimental rats. In addition, the effect of the toxic drug 1-chloro-2,4-dinitrobenzen (CDNB) on the activity of G6P-DH was examined. The experiment was conducted in fresh blood haemolysates of white laboratory rats, Wistar type, of both genders (n=80). The enzyme activity was determined by "Boehringer-Mannheim" diagnostic assay kits (Kornberg et al., 1955). However, the measured enzyme activity in the control group of rats was found to be a statistically insignificant difference between the genders (140.2 +/- 21.2 mU/10(9)Er in male rats, 144.3 +/- 20.6 mU/10(9) in the female group). Hence, the established enzyme activity does not differ from the activity of the same enzyme in healthy human subjects. The administered dose of lidaprim did not affect the activity of G6P-DH in the treated group of rats, thus attaining levels similar to the control group. By contrast, amoxiclav administration provoked a significant reduction in enzyme activity of 13.6% in male and 19.5% in female rats (p < 0.001), while the treatment with CDNB significantly increased the activity of the latter to 49.7% in male and 30.1% in female rats (p < 0.001) in comparison with the control ones. Testing of haemolitical potential is strongly recommended prior to the use of new drugs, particularly in the Mediterranean region, were this enzymopathy is found to be frequent bearing in mind that there is an established list of drugs which affect the G6P-DH activity in the erythrocytes. The above-mentioned method may be used in experimental animal models allowing for administration of a wider selection of drugs in this type of research.  相似文献   

3.
A homogeneous preparation of glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) with a specific activity of 3.88 U/mg protein was isolated from pea (Pisum sativum L.) leaves. The molecular mass of the G6PDH is 79 +/- 2 kD. According to SDS-PAGE, the molecular mass of the enzyme subunit is 40 +/- 3 kD. The Km values for glucose-6-phosphate and NADP are 2 and 0.5 mM, respectively. The enzyme has a pH optimum of 8.0. Mg2+, Mn2+, and Ca2+ activate the enzyme at concentrations above 1 mM. Galactose-6-phosphate and fructose-6-phosphate inhibit the G6PDH from pea leaves. Fructose-1, 6-bisphosphate and galactose-1-phosphate are enzyme activators. NADPH is a competitive inhibitor of the G6PDH with respect to glucose-6-phosphate (Ki = 0.027 mM). ATP, ADP, AMP, UTP, NAD, and NADH have no effect on the activity of the enzyme.  相似文献   

4.
The activity of glucose-6-phosphate dehydrogenase (G6PD) was measured in bone marrow, spleen, lung, liver, kidney, adipose tissue, brain, heart, muscle, and in the erythroid cell line of rabbit. In tissues, the activity ranged from 6.87 to 0.09 U/g wet tissue, found in bone marrow and muscles, respectively, whereas in the erythroid cell line it ranged from 14.3 to 2.4 U/g cells for erythroblasts and erythrocytes, respectively. The electrophoretic patterns of the tissue crude extracts showed an identical set of three activity bands, and the immunotitration curves obtained with rat antirabbit erythrocyte G6PD antibodies shared the same equivalence point. The enzyme, purified to homogeneity from different tissues, showed no significant differences among the Km values for NADP and G6P. The results give a picture of the variability of the G6PD activity in rabbit tissues and suggest the presence of the same enzyme molecule in each tissue.  相似文献   

5.
1. The haemoglobin content of developing erythroblasts was shown to increase rapidly when the cells completed the final cell division of erythroid development and passed from the dividing into the non-dividing cell compartment. 2. The activity of carbonic anhydrase was measured and shown to increase continually throughout erythroid differentiation. The activity increased most rapidly in the polychromatic stage. 3. Catalase activity did not increase significantly during erythroid differentiation until the reticulocyte stage. 4. The activity of four enzymes, glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, adenosine deaminase and nucleoside phosphorylase, exhibited a similar pattern of change during erythroid differentiation. In the dividing cell compartment their activity was relatively high but exhibited a steep decline between the polychromatic stage and the orthochromatic stage, that is, as the cell completed its final cell division and moved from the dividing to the non-dividing compartment. After this the activity of these enzymes was stabilized at a relatively low value, and this activity persisted at such a value until the reticulocyte stage. 5. Lactate dehydrogenase activity also declined after the cell had crossed from the dividing into the non-dividing stage, but in this case the decline was less than in the case of the above four enzymes. 6. Adenylate kinase activity was relatively constant in the dividing cell compartment but exhibited a 60 percent increase when the cell passed from the dividing into the non-dividing compartment. 7. The cessation of cell division appears to coincide with a set of complex biochemical changes.  相似文献   

