首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endoplasmic reticulum (ER) stress induces INS-1 cell apoptosis by a pathway involving Ca(2+)-independent phospholipase A(2) (iPLA(2)beta)-mediated ceramide generation, but the mechanism by which iPLA(2)beta and ceramides contribute to apoptosis is not well understood. We report here that both caspase-12 and caspase-3 are activated in INS-1 cells following induction of ER stress with thapsigargin, but only caspase-3 cleavage is amplified in iPLA(2)beta overexpressing INS-1 cells (OE), relative to empty vector-transfected cells, and is suppressed by iPLA(2)beta inhibition. ER stress also led to the release of cytochrome c and Smac and, unexpectedly, their accumulation in the cytosol is amplified in OE cells. These findings raise the likelihood that iPLA(2)beta participates in ER stress-induced apoptosis by activating the intrinsic apoptotic pathway. Consistent with this possibility, we find that ER stress promotes iPLA(2)beta accumulation in the mitochondria, opening of mitochondrial permeability transition pore, and loss in mitochondrial membrane potential (Delta Psi) in INS-1 cells and that these changes are amplified in OE cells. ER stress also led to greater ceramide generation in ER and mitochondria fractions of OE cells. Exposure to ceramide alone induces loss in Delta Psi and apoptosis and these are suppressed by forskolin. ER stress-induced mitochondrial dysfunction and apoptosis are also inhibited by forskolin, as well as by inactivation of iPLA(2)beta or NSMase, suggesting that iPLA(2)beta-mediated generation of ceramides via sphingomyelin hydrolysis during ER stress affect the mitochondria. In support, inhibition of iPLA(2)beta or NSMase prevents cytochrome c release. Collectively, our findings indicate that the iPLA(2)beta-ceramide axis plays a critical role in activating the mitochondrial apoptotic pathway in insulin-secreting cells during ER stress.  相似文献   

2.
Two CD95 (APO-1/Fas) signaling pathways.   总被引:51,自引:1,他引:50       下载免费PDF全文
We have identified two cell types, each using almost exclusively one of two different CD95 (APO-1/Fas) signaling pathways. In type I cells, caspase-8 was activated within seconds and caspase-3 within 30 min of receptor engagement, whereas in type II cells cleavage of both caspases was delayed for approximately 60 min. However, both type I and type II cells showed similar kinetics of CD95-mediated apoptosis and loss of mitochondrial transmembrane potential (DeltaPsim). Upon CD95 triggering, all mitochondrial apoptogenic activities were blocked by Bcl-2 or Bcl-xL overexpression in both cell types. However, in type II but not type I cells, overexpression of Bcl-2 or Bcl-xL blocked caspase-8 and caspase-3 activation as well as apoptosis. In type I cells, induction of apoptosis was accompanied by activation of large amounts of caspase-8 by the death-inducing signaling complex (DISC), whereas in type II cells DISC formation was strongly reduced and activation of caspase-8 and caspase-3 occurred following the loss of DeltaPsim. Overexpression of caspase-3 in the caspase-3-negative cell line MCF7-Fas, normally resistant to CD95-mediated apoptosis by overexpression of Bcl-xL, converted these cells into true type I cells in which apoptosis was no longer inhibited by Bcl-xL. In summary, in the presence of caspase-3 the amount of active caspase-8 generated at the DISC determines whether a mitochondria-independent apoptosis pathway is used (type I cells) or not (type II cells).  相似文献   

3.
The mechanism by which transforming growth factor-beta1 (TGF-beta1) induces apoptosis of prostate epithelial cells was studied in the NRP-154 rat prostate epithelial cell line. TGF-beta 1 down-regulates expression of Bcl-xL and poly(ADP-ribosyl)polymerase (PARP), promotes cytochrome c release, up-regulates expression of latent caspase-3, and activates caspases 3 and 9. We tested the role of Bcl-xL in this cascade by stably overexpressing Bcl-xL to prevent loss by TGF-beta 1. Clones overexpressing Bcl-xL are resistant to TGF-beta 1 with respect to induction of apoptosis, cytochrome c release, activation of caspases 9 and 3, and cleavage of PARP; yet they remain sensitive to TGF-beta 1 by cell cycle arrest, induction of both fibronectin and latent caspase-3 expression, and loss of PARP expression. We show that Bcl-xL associates with Apaf-1 in NRP-154 cells; but this association does not inhibit the activation of caspases 9 and 3 by cytochrome c. Together, our data suggest that TGF-beta1 induces apoptosis through loss of Bcl-xL, leading to cytochrome c release and the subsequent activation of caspases 9 and 3. Moreover, our data demonstrate that the antiapoptotic effect of Bcl-xL occurs by inhibition of mitochondrial cytochrome c release and not through antagonizing Apaf-1-dependent processing of caspases 9 and 3.  相似文献   