6.
Summary Three new glucose-6-phosphate dehydrogenase (G6PD) variants, which showed electrophoretically normal mobility and were associated with chronic nonspherocytic hemolytic anemia, were found in Japan. G6PD Ogikubo, found in a 17-year-old male whose red cells contained 3% of normal enzyme activity, had normal Km G6P, normal Km NADP, normal utilization of deamino-NADP, decreased heat stability, and a normal pH curve. G6PD Yokohama, characterized from a 15-year-old male, had 1.9% of normal enzyme activity, normal Km G6P, normal Km NADP, low Ki NADPH, normal utilizations of both 2-deoxy-G6P and deamino-NADP, decreased heat stability, and normal pH curve. G6PD Akita, characterized from a 56-year-old male, had an undetectably low activity when hemolysate was examined, normal Km G6P, normal Km NADP, normal Ki NADPH, normal utilizations of both 2-deoxy-G6P and deamino-NADP, decreased heat stability, and normal pH curve.The degree of hemolytic anemia was moderate to mild in all three patients.  相似文献   

7.
Previous results from this laboratory have shown that very low chronic doses of gamma radiation can stimulate proliferation of the Cyanobacterium Synechococcus lividus. This modification of cell proliferation occurred during the first doubling. In this paper, we have compared the metabolism of cells cultivated in a normal environment or under chronic irradiation. Incubation of the cells in a new medium induced a high superoxide dismutase (EC 1.15.1.1, SOD) activity at the 18th hour and a degradation of phycocyanin, thus demonstrating that cells were submitted to a photooxidative stress. This increase in superoxide dismutase activity was followed by concomittant peaks of glutathione reductase (EC 1.6.4.2, GR) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49, G6P-DH) at the 24th hour. Irradiated cultures at a dose of 53.5 mGray/year show an earlier and higher peak of SOD, GR, and G6P-DH. In a second stage, cultures showed an earlier onset of photosynthesis under irradiation, as evidenced by an increase in pigment content and an enhancement of glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13, GAP-DH). These results show that the radiostimulation is related to the activation of enzymes protecting against peroxides that were induced under oxidative circumstances and to the activation of a glucose catabolism via the oxidative pentose phosphate pathway.Abbreviations mGy milli-Gray - SOD superoxide dismutase - G6P-DH glucose-6-phosphate dehydrogenase - GAP-DH glycer-aldehyde-3-phosphate dehydrogenase - GSSG oxidized glutathione  相似文献   

8.
The values of Vmax and Km for the three genetic variants A, B, and A- of erythrocyte glucose-6-phosphate dehydrogenase have been determined at 10 different pH values in the range from 5.5 to 9.5, and at four different temperatures in the range from 18.5-40.0 degrees. The log Vmax versus pH curve for each of the enzymes shows a monotonic increase between pH 5.5 and 7, and a plateau from pH 7.5 upwards. These curves, and their temperature dependence, are compatible with the presence of a single ionizable group which, in its conjugate acid form, renders the enzyme-substrate complex inactive. The pK of this group is 6.94 at 18.5 degrees, and its enthalpy of ionization is 7.0 kcal mol-1. The log Km versus pH curves show a broad plateau between pH 6.2 and 8.2, interrupted by a sharp minimum at pH 7.2 for variant B, while variants A and A- show sharp maxima at pH 7.2 and 7.45, respectively. It is proposed that this unusual behavior depends on the dissociation of the tetrameric enzyme to dimers in this pH region. Specifically, it is shown that a sharp maximum or minimum of Km can arise if cooperative uptake or release of protons is linked to dimer formation, and if the degree of cooperativity is different for the free enzyme compared to the enzyme-substrate complex. The pH dependence of the equilibrium between the tetrameric and the dimeric form of the enzyme has been determined by gel filtration for the same three genetic variants B, A, and A-. In agreement with previous ultracentrifugal data, the enzyme is a tetramer in acid solution and a dimer in alkaline solution. The pH at which half of the enzyme is in dimeric form, under our experimental conditions, is 7.15 +/- 0.05 for variants A and B, and 7.35 +/- 0.05 for variant A-. These pH values correspond closely, for all three variants, to the sharp extrema in the pH dependence of their Km values for glucose 6-phosphate. From the measured dissociation equilibria, it can be inferred that the tetramer-dimer transition entails cooperative release of protons. The degree of cooperativity estimated from these data agrees closely with the independent estimate based on the pH dependence of Km.  相似文献   

9.
Glucose-6-phosphate dehydrogenase (G6PD) catalyses the first step of the pentose phosphate pathway which generates NADPH for anabolic pathways and protection systems in liver. G6PD was purified from dog liver with a specific activity of 130 U x mg(-1) and a yield of 18%. PAGE showed two bands on protein staining; only the slower moving band had G6PD activity. The observation of one band on SDS/PAGE with M(r) of 52.5 kDa suggested the faster moving band on native protein staining was the monomeric form of the enzyme.Dog liver G6PD had a pH optimum of 7.8. The activation energy, activation enthalpy, and Q10, for the enzymatic reaction were calculated to be 8.96, 8.34 kcal x mol(-1), and 1.62, respectively.The enzyme obeyed "Rapid Equilibrium Random Bi Bi" kinetic model with Km values of 122 +/- 18 microM for glucose-6-phosphate (G6P) and 10 +/- 1 microM for NADP. G6P and 2-deoxyglucose-6-phosphate were used with catalytic efficiencies (kcat/Km) of 1.86 x 10(6) and 5.55 x 10(6) M(-1) x s(-1), respectively. The intrinsic Km value for 2-deoxyglucose-6-phosphate was 24 +/- 4mM. Deamino-NADP (d-NADP) could replace NADP as coenzyme. With G6P as cosubstrate, Km d-ANADP was 23 +/- 3mM; Km for G6P remained the same as with NADP as coenzyme (122 +/- 18 microM). The catalytic efficiencies of NADP and d-ANADP (G6P as substrate) were 2.28 x 10(7) and 6.76 x 10(6) M(-1) x s(-1), respectively. Dog liver G6PD was inhibited competitively by NADPH (K(i)=12.0 +/- 7.0 microM). Low K(i) indicates tight enzyme:NADPH binding and the importance of NADPH in the regulation of the pentose phosphate pathway.  相似文献   

10.
Acclimation of carp both to the temperature fall (from 20 to 5 degrees C) and rise (from 20 to 30 degrees C) induces an increase in activity of cytoplasmic liver NADPH-generating enzymes--glucose-6-phosphate dehydrogenase (G6PDG) and malic-enzyme (ME) 6-phosphogluconate dehydrogenase (6PGDG) and NADP-isocitrate dehydrogenase (NADP-IDG) activities are unchanged. Actinomycin D does not prevent cold activation of G6PDG but blocks activation of ME. "Warm" G6PDG has minimal Km value for glucose-6-phosphate and "warm" ME has minimal Km value for glucose-6-phosphate and "warm" ME has minimal Km value for malate at 25 degrees C "Cold" G6PDG and ME have the warmest Km values at 5 degrees C. Isozyme composition of cytoplasmic G6PDG (2 bands with Rf 0.16 and 0.20) does not change within the limits of 5-30 degrees C. The prolactin action on G6PDG and ME is similar to the effect of cold acclimation (activity increases Km value decreases, isozyme pattern (for G6PDG) remains unchanged). It is supposed that activation of G6PDG and ME during cold adaptation may be a result of the prolactin action on substrate-binding ability without changes in the enzyme biosynthesis and isozyme pattern.  相似文献   

11.
A new glucose-6-phosphate dehydrogenase (G6PD) variant associated with chronic nonspherocytic hemolytic anemia was discovered. It was found in a 2-year-old male who had a hemolytic crisis after an upper respiratory tract infection. The enzyme activity of the variant was 8.4% of that of the normal enzyme. The enzymatic characteristics were slower than normal anodal electrophoretic mobility, low Km G6P, normal Km NADP, increased utilization of substrate analogues, high Ki NADPH, decreased heat stability, and an alkaline pH optimum. From these results, this was considered to be a new variant and was designated G6PD Sendagi.  相似文献   

12.
The existence of the enzyme glucose-6-phosphatase (G6Pase) in early and term human placenta was investigated by comparing the characteristics of placental microsomal glucose 6-phosphate (G6P) hydrolytic activity and liver G6Pase. Placental microsomes exhibited similar apparent Km values for G6P and beta-glycerophosphate in intact and deoxycholate-treated microsomes, heat stability at acidic pH, low latency of mannose 6-phosphate hydrolysis, very low activity of pyrophosphate: glucose phosphotransferase, and undetectable [U-14C]G6P transport into the placental microsomes, all of which indicated that specific G6Pase activity does not exist in placenta. Immunological evidence of the absence of both 36.5 kDa and T2 proteins, which represent the G6Pase catalytic protein and the phosphate/pyrophosphate transporter protein, respectively, confirmed that early and term human placenta are devoid of the multicomponent G6Pase enzyme.  相似文献   