4.
Elevated extracellular free fatty acids (FFAs) can induce pancreatic beta cell apoptosis, thereby contributing to the pathogenesis of type 2 diabetes mellitus (T2D). Mitochondrial dysfunction has been implicated in FFA-induced beta cell apoptosis. However, molecular mechanisms linking mitochondrial dysfunction and FFA-induced beta cell apoptosis are not clear. Dynamin-related protein 1 (DRP-1) is a mitochondrial fission modulator. In this study, we investigated its role in FFA-induced INS-1 beta cell apoptosis. DRP-1 protein was promptly induced in INS-1 cells and rat islets after stimulation by FFAs, and this DRP-1 upregulation was accompanied by increased INS-1 cell apoptosis. Induction of DRP-1 expression significantly promoted FFA-induced apoptosis in DRP-1 WT (DRP-1 wild type) inducible INS-1-derived cell line, but not in DRP-1K38A (a dominant negative mutant of DRP-1) inducible INS-1-derived cell line. To validate these in vitro results, we transplanted DRP-1 WT or DRP-1 K38A cells into renal capsules of streptozotocin (STZ)-treated diabetic mice to study the apoptosis in xenografts. Consistent with the in vitro results, the over-expression of DRP-1 led to aggravated INS-1-derived cell apoptosis triggered by FFAs. In contrast, dominant-negative suppression of DRP-1 function as represented by DRP-1 K38A significantly prevented FFA-induced apoptosis in xenografts. It was further demonstrated that mitochondrial membrane potential decreased, while cytochrome c release, caspase-3 activation, and generation of reactive oxygen species (ROS) were enhanced by the induction of DRP-1WT, but prevented by DRP-1 K38A in INS-1-derived cells under FFA stimulation. These results indicated that DRP-1 mediates FFA-induced INS-1-derived cell apoptosis, suggesting that suppression of DRP-1 is a potentially useful therapeutic strategy for protecting against beta cell loss that leads to type 2 diabetes.  相似文献   

5.
The reverse tetracycline-dependent transactivator system was employed in insulinoma INS-1 cells to achieve controlled inducible expression of hepatocyte nuclear factor-1 alpha (HNF1 alpha)-P291fsinsC, the most common mutation associated with subtype 3 of maturity-onset diabetes of the young (MODY3). Nuclear localized HNF1 alpha-P291fsinsC protein exerts its dominant-negative effects by competing with endogenous HNF1 alpha for the cognate DNA-binding site. HNF1 alpha controls multiple genes implicated in pancreatic beta-cell function and notably in metabolism- secretion coupling. In addition to reduced expression of the genes encoding insulin, glucose transporter-2, L-pyruvate kinase, aldolase B and 3-hydroxy-3-methylglutaryl coenzyme A reductase, induction of HNF1 alpha-P291fsinsC also significantly inhibits expression of mitochondrial 2-oxoglutarate dehydrogenase (OGDH) E1 subunit mRNA and protein. OGDH enzyme activity and [(14)C]pyruvate oxidation were also reduced. In contrast, the mRNA and protein levels of mitochondrial uncoupling protein-2 were dramatically increased by HNF1 alpha-P291fsinsC induction. As predicted from this altered gene expression profile, HNF1 alpha-P291fsinsC also inhibits insulin secretory responses to glucose and leucine, correlated with impaired nutrient-evoked mitochondrial ATP production and mitochondrial membrane hyperpolarization. These unprecedented results suggest the molecular mechanism of HNF1 alpha-P291fsinsC causing beta-cell dysfunction.  相似文献   

6.
7.
8.
The pancreatic beta cell dysfunction is critical cycle in the pathogenesis of diabetes. Hyperglycemia is one of factors that induce pancreatic beta cell dysfunction, but the underlying mechanisms have not been well elucidated. In this study, we reported that a mitochondrial fission modulator, Dynamin-related protein 1 (Drp-1), plays an important role in high glucose induced beta cell apoptosis. Drp-1 expressed in islet beta cells was increased drastically under hyperglycemia conditions. Induction of Drp-1 expression significantly promoted high glucose induced apoptosis in Drp-1WT (Drp-1 wild type) inducible beta cell line, but not in Drp-1K38A (a dominant negative mutant of Drp1) inducible beta cell line. We further demonstrated that mitochondrial fission, cytochrome C release, mitochondrial membrane potential decreased, caspase-3 activation and generation of reactive oxygen species were enhanced by induction of Drp-1WT, but prevented by Drp-1K38A in pancreatic beta cells under high glucose condition. These results indicated that Drp-1 mediates high glucose induced pancreatic beta cell apoptosis.  相似文献   

9.
Misfolded human islet amyloid polypeptide (hIAPP) in pancreatic islets is associated with the loss of insulin-secreting beta cells in type 2 diabetes. Insulin secretion impairment and cell apoptosis can be due to mitochondrial dysfunction in pancreatic beta cells. Currently, there is little information about the effect of hIAPP on mitochondrial function. In this study, we used INS-1E rat insulinoma beta cells as a model to investigate the role of mitochondria in hIAPP-induced apoptosis and the protective effects of phycocyanin (PC). We demonstrated that hIAPP induced apoptosis in INS-1E cells was associated with the disruption of mitochondrial function, as evidenced by ATP depletion, mitochondrial mass reduction, mitochondrial fragmentation and loss of mitochondrial membrane potential (ΔΨ(m)). Further molecular analysis showed that hIAPP induced changes in the expression of Bcl-2 family members, release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria into cytosol, activation of caspases and cleavage of poly (ADP-ribose) polymerase. Interestingly, the hIAPP-induced mitochondrial dysfunction in INS-1E cells was effectively restored by co-treatment of PC. Moreover, there was crosstalk between the extrinsic and intrinsic apoptotic pathways as demonstrated by cleavage of Bid by caspase-8 in the apoptotic process triggered by hIAPP. Taken together, we demonstrated for the first time the involvement of mitochondrial dysfunction in hIAPP-induced INS-1E cell apoptosis. Attenuation of mitochondrial dysfunction provides a mechanism for the protective effects of PC.  相似文献   

10.
Chronic hypoxia is a major contributor to tubulointerstitial injury in various renal diseases and apoptosis is apparently involved. Although many studies report hypoxia-induced apoptosis in cultured tubular cells, information has been limited in proximal tubular cells, those from the most susceptible portion of renal tubules against hypoxia. This study was to confirm a role for apoptosis in hypoxic proximal tubular cells and to investigate its association with HIF-1. Temperature-sensitive SV40-immortalized rat proximal tubular cells (IRPTCs) showed apoptosis in 21.9+/-2.9% by hypoxia (0.2% O(2), 48h), with alterations in mitochondrial signaling such as Bcl2 and caspase-9. Bax mRNA was unaffected during the process. However, treating IRPTCs at the nonpermissive temperature showed an upregulation of Bax by hypoxia, which was abrogated by overexpressing dominant-negative HIF-1alpha. These findings extend previous reports on hypoxia-mediated tubular cell apoptosis and demonstrate the possible involvement of HIF-1 as an upstream molecule of Bax.  相似文献   

11.
12.
Nyblom HK  Thorn K  Ahmed M  Bergsten P 《Proteomics》2006,6(19):5193-5198
Extended hyperglycaemia leads to impaired glucose-stimulated insulin secretion (GSIS) and eventually beta-cell apoptosis in individuals with type 2 diabetes mellitus. In an attempt to dissect mechanisms behind the detrimental effects of glucose, we focused on measuring changes in expression patterns of mitochondrial proteins. Impaired GSIS was observed from INS-1E cells cultured for 5 days at 20 or 27 mM glucose compared to cells cultured at 5.5 or 11 mM glucose. After culture, mitochondria were isolated from the INS-1E cells by differential centrifugation. Proteins of the mitochondrial fraction were bound to a strong anionic surface (SAX2) protein array and mass spectra generated by SELDI-TOF-MS. Analysis of the spectra revealed proteins with expression levels that correlated with the glucose concentration of the culture medium. Indeed, such differentially expressed proteins created patterns of protein changes, which correlated with impairment of GSIS. In conclusion, the study reveals the first glucose-induced differentially expressed patterns of beta-cell mitochondrial proteins obtained by SELDI-TOF-MS.  相似文献   