13.
The glucose-6-phosphate dehydrogenase (G6PD) activity of erythroblasts, separated at different advancing stages of development, shows a marked decline of activity. A proteolytic mechanism, strictly controlled, is likely responsible of this decay, since a sufficient level of enzyme activity still remains in the circulating erythrocyte. In this report we suggest a model that could explain what triggers the mechanism of proteolytic degradation. HPLC analysis of the nucleotide content of erythroblasts and reticulocytes, showed a marked decline of adenine and pyridine nucleotides and of their catabolic products during the cell development. From thermostability tests, at fixed temperature, we have seen that ATP and NADP only, significantly protected the enzyme activity. In this light, we incubated 10 min at increasing temperatures, with and without ATP or NADP lysates of erythroblasts, separated at different stage of development and of reticulocytes. In the absence of nucleotides, we determined for all fractions a T degree break at 42 degrees C. In the presence of NADP all fractions were stabilized with no break point in the range 37-50 degrees C. On the contrary, the presence of ATP caused a progressive shift of the T degrees C break from the most immature erythroblasts (T degree break at 46 degrees C) to the reticulocytes (T degree break at 42 degrees C). Since ATP did not show any protective effect on the reticulocyte enzyme, we hypothesize the presence in these cells of a structurally modified G6PD. Furthermore, these data support our belief that the marked decline of ATP during cellular development, may represent the element responsible for the enzyme modification.  相似文献   

14.
Summary A new glucose 6-phosphate dehydrogenase (G6PD) variant associated with chronic nonspherocytic hemolytic anemia was discovered in Japan. The patient showed hemolytic crises after upper respiratory infections. The enzyme activity was about 3.8% of the normal. The partially purified enzyme revealed slow anodal electrophoretic mobility, high Km NADP, marked thermal-instability, and increased affinity for a substrate analogue (deamino-NADP). A particular characteristic of this enzyme was a biphasic pH curve with a greatly increased activity at low pH values. From these results, this variant was clearly different from hitherto observed G6PD variants, and was designated G6PD Asahikawa.  相似文献   

15.
The effect of sodium dodecyl sulfate on the activity of highly purified or crystalline enzymes has been studied. The enzymes were: lactate dehydrogenase (LDH), malate dehydrogenase (MDH). isocitrate dehydrogenase (ICDH), glucose-6-phosphate dehydrogenase (G6P-DH), lipase, alkaline phosphatase. Sodium dodecyl sulfate, always under the critical micellar concentration, shows a selective inhibitory effect. A kinetic analysis of the inhibitory action on LDH, MDH, ICDH and G6P-DH was also carried out.  相似文献   

16.
Summary A new glucose-6-phosphate dehydrogenase (G6PD) variant associated with chronic nonspherocytic hemolytic anemia was found in a 20-year-old Japanese male who showed mild hemolysis after an upper respiratory tract infection. The patient had been noted to have jaundice and reticulocytosis several times before this episode. The enzyme activity of the variant was 1.5% of normal. The enzymatic characteristics were slow anodal electrophoretic mobility, high Km G6P, normal Km NADP, decreased heat stability, and a normal pH optimum. From these results, the enzyme was considered to be a new class 1 variant and was designated G6PD Tsukui.  相似文献   