13.
We investigated the apoptotic pathway activated by crambene (1-cyano-2-hydroxy-3-butene), a plant nitrile, on pancreatic acinar cells. As evidenced by annexin V-FITC staining, crambene treatment for 3 h induced the apoptosis but not necrosis of pancreatic acini. Caspase-3, -8, and -9 activities in acini treated with crambene were significantly higher than in untreated acini. Treatment with caspase-3, -8, and -9 inhibitors inhibited annexin V staining, as well as caspase-3 activity, pointing to an important role of these caspases in crambene-induced acinar cell apoptosis. The mitochondrial membrane potential was collapsed, and cytochrome c was released from the mitochondria in crambene-treated acini. Neither TNF-alpha nor Fas ligand levels were changed in pancreatic acinar cells after crambene treatment. These results provide evidence for the induction of pancreatic acinar cell apoptosis in vitro by crambene and suggest the involvement of mitochondrial pathway in pancreatic acinar cell apoptosis.  相似文献   

14.
Earlier reports have shown that herpes simplex virus 1 (HSV-1) mutants induce programmed cell death and that wild-type HSV blocks the execution of the cell death program triggered by viral gene products, by the effectors of the immune system such as the Fas and tumor necrosis factor pathways, or by nonspecific stress agents such as either osmotic shock induced by sorbitol or thermal shock. A report from this laboratory showed that caspase inhibitors do not block DNA fragmentation induced by infection with the HSV-1 d120 mutant. To identify the events in programmed cell death induced and blocked by HSV-1, we examined cells infected with wild-type virus or the d120 mutant or cells infected and exposed to sorbitol. We report that: (i) the HSV-1 d120 mutant induced apoptosis by a caspase-3-independent pathway inasmuch as caspase 3 was not activated and DNA fragmentation was not blocked by caspase inhibitors even though the virus caused cytochrome c release and depolarization of the inner mitochondrial membrane. (ii) Cells infected with wild-type HSV-1 exhibited none of the manifestations associated with programmed cell death assayed in these studies. (iii) Uninfected cells exposed to osmotic shock succumbed to caspase-dependent apoptosis inasmuch as cytochrome c was released, the inner mitochondrial potential was lost, caspase-3 was activated, and chromosomal DNA was fragmented. (iv) Although caspase-3 was activated in cells infected with wild-type HSV-1 and exposed to sorbitol, cytochrome c outflow, depolarization of the inner mitochondrial membrane, and DNA fragmentation were blocked. We conclude that although d120 induces apoptosis by a caspase-3-independent pathway, the wild-type virus blocks apoptosis induced by this pathway and also blocks the caspase-dependent pathway induced by osmotic shock. The block in the caspase-dependent pathway may occur downstream of caspase-3 activation.  相似文献   

15.
Effects of non-esterified fatty acids (FAs) are accentuated when applied together with elevated glucose through preferential use of glucose as fuel, which leads to decreased oxidation of FAs. We examined how over-expression of the mitochondrial FA transporter carnitine palmitoyltransferase 1 (CPT1) affects glucose-stimulated insulin secretion (GSIS), apoptosis and ER stress in INS-1E cells cultured in the presence of elevated levels of glucose and palmitate. INS-1E cells were infected with Tet-ON regulated adenovirus containing CPT1 and cultured for 48 h in the presence of 0.5 mM palmitate and 20 mM glucose. Over-expressing CPT1 lowered basal insulin secretion in a dose-dependent manner thereby improving GSIS from INS-1E cells. Also, apoptosis was alleviated and ER-stress markers p-eIF2α and CHOP were decreased in cells over-expressing CPT1. We conclude that regulated over-expression of CPT1 is beneficial for glucolipotoxic beta-cells.  相似文献   

16.
Methylene blue (MB), a widely studied reagent, is investigated in this work for its usage in photodynamic therapy (PDT). PDT has been proved to be highly effective in the treatment of different types of cancers. Previous studies showed MB has both high affinity for mitochondria and high photodynamic efficiency. To elucidate the effects of MB in PDT, we analyzed PDT-induced apoptosis in HeLa cells by introducing different doses of MB into the culture media. Our data showed that MB-mediated PDT triggered intense apoptotic cell death through a series of steps, beginning with photochemical generation of reactive oxygen species. The release of cytochrome c and activation of caspase-3 indicated that MB-PDT-mediated apoptosis in HeLa cells was executed by the mitochondria-dependent apoptotic pathway. Importantly, proteomic studies confirmed that expression levels of several mitochondrial proteins were altered in MB-PDT-induced apoptosis, including TRAP1, mitochondrial elongation factor Tu and peroxiredoxin 3 isoform b. Western blot data showed that phosphorylation of ERK1/2 and PKA were reduced in MB-PDT treated cells, indicating several signal molecules participating in this apoptotic cascade. Moreover, MB-PDT induced an increase in the strength of interaction between Bcl-xL and dephosphorylated Bad. This led to loss of the pro-survival function of Bcl-xL and resulted in mitochondria-mediated apoptosis. This study provides solid evidence of a strong induction by MB-PDT of a mitochondria-dependent apoptosis cascade in HeLa cells.  相似文献   