17.
In Trypanosoma brucei the enzyme glucose-6-phosphate isomerase, like most other enzymes of the glycolytic pathway, resides in a microbody-like organelle, the glycosome. Here we report a detailed study of this enzyme, involving a determination of its kinetic properties and the cloning and sequence analysis of its gene. The gene codes for a polypeptide of 606 amino acids, with a calculated Mr of 67280. The protein predicted from the gene sequence has 54-58% positional identity with its yeast and mammalian counterparts. Compared to those other glucose-6-phosphate isomerases the trypanosomal enzyme contains an additional 38-49 amino acids in its N-terminal domain, as well as a number of small insertions and deletions. The additional amino acids are responsible for the 5-kDa-larger subunit mass of the T. brucei enzyme, as measured by gel electrophoresis. The glucose-6-phosphate isomerase of the trypanosome has no excess of positive residues and, consequently, no high isoelectric point, in contrast to the other glycolytic enzymes that are present in the glycosome. However, similar to other glycosomal proteins analyzed so far, specific clusters of positive residues can be recognized in the primary structure. Comparison of the kinetic properties of the T. brucei glucose-6-phosphate isomerase with those of the yeast and rabbit muscle enzymes did not reveal major differences. The three enzymes have very similar pH profiles. The affinity for the substrate fructose 6-phosphate (Km = 0.122 mM) and the inhibition constant for the competitive inhibitor gluconate 6-phosphate (Ki = 0.14 mM) are in the same range as those of the similar enzymes. The Km shows the same strong dependence on salt as the rabbit muscle enzyme, although somewhat less than the yeast glucose-6-phosphate isomerase. The trypanocidal drug suramin inhibits the T. brucei and yeast enzymes to the same extent (Ki = 0.29 and 0.36 mM, respectively), but it had no effect on the rabbit muscle enzyme. Agaricic acid, a potent inhibitor of various glycosomal enzymes of T. brucei, has also a strong, irreversible effect on glucose-6-phosphate isomerase, while leaving the yeast and mammalian enzymes relatively unaffected.  相似文献   

18.
Erythrocyte glucose-6-phosphate dehydrogenase (G6PD) was characterized in blood samples of 94 male subjects in Sudan having deficient and non-deficient electrophoretic variants. They comprised 44 GdB, 17 GdA, 19 GdB-, 11 GdA- and 3 nondeficient (GdKhartoum) variants. Biochemical characteristics including enzyme activity, electrophoretic mobility, Km for glucose-6-phosphate (G6P) and nicotinamide adenine dinucleotide phosphate (NADP), heat stability and pH optimum of all the common and deficient variants were consistent with the reported characteristics of these variants. The GdKhartoum variant had 90% mobility in TEB buffer and 100% in phosphate buffer, 120% activity, Km of 130 +/- 49 microns for G6P and 0.8 +/- 0.2 microns for NADP, lowered thermostability and an optimum pH of 7.6. This variant was not inhibited by 15 mM maleic acid, 10 mM iodoacetate and dehydro-iso-androsterone. All other variants were inhibited by dehydro-iso-androsterone but uninhibited by maleic acid and iodoacetate.  相似文献   

19.
Summary Two new glucose 6-phosphate dehydrogenase (G6PD) variants associated with chronic nonspherocytic hemolytic anemia were discovered. G6PD Kobe was found in a 16-year-old male associated with hemolytic crisis after upper respiratory infection. The enzyme activity of the variant was about 22% of that of the normal enzyme. The main enzymatic characteristics were slower than normal anodal electrophoretic mobility, high Km G6P, increased thermal-instability, an acidic pH optimum, and an extremely increased affinity for the substrate analogue, galactose 6-phosphate (Gal-6P).G6PD Sapporo was found in a 3-year-old male associated with drug-induced hemolysis. The enzyme activity was extremely low, being 3.6% of normal. In addition, this variant showed high Ki NADPH and thermal-instability.G6PD Kobe utilized the artificial substrate Gal-6P effectively as compared with the common natural substrate, glucose 6-phosphate. In G6PD Sapporo, NADPH could not exert the effect of product inhibition. The structural changes of these variants are expected to occur at the portions inducing conformational changes of the substrate binding site of the enzyme.  相似文献   

20.
A genetic variant of human erythrocyte glucose 6-phosphate dehydrogenase   总被引:1,自引:0,他引:1  
Human erythrocyte G6PD activity was measured in more than 500 subjects in Isfahan, Iran, and the percent of enzyme deficiency for males and females are reported. Some properties of the abnormal enzyme is compared with its normal counterpart. Apparent Km values of glucose 6-phosphate for the variant and normal enzymes were 37 and 101 microM, respectively. The variant enzyme was less resistant to inhibition by 40 microM NADPH (72% inhibition) than the normal enzyme (48% inhibition). The mode of inhibition for both enzymes was competitive with NADP+. ATP at 1.5 mM concentration also inhibited normal and variant enzymes at 17% and 10%, respectively. The inhibition was competitive with glucose 6-phosphate. Polyacrylamide gel electrophores showed that normal enzyme has one major and another weak active bands, while the variant enzyme under identical conditions shows only one active band corresponding to the major band of the normal enzyme. Thermostability of variant G6PD was slightly lower that normal but no significant differences observed in their energy of activation. The activity pH profile of the variant enzyme was truncate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号