17.
18.
In our previous study, the sphingosine-like immunosuppressant ISP-1 was shown to induce apoptosis in the mouse cytotoxic T cell line CTLL-2. In this study, we characterized the ISP-1-induced apoptotic pathway. Although caspase-3-like protease activity increases concomitantly with ISP-1-induced apoptosis in CTLL-2 cells, the apoptosis is not inhibited by caspase-3-like protease inhibitors, i.e. DEVD-cho and z-DEVD-fmk. In contrast, sphingosine-induced apoptosis in CTLL-2 cells is caspase-3-like protease-dependent. A caspase inhibitor with broad specificity, z-VAD-fmk, protects cells from apoptosis induced by ISP-1, indicating that ISP-1-induced apoptosis is dependent on caspase(s) other than caspase-3. Overexpression of Bcl-2 or Bcl-xL suppresses the apoptosis induced by ISP-1, although sphingosine-induced apoptosis is not efficiently inhibited by Bcl-2. Finally, ISP-1-induced mitochondrial depolarization, which is thought to be a checkpoint dividing the apoptotic pathway into upstream and downstream stages, is not inhibited by DEVD-cho, but is inhibited by z-VAD-fmk. These data suggest that a pathway dependent on caspase(s) other than caspase-3 is involved upstream of mitochondrial depolarization in ISP-1-induced apoptosis.  相似文献   

19.
Oxidized low-density lipoproteins (oxLDL) play a critical role in atherogenesis. One oxidative pathway of LDL involves myeloperoxidase, which catalyzes the production of hypochlorous acid (HOCl) in monocytes. We investigated the apoptotic mechanism induced by oxLDL, generated by HOCl treatment of native LDL, in human monocytic U937 cell line. The involvement of the mitochondrial apoptotic pathway was analyzed in Bcl-2-overexpressing clones, generated from U937 cells. HOCl-oxLDL induced in U937 cells (i) a marked caspase-dependent increase of apoptosis, (ii) a loss of mitochondrial membrane potential, (iii) a specific activation of caspase-2, -3, -8, and -9, and (iv) a similar degree of apoptosis in presence or absence of anti-Fas and anti-TNF-R1 antibodies. Moreover, the degree of HOCl-oxLDL-induced caspase-3 and -8 activation, and apoptosis was significantly reduced in U937/Bcl-2 cells, with no activation of caspase-9. By contrast, Cu-oxLDL-mediated apoptosis in U937 cells involved exclusively the mitochondrial pathway. In conclusion, the mechanism of HOCl-oxLDL-induced apoptosis in monocytic U937 cells involves the two pathways of apical caspase activation: (i) death receptor-mediated caspase-8 and (ii) mitochondria-mediated caspase-9. This converges in the activation of executing caspases, including caspase-3, and apoptosis. The interference of Bcl-2 overexpression with HOCl-oxLDL-induced apoptosis suggests the importance of mitochondrial involvement in this apoptotic mechanism.  相似文献   

20.
We studied the role of hypoxia-inducible factor-1alpha (HIF-1alpha) in human lung adenocarcinoma cell invasion using a metastatic cell model composed of low invasive CL1 and highly invasive CL1-5 cells. We showed that HIF-1alpha was expressed in CL1-5 but not in CL1 cells under normoxic condition, and that inhibition of HIF-1alpha expression by a small interfering RNA decreased invasiveness of CL1-5 cells. Complementary, overexpression of HIF-1alpha increased the invasiveness of CL1 and gastric cancer SC-M1 cells. Subsequently, we showed that urokinase-type plasminogen activator receptor (uPAR), and matrix metalloproteinases (MMPs) 1 and 2 were critical in HIF-1alpha-induced invasion. Mechanistic studies revealed that HIF-1alpha overexpression could increase the expression of uPAR and MMP1, but not MMP2. However, ELISA assays on the conditioned media generated from control CL1 and CL1 cells overexpressing HIF-1alpha showed that overexpression of HIF-1alpha increased the levels of endogenous free active MMP2 and total free MMP2, and the former was blocked by inhibition of MMP1 expression. We conclude that (i) HIF-1alpha overexpression enhances lung cancer cell invasion at least through up-regulating the expression and activities of uPAR, MMP1, and MMP2; and (ii) induction of MMP1 participates in cell invasion and also plays an important role in HIF-1alpha-induced activation of MMP2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